123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 |
- #include <stdlib.h>
- #include <libsystem/syscall.h>
- #include <stddef.h>
- #include <unistd.h>
- #include <errno.h>
- #include <stdio.h>
- #define PAGE_4K_SHIFT 12
- #define PAGE_2M_SHIFT 21
- #define PAGE_1G_SHIFT 30
- #define PAGE_GDT_SHIFT 39
- // 不同大小的页的容量
- #define PAGE_4K_SIZE (1UL << PAGE_4K_SHIFT)
- #define PAGE_2M_SIZE (1UL << PAGE_2M_SHIFT)
- #define PAGE_1G_SIZE (1UL << PAGE_1G_SHIFT)
- // 屏蔽低于x的数值
- #define PAGE_4K_MASK (~(PAGE_4K_SIZE - 1))
- #define PAGE_2M_MASK (~(PAGE_2M_SIZE - 1))
- // 将addr按照x的上边界对齐
- #define PAGE_4K_ALIGN(addr) (((unsigned long)(addr) + PAGE_4K_SIZE - 1) & PAGE_4K_MASK)
- #define PAGE_2M_ALIGN(addr) (((unsigned long)(addr) + PAGE_2M_SIZE - 1) & PAGE_2M_MASK)
- /**
- * @brief 显式链表的结点
- *
- */
- typedef struct malloc_mem_chunk_t
- {
- uint64_t length; // 整个块所占用的内存区域的大小
- struct malloc_mem_chunk_t *prev; // 上一个结点的指针
- struct malloc_mem_chunk_t *next; // 下一个结点的指针
- } malloc_mem_chunk_t;
- static uint64_t brk_base_addr = 0; // 堆区域的内存基地址
- static uint64_t brk_max_addr = 0; // 堆区域的内存最大地址
- static uint64_t brk_managed_addr = 0; // 堆区域已经被管理的地址
- // 空闲链表
- // 按start_addr升序排序
- static malloc_mem_chunk_t *malloc_free_list = NULL;
- static malloc_mem_chunk_t *malloc_free_list_end = NULL; // 空闲链表的末尾结点
- static uint64_t count_last_free_size = 0; // 统计距离上一次回收内存,已经free了多少内存
- /**
- * @brief 将块插入空闲链表
- *
- * @param ck 待插入的块
- */
- static void malloc_insert_free_list(malloc_mem_chunk_t *ck);
- /**
- * @brief 当堆顶空闲空间大于2个页的空间的时候,释放1个页
- *
- */
- static void release_brk();
- /**
- * @brief 在链表中检索符合要求的空闲块(best fit)
- *
- * @param size 块的大小
- * @return malloc_mem_chunk_t*
- */
- static malloc_mem_chunk_t *malloc_query_free_chunk_bf(uint64_t size)
- {
- // 在满足best fit的前提下,尽可能的使分配的内存在低地址
- // 使得总的堆内存可以更快被释放
- if (malloc_free_list == NULL)
- {
- return NULL;
- }
- malloc_mem_chunk_t *ptr = malloc_free_list;
- malloc_mem_chunk_t *best = NULL;
- // printf("query size=%d", size);
- while (ptr != NULL)
- {
- // printf("ptr->length=%#010lx\n", ptr->length);
- if (ptr->length == size)
- {
- best = ptr;
- break;
- }
- if (ptr->length > size)
- {
- if (best == NULL)
- best = ptr;
- else if (best->length > ptr->length)
- best = ptr;
- }
- ptr = ptr->next;
- }
- return best;
- }
- /**
- * @brief 在链表中检索符合要求的空闲块(first fit)
- *
- * @param size
- * @return malloc_mem_chunk_t*
- */
- static malloc_mem_chunk_t *malloc_query_free_chunk_ff(uint64_t size)
- {
- if (malloc_free_list == NULL)
- return NULL;
- malloc_mem_chunk_t *ptr = malloc_free_list;
- while (ptr)
- {
- if (ptr->length >= size)
- {
- return ptr;
- }
- ptr = ptr->next;
- }
- return NULL;
- }
- /**
- * @brief 扩容malloc管理的内存区域
- *
- * @param size 扩大的内存大小
- */
- static int malloc_enlarge(int64_t size)
- {
- if (brk_base_addr == 0) // 第一次调用,需要初始化
- {
- brk_base_addr = sbrk(0);
- // printf("brk_base_addr=%#018lx\n", brk_base_addr);
- brk_managed_addr = brk_base_addr;
- brk_max_addr = brk_base_addr;
- }
- int64_t free_space = brk_max_addr - brk_managed_addr;
- // printf("size=%ld\tfree_space=%ld\n", size, free_space);
- if (free_space < size) // 现有堆空间不足
- {
- if (sbrk(size - free_space) != (void *)(-1))
- brk_max_addr = sbrk((0));
- else
- {
- put_string("malloc_enlarge(): no_mem\n", COLOR_YELLOW, COLOR_BLACK);
- return -ENOMEM;
- }
- // printf("brk max addr = %#018lx\n", brk_max_addr);
- }
- // 扩展管理的堆空间
- // 在新分配的内存的底部放置header
- // printf("managed addr = %#018lx\n", brk_managed_addr);
- malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)brk_managed_addr;
- new_ck->length = brk_max_addr - brk_managed_addr;
- // printf("new_ck->start_addr=%#018lx\tbrk_max_addr=%#018lx\tbrk_managed_addr=%#018lx\n", (uint64_t)new_ck, brk_max_addr, brk_managed_addr);
- new_ck->prev = NULL;
- new_ck->next = NULL;
- brk_managed_addr = brk_max_addr;
- malloc_insert_free_list(new_ck);
- return 0;
- }
- /**
- * @brief 合并空闲块
- *
- */
- static void malloc_merge_free_chunk()
- {
- if (malloc_free_list == NULL)
- return;
- malloc_mem_chunk_t *ptr = malloc_free_list->next;
- while (ptr != NULL)
- {
- // 内存块连续
- if (((uint64_t)(ptr->prev) + ptr->prev->length == (uint64_t)ptr))
- {
- // printf("merged %#018lx and %#018lx\n", (uint64_t)ptr, (uint64_t)(ptr->prev));
- // 将ptr与前面的空闲块合并
- ptr->prev->length += ptr->length;
- ptr->prev->next = ptr->next;
- if (ptr->next == NULL)
- malloc_free_list_end = ptr->prev;
- else
- ptr->next->prev = ptr->prev;
- // 由于内存组成结构的原因,不需要free掉header
- ptr = ptr->prev;
- }
- ptr = ptr->next;
- }
- }
- /**
- * @brief 将块插入空闲链表
- *
- * @param ck 待插入的块
- */
- static void malloc_insert_free_list(malloc_mem_chunk_t *ck)
- {
- if (malloc_free_list == NULL) // 空闲链表为空
- {
- malloc_free_list = ck;
- malloc_free_list_end = ck;
- ck->prev = ck->next = NULL;
- return;
- }
- else
- {
- malloc_mem_chunk_t *ptr = malloc_free_list;
- while (ptr != NULL)
- {
- if ((uint64_t)ptr < (uint64_t)ck)
- {
- if (ptr->next == NULL) // 当前是最后一个项
- {
- ptr->next = ck;
- ck->next = NULL;
- ck->prev = ptr;
- malloc_free_list_end = ck;
- break;
- }
- else if ((uint64_t)(ptr->next) > (uint64_t)ck)
- {
- ck->prev = ptr;
- ck->next = ptr->next;
- ptr->next = ck;
- ck->next->prev = ck;
- break;
- }
- }
- else // 在ptr之前插入
- {
- if (ptr->prev == NULL) // 是第一个项
- {
- malloc_free_list = ck;
- ck->prev = NULL;
- ck->next = ptr;
- ptr->prev = ck;
- break;
- }
- else
- {
- ck->prev = ptr->prev;
- ck->next = ptr;
- ck->prev->next = ck;
- ptr->prev = ck;
- break;
- }
- }
- ptr = ptr->next;
- }
- }
- }
- /**
- * @brief 获取一块堆内存
- *
- * @param size 内存大小
- * @return void* 内存空间的指针
- *
- * 分配内存的时候,结点的prev next指针所占用的空间被当做空闲空间分配出去
- */
- void *malloc(ssize_t size)
- {
- // printf("malloc\n");
- // 计算需要分配的块的大小
- if (size + sizeof(uint64_t) <= sizeof(malloc_mem_chunk_t))
- size = sizeof(malloc_mem_chunk_t);
- else
- size += sizeof(uint64_t);
- // 采用best fit
- malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
- if (ck == NULL) // 没有空闲块
- {
- // printf("no free blocks\n");
- // 尝试合并空闲块
- malloc_merge_free_chunk();
- ck = malloc_query_free_chunk_bf(size);
- // 找到了合适的块
- if (ck)
- goto found;
-
- // printf("before enlarge\n");
- // 找不到合适的块,扩容堆区域
- if (malloc_enlarge(size) == -ENOMEM)
- return (void *)-ENOMEM; // 内存不足
-
- malloc_merge_free_chunk(); // 扩容后运行合并,否则会导致碎片
- // 扩容后再次尝试获取
- ck = malloc_query_free_chunk_bf(size);
- }
- found:;
- // printf("ck = %#018lx\n", (uint64_t)ck);
- if (ck == NULL)
- return (void *)-ENOMEM;
- // printf("ck->prev=%#018lx ck->next=%#018lx\n", ck->prev, ck->next);
- // 分配空闲块
- // 从空闲链表取出
- if (ck->prev == NULL) // 当前是链表的第一个块
- {
- malloc_free_list = ck->next;
- }
- else
- ck->prev->next = ck->next;
- if (ck->next != NULL) // 当前不是最后一个块
- ck->next->prev = ck->prev;
- else
- malloc_free_list_end = ck->prev;
- // 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
- if ((int64_t)(ck->length) - size > sizeof(malloc_mem_chunk_t))
- {
- // printf("seperate\n");
- malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)(((uint64_t)ck) + size);
- new_ck->length = ck->length - size;
- new_ck->prev = new_ck->next = NULL;
- // printf("new_ck=%#018lx, new_ck->length=%#010lx\n", (uint64_t)new_ck, new_ck->length);
- ck->length = size;
- malloc_insert_free_list(new_ck);
- }
- // printf("malloc done: %#018lx, length=%#018lx\n", ((uint64_t)ck + sizeof(uint64_t)), ck->length);
- // 此时链表结点的指针的空间被分配出去
- return (void *)((uint64_t)ck + sizeof(uint64_t));
- }
- /**
- * @brief 当堆顶空闲空间大于2个页的空间的时候,释放1个页
- *
- */
- static void release_brk()
- {
- // 先检测最顶上的块
- // 由于块按照开始地址排列,因此找最后一个块
- if (malloc_free_list_end == NULL)
- {
- printf("release(): free list end is null. \n");
- return;
- }
- if ((uint64_t)malloc_free_list_end + malloc_free_list_end->length == brk_max_addr && (uint64_t)malloc_free_list_end <= brk_max_addr - (PAGE_2M_SIZE << 1))
- {
- int64_t delta = ((brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK) - PAGE_2M_SIZE;
- // printf("(brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK);
- // printf("PAGE_2M_SIZE=%#018lx\n", PAGE_2M_SIZE);
- // printf("tdfghgbdfggkmfn=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK - PAGE_2M_SIZE);
- // printf("delta=%#018lx\n ", delta);
- if (delta <= 0) // 不用释放内存
- return;
- sbrk(-delta);
- brk_max_addr = sbrk(0);
- brk_managed_addr = brk_max_addr;
- malloc_free_list_end->length = brk_max_addr - (uint64_t)malloc_free_list_end;
- }
- }
- /**
- * @brief 释放一块堆内存
- *
- * @param ptr 堆内存的指针
- */
- void free(void *ptr)
- {
- // 找到结点(此时prev和next都处于未初始化的状态)
- malloc_mem_chunk_t *ck = (malloc_mem_chunk_t *)((uint64_t)ptr - sizeof(uint64_t));
- // printf("free(): addr = %#018lx\t len=%#018lx\n", (uint64_t)ck, ck->length);
- count_last_free_size += ck->length;
- malloc_insert_free_list(ck);
- if (count_last_free_size > PAGE_2M_SIZE)
- {
- count_last_free_size = 0;
- malloc_merge_free_chunk();
- release_brk();
- }
- }
|