process.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. #include <common/libELF/elf.h>
  13. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  14. long process_global_pid = 1; // 系统中最大的pid
  15. extern void system_call(void);
  16. extern void kernel_thread_func(void);
  17. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  18. struct mm_struct initial_mm = {0};
  19. struct thread_struct initial_thread =
  20. {
  21. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  22. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  23. .fs = KERNEL_DS,
  24. .gs = KERNEL_DS,
  25. .cr2 = 0,
  26. .trap_num = 0,
  27. .err_code = 0};
  28. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  29. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  30. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  31. // 为每个核心初始化初始进程的tss
  32. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  33. /**
  34. * @brief 拷贝当前进程的标志位
  35. *
  36. * @param clone_flags 克隆标志位
  37. * @param pcb 新的进程的pcb
  38. * @return uint64_t
  39. */
  40. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  41. /**
  42. * @brief 拷贝当前进程的文件描述符等信息
  43. *
  44. * @param clone_flags 克隆标志位
  45. * @param pcb 新的进程的pcb
  46. * @return uint64_t
  47. */
  48. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  49. /**
  50. * @brief 回收进程的所有文件描述符
  51. *
  52. * @param pcb 要被回收的进程的pcb
  53. * @return uint64_t
  54. */
  55. uint64_t process_exit_files(struct process_control_block *pcb);
  56. /**
  57. * @brief 拷贝当前进程的内存空间分布结构体信息
  58. *
  59. * @param clone_flags 克隆标志位
  60. * @param pcb 新的进程的pcb
  61. * @return uint64_t
  62. */
  63. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  64. /**
  65. * @brief 释放进程的页表
  66. *
  67. * @param pcb 要被释放页表的进程
  68. * @return uint64_t
  69. */
  70. uint64_t process_exit_mm(struct process_control_block *pcb);
  71. /**
  72. * @brief 拷贝当前进程的线程结构体
  73. *
  74. * @param clone_flags 克隆标志位
  75. * @param pcb 新的进程的pcb
  76. * @return uint64_t
  77. */
  78. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  79. void process_exit_thread(struct process_control_block *pcb);
  80. /**
  81. * @brief 切换进程
  82. *
  83. * @param prev 上一个进程的pcb
  84. * @param next 将要切换到的进程的pcb
  85. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  86. * 这里切换fs和gs寄存器
  87. */
  88. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  89. {
  90. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  91. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  92. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  93. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  94. __asm__ __volatile__("movq %%fs, %0 \n\t"
  95. : "=a"(prev->thread->fs));
  96. __asm__ __volatile__("movq %%gs, %0 \n\t"
  97. : "=a"(prev->thread->gs));
  98. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  99. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  100. // wrmsr(0x175, next->thread->rbp);
  101. }
  102. /**
  103. * @brief 这是一个用户态的程序
  104. *
  105. */
  106. void user_level_function()
  107. {
  108. // kinfo("Program (user_level_function) is runing...");
  109. // kinfo("Try to enter syscall id 15...");
  110. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  111. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  112. // while(1);
  113. long ret = 0;
  114. // printk_color(RED,BLACK,"user_level_function task is running\n");
  115. /*
  116. // 测试sys put string
  117. char string[] = "User level process.\n";
  118. long err_code = 1;
  119. ul addr = (ul)string;
  120. __asm__ __volatile__(
  121. "movq %2, %%r8 \n\t"
  122. "int $0x80 \n\t"
  123. : "=a"(err_code)
  124. : "a"(SYS_PUT_STRING), "m"(addr)
  125. : "memory", "r8");
  126. */
  127. while (1)
  128. {
  129. // 测试sys_open
  130. char string[] = "333.txt";
  131. long err_code = 1;
  132. int zero = 0;
  133. uint64_t addr = (ul)string;
  134. __asm__ __volatile__(
  135. "movq %2, %%r8 \n\t"
  136. "movq %3, %%r9 \n\t"
  137. "movq %4, %%r10 \n\t"
  138. "movq %5, %%r11 \n\t"
  139. "movq %6, %%r12 \n\t"
  140. "movq %7, %%r13 \n\t"
  141. "movq %8, %%r14 \n\t"
  142. "movq %9, %%r15 \n\t"
  143. "int $0x80 \n\t"
  144. : "=a"(err_code)
  145. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  146. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  147. int fd_num = err_code;
  148. int count = 128;
  149. // while (count)
  150. //{
  151. uchar buf[128] = {0};
  152. // Test sys_read
  153. addr = (uint64_t)&buf;
  154. __asm__ __volatile__(
  155. "movq %2, %%r8 \n\t"
  156. "movq %3, %%r9 \n\t"
  157. "movq %4, %%r10 \n\t"
  158. "movq %5, %%r11 \n\t"
  159. "movq %6, %%r12 \n\t"
  160. "movq %7, %%r13 \n\t"
  161. "movq %8, %%r14 \n\t"
  162. "movq %9, %%r15 \n\t"
  163. "int $0x80 \n\t"
  164. : "=a"(err_code)
  165. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  166. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  167. count = err_code;
  168. // 将读取到的数据打印出来
  169. addr = (ul)buf;
  170. __asm__ __volatile__(
  171. "movq %2, %%r8 \n\t"
  172. "int $0x80 \n\t"
  173. : "=a"(err_code)
  174. : "a"(SYS_PUT_STRING), "m"(addr)
  175. : "memory", "r8");
  176. // SYS_WRITE
  177. char test1[] = "GGGGHHHHHHHHh112343";
  178. addr = (uint64_t)&test1;
  179. count = 19;
  180. __asm__ __volatile__(
  181. "movq %2, %%r8 \n\t"
  182. "movq %3, %%r9 \n\t"
  183. "movq %4, %%r10 \n\t"
  184. "movq %5, %%r11 \n\t"
  185. "movq %6, %%r12 \n\t"
  186. "movq %7, %%r13 \n\t"
  187. "movq %8, %%r14 \n\t"
  188. "movq %9, %%r15 \n\t"
  189. "int $0x80 \n\t"
  190. : "=a"(err_code)
  191. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  192. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  193. addr = 1;
  194. count = SEEK_SET;
  195. fd_num = 0;
  196. // Test lseek
  197. __asm__ __volatile__(
  198. "movq %2, %%r8 \n\t"
  199. "movq %3, %%r9 \n\t"
  200. "movq %4, %%r10 \n\t"
  201. "movq %5, %%r11 \n\t"
  202. "movq %6, %%r12 \n\t"
  203. "movq %7, %%r13 \n\t"
  204. "movq %8, %%r14 \n\t"
  205. "movq %9, %%r15 \n\t"
  206. "int $0x80 \n\t"
  207. : "=a"(err_code)
  208. : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  209. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  210. // SYS_WRITE
  211. char test2[] = "K123456789K";
  212. addr = (uint64_t)&test2;
  213. count = 11;
  214. __asm__ __volatile__(
  215. "movq %2, %%r8 \n\t"
  216. "movq %3, %%r9 \n\t"
  217. "movq %4, %%r10 \n\t"
  218. "movq %5, %%r11 \n\t"
  219. "movq %6, %%r12 \n\t"
  220. "movq %7, %%r13 \n\t"
  221. "movq %8, %%r14 \n\t"
  222. "movq %9, %%r15 \n\t"
  223. "int $0x80 \n\t"
  224. : "=a"(err_code)
  225. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  226. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  227. // Test sys_close
  228. __asm__ __volatile__(
  229. "movq %2, %%r8 \n\t"
  230. "movq %3, %%r9 \n\t"
  231. "movq %4, %%r10 \n\t"
  232. "movq %5, %%r11 \n\t"
  233. "movq %6, %%r12 \n\t"
  234. "movq %7, %%r13 \n\t"
  235. "movq %8, %%r14 \n\t"
  236. "movq %9, %%r15 \n\t"
  237. "int $0x80 \n\t"
  238. : "=a"(err_code)
  239. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  240. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  241. addr = (ul)string;
  242. __asm__ __volatile__(
  243. "movq %2, %%r8 \n\t"
  244. "movq %3, %%r9 \n\t"
  245. "movq %4, %%r10 \n\t"
  246. "movq %5, %%r11 \n\t"
  247. "movq %6, %%r12 \n\t"
  248. "movq %7, %%r13 \n\t"
  249. "movq %8, %%r14 \n\t"
  250. "movq %9, %%r15 \n\t"
  251. "int $0x80 \n\t"
  252. : "=a"(err_code)
  253. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  254. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  255. fd_num = err_code;
  256. count = 128;
  257. // Test sys_read
  258. addr = (uint64_t)&buf;
  259. __asm__ __volatile__(
  260. "movq %2, %%r8 \n\t"
  261. "movq %3, %%r9 \n\t"
  262. "movq %4, %%r10 \n\t"
  263. "movq %5, %%r11 \n\t"
  264. "movq %6, %%r12 \n\t"
  265. "movq %7, %%r13 \n\t"
  266. "movq %8, %%r14 \n\t"
  267. "movq %9, %%r15 \n\t"
  268. "int $0x80 \n\t"
  269. : "=a"(err_code)
  270. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  271. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  272. count = err_code;
  273. // 将读取到的数据打印出来
  274. addr = (ul)buf;
  275. __asm__ __volatile__(
  276. "movq %2, %%r8 \n\t"
  277. "int $0x80 \n\t"
  278. : "=a"(err_code)
  279. : "a"(SYS_PUT_STRING), "m"(addr)
  280. : "memory", "r8");
  281. // Test Sys
  282. //}
  283. while (1)
  284. pause();
  285. }
  286. while (1)
  287. pause();
  288. }
  289. /**
  290. * @brief 打开要执行的程序文件
  291. *
  292. * @param path
  293. * @return struct vfs_file_t*
  294. */
  295. struct vfs_file_t *process_open_exec_file(char *path)
  296. {
  297. struct vfs_dir_entry_t *dentry = NULL;
  298. struct vfs_file_t *filp = NULL;
  299. dentry = vfs_path_walk(path, 0);
  300. if (dentry == NULL)
  301. return (void *)-ENOENT;
  302. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  303. return (void *)-ENOTDIR;
  304. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  305. if (filp == NULL)
  306. return (void *)-ENOMEM;
  307. filp->position = 0;
  308. filp->mode = 0;
  309. filp->dEntry = dentry;
  310. filp->mode = ATTR_READ_ONLY;
  311. filp->file_ops = dentry->dir_inode->file_ops;
  312. return filp;
  313. }
  314. /**
  315. * @brief 加载elf格式的程序文件到内存中,并设置regs
  316. *
  317. * @param regs 寄存器
  318. * @param path 文件路径
  319. * @return int
  320. */
  321. static int process_load_elf_file(struct pt_regs *regs, char *path)
  322. {
  323. int retval = 0;
  324. struct vfs_file_t *filp = process_open_exec_file(path);
  325. if ((unsigned long)filp <= 0)
  326. {
  327. kdebug("(unsigned long)filp=%d", (long)filp);
  328. return (unsigned long)filp;
  329. }
  330. void *buf = kmalloc(sizeof(PAGE_4K_SIZE), 0);
  331. uint64_t pos = 0;
  332. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  333. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  334. retval = 0;
  335. if (!elf_check(buf))
  336. {
  337. kerror("Not an ELF file: %s", path);
  338. retval = -ENOTSUP;
  339. goto load_elf_failed;
  340. }
  341. #if ARCH(X86_64)
  342. // 暂时只支持64位的文件
  343. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  344. {
  345. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  346. retval = -EUNSUPPORTED;
  347. goto load_elf_failed;
  348. }
  349. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  350. // 暂时只支持AMD64架构
  351. if (ehdr.e_machine != EM_AMD64)
  352. {
  353. kerror("e_machine=%d", ehdr.e_machine);
  354. retval = -EUNSUPPORTED;
  355. goto load_elf_failed;
  356. }
  357. #else
  358. #error Unsupported architecture!
  359. #endif
  360. if (ehdr.e_type != ET_EXEC)
  361. {
  362. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  363. retval = -EUNSUPPORTED;
  364. goto load_elf_failed;
  365. }
  366. kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  367. regs->rip = ehdr.e_entry;
  368. current_pcb->mm->code_addr_start = ehdr.e_entry;
  369. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  370. // 将指针移动到program header处
  371. pos = ehdr.e_phoff;
  372. // 读取所有的phdr
  373. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  374. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  375. if ((unsigned long)filp <= 0)
  376. {
  377. kdebug("(unsigned long)filp=%d", (long)filp);
  378. return (unsigned long)filp;
  379. }
  380. Elf64_Phdr *phdr = buf;
  381. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  382. {
  383. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  384. // 不是可加载的段
  385. if (phdr->p_type != PT_LOAD)
  386. continue;
  387. int64_t remain_mem_size = phdr->p_memsz;
  388. int64_t remain_file_size = phdr->p_filesz;
  389. pos = phdr->p_offset;
  390. uint64_t virt_base = phdr->p_vaddr;
  391. while (remain_mem_size > 0)
  392. {
  393. // todo: 改用slab分配4K大小内存块并映射到4K页
  394. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  395. {
  396. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  397. }
  398. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  399. int64_t val = 0;
  400. if (remain_file_size != 0)
  401. {
  402. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  403. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  404. }
  405. if (val < 0)
  406. goto load_elf_failed;
  407. remain_mem_size -= PAGE_2M_SIZE;
  408. remain_file_size -= val;
  409. virt_base += PAGE_2M_SIZE;
  410. }
  411. }
  412. // 分配2MB的栈内存空间
  413. regs->rsp = current_pcb->mm->stack_start;
  414. regs->rbp = current_pcb->mm->stack_start;
  415. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  416. load_elf_failed:;
  417. if (buf != NULL)
  418. kfree(buf);
  419. return retval;
  420. }
  421. /**
  422. * @brief 使当前进程去执行新的代码
  423. *
  424. * @param regs 当前进程的寄存器
  425. * @param path 可执行程序的路径
  426. * @return ul 错误码
  427. */
  428. ul do_execve(struct pt_regs *regs, char *path)
  429. {
  430. // 选择这两个寄存器是对应了sysexit指令的需要
  431. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  432. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  433. regs->cs = USER_CS | 3;
  434. regs->ds = USER_DS | 3;
  435. regs->ss = USER_DS | 0x3;
  436. regs->rflags = 0x200246;
  437. regs->rax = 1;
  438. regs->es = 0;
  439. kdebug("do_execve is running...");
  440. // 当前进程正在与父进程共享地址空间,需要创建
  441. // 独立的地址空间才能使新程序正常运行
  442. if (current_pcb->flags & PF_VFORK)
  443. {
  444. kdebug("proc:%d creating new mem space", current_pcb->pid);
  445. // 分配新的内存空间分布结构体
  446. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  447. memset(new_mms, 0, sizeof(struct mm_struct));
  448. current_pcb->mm = new_mms;
  449. // 分配顶层页表, 并设置顶层页表的物理地址
  450. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  451. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  452. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  453. // 拷贝内核空间的页表指针
  454. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  455. }
  456. /**
  457. * @todo: 加载elf文件并映射对应的页
  458. *
  459. */
  460. // 映射1个2MB的物理页
  461. unsigned long stack_start_addr = 0x6fffffc00000;
  462. uint64_t brk_start_addr = 0x6fffffc00000;
  463. process_switch_mm(current_pcb);
  464. // 为用户态程序设置地址边界
  465. if (!(current_pcb->flags & PF_KTHREAD))
  466. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  467. current_pcb->mm->code_addr_end = 0;
  468. current_pcb->mm->data_addr_start = 0;
  469. current_pcb->mm->data_addr_end = 0;
  470. current_pcb->mm->rodata_addr_start = 0;
  471. current_pcb->mm->rodata_addr_end = 0;
  472. current_pcb->mm->bss_start = 0;
  473. current_pcb->mm->bss_end = 0;
  474. current_pcb->mm->brk_start = brk_start_addr;
  475. current_pcb->mm->brk_end = brk_start_addr;
  476. current_pcb->mm->stack_start = stack_start_addr;
  477. // 关闭之前的文件描述符
  478. process_exit_files(current_pcb);
  479. // 清除进程的vfork标志位
  480. current_pcb->flags &= ~PF_VFORK;
  481. process_load_elf_file(regs, path);
  482. kdebug("execve ok");
  483. return 0;
  484. }
  485. /**
  486. * @brief 内核init进程
  487. *
  488. * @param arg
  489. * @return ul 参数
  490. */
  491. ul initial_kernel_thread(ul arg)
  492. {
  493. // kinfo("initial proc running...\targ:%#018lx", arg);
  494. fat32_init();
  495. struct pt_regs *regs;
  496. current_pcb->thread->rip = (ul)ret_from_system_call;
  497. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  498. current_pcb->thread->fs = USER_DS | 0x3;
  499. current_pcb->thread->gs = USER_DS | 0x3;
  500. // 主动放弃内核线程身份
  501. current_pcb->flags &= (~PF_KTHREAD);
  502. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  503. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  504. regs = (struct pt_regs *)current_pcb->thread->rsp;
  505. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  506. current_pcb->flags = 0;
  507. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  508. // 加载用户态程序:shell.elf
  509. char init_path[] = "/shell.elf";
  510. uint64_t addr = (uint64_t)&init_path;
  511. __asm__ __volatile__("movq %1, %%rsp \n\t"
  512. "pushq %2 \n\t"
  513. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  514. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf")
  515. : "memory");
  516. return 1;
  517. }
  518. /**
  519. * @brief 进程退出时执行的函数
  520. *
  521. * @param code 返回码
  522. * @return ul
  523. */
  524. ul process_thread_do_exit(ul code)
  525. {
  526. kinfo("thread_exiting..., code is %#018lx.", code);
  527. while (1)
  528. ;
  529. }
  530. /**
  531. * @brief 初始化内核进程
  532. *
  533. * @param fn 目标程序的地址
  534. * @param arg 向目标程序传入的参数
  535. * @param flags
  536. * @return int
  537. */
  538. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  539. {
  540. struct pt_regs regs;
  541. memset(&regs, 0, sizeof(regs));
  542. // 在rbx寄存器中保存进程的入口地址
  543. regs.rbx = (ul)fn;
  544. // 在rdx寄存器中保存传入的参数
  545. regs.rdx = (ul)arg;
  546. regs.ds = KERNEL_DS;
  547. regs.es = KERNEL_DS;
  548. regs.cs = KERNEL_CS;
  549. regs.ss = KERNEL_DS;
  550. // 置位中断使能标志位
  551. regs.rflags = (1 << 9);
  552. // rip寄存器指向内核线程的引导程序
  553. regs.rip = (ul)kernel_thread_func;
  554. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  555. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  556. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  557. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  558. }
  559. /**
  560. * @brief 初始化进程模块
  561. * ☆前置条件:已完成系统调用模块的初始化
  562. */
  563. void process_init()
  564. {
  565. kinfo("Initializing process...");
  566. initial_mm.pgd = (pml4t_t *)get_CR3();
  567. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  568. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  569. initial_mm.data_addr_start = (ul)&_data;
  570. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  571. initial_mm.rodata_addr_start = (ul)&_rodata;
  572. initial_mm.rodata_addr_end = (ul)&_erodata;
  573. initial_mm.bss_start = (uint64_t)&_bss;
  574. initial_mm.bss_end = (uint64_t)&_ebss;
  575. initial_mm.brk_start = memory_management_struct.start_brk;
  576. initial_mm.brk_end = current_pcb->addr_limit;
  577. initial_mm.stack_start = _stack_start;
  578. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  579. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  580. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  581. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  582. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  583. for (int i = 256; i < 512; ++i)
  584. {
  585. uint64_t *tmp = idle_pml4t_vaddr + i;
  586. if (*tmp == 0)
  587. {
  588. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  589. memset(pdpt, 0, PAGE_4K_SIZE);
  590. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  591. }
  592. }
  593. /*
  594. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  595. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  596. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  597. */
  598. // 初始化pid的写锁
  599. spin_init(&process_global_pid_write_lock);
  600. // 初始化进程的循环链表
  601. list_init(&initial_proc_union.pcb.list);
  602. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  603. initial_proc_union.pcb.state = PROC_RUNNING;
  604. initial_proc_union.pcb.preempt_count = 0;
  605. initial_proc_union.pcb.cpu_id = 0;
  606. }
  607. /**
  608. * @brief fork当前进程
  609. *
  610. * @param regs 新的寄存器值
  611. * @param clone_flags 克隆标志
  612. * @param stack_start 堆栈开始地址
  613. * @param stack_size 堆栈大小
  614. * @return unsigned long
  615. */
  616. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  617. {
  618. int retval = 0;
  619. struct process_control_block *tsk = NULL;
  620. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  621. // 为新的进程分配栈空间,并将pcb放置在底部
  622. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  623. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  624. if (tsk == NULL)
  625. {
  626. retval = -ENOMEM;
  627. return retval;
  628. }
  629. memset(tsk, 0, sizeof(struct process_control_block));
  630. // 将当前进程的pcb复制到新的pcb内
  631. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  632. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  633. // 将进程加入循环链表
  634. list_init(&tsk->list);
  635. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  636. tsk->priority = 2;
  637. tsk->preempt_count = 0;
  638. // 增加全局的pid并赋值给新进程的pid
  639. spin_lock(&process_global_pid_write_lock);
  640. tsk->pid = process_global_pid++;
  641. // 加入到进程链表中
  642. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  643. initial_proc_union.pcb.next_pcb = tsk;
  644. tsk->parent_pcb = current_pcb;
  645. spin_unlock(&process_global_pid_write_lock);
  646. tsk->cpu_id = proc_current_cpu_id;
  647. tsk->state = PROC_UNINTERRUPTIBLE;
  648. list_init(&tsk->list);
  649. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  650. retval = -ENOMEM;
  651. // 拷贝标志位
  652. if (process_copy_flags(clone_flags, tsk))
  653. goto copy_flags_failed;
  654. // 拷贝内存空间分布结构体
  655. if (process_copy_mm(clone_flags, tsk))
  656. goto copy_mm_failed;
  657. // 拷贝文件
  658. if (process_copy_files(clone_flags, tsk))
  659. goto copy_files_failed;
  660. // 拷贝线程结构体
  661. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  662. goto copy_thread_failed;
  663. // 拷贝成功
  664. retval = tsk->pid;
  665. // 唤醒进程
  666. process_wakeup(tsk);
  667. return retval;
  668. copy_thread_failed:;
  669. // 回收线程
  670. process_exit_thread(tsk);
  671. copy_files_failed:;
  672. // 回收文件
  673. process_exit_files(tsk);
  674. copy_mm_failed:;
  675. // 回收内存空间分布结构体
  676. process_exit_mm(tsk);
  677. copy_flags_failed:;
  678. kfree(tsk);
  679. return retval;
  680. return 0;
  681. }
  682. /**
  683. * @brief 根据pid获取进程的pcb
  684. *
  685. * @param pid
  686. * @return struct process_control_block*
  687. */
  688. struct process_control_block *process_get_pcb(long pid)
  689. {
  690. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  691. // 使用蛮力法搜索指定pid的pcb
  692. // todo: 使用哈希表来管理pcb
  693. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  694. {
  695. if (pcb->pid == pid)
  696. return pcb;
  697. }
  698. return NULL;
  699. }
  700. /**
  701. * @brief 将进程加入到调度器的就绪队列中
  702. *
  703. * @param pcb 进程的pcb
  704. */
  705. void process_wakeup(struct process_control_block *pcb)
  706. {
  707. pcb->state = PROC_RUNNING;
  708. sched_cfs_enqueue(pcb);
  709. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  710. current_pcb->flags |= PF_NEED_SCHED;
  711. }
  712. /**
  713. * @brief 拷贝当前进程的标志位
  714. *
  715. * @param clone_flags 克隆标志位
  716. * @param pcb 新的进程的pcb
  717. * @return uint64_t
  718. */
  719. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  720. {
  721. if (clone_flags & CLONE_VM)
  722. pcb->flags |= PF_VFORK;
  723. return 0;
  724. }
  725. /**
  726. * @brief 拷贝当前进程的文件描述符等信息
  727. *
  728. * @param clone_flags 克隆标志位
  729. * @param pcb 新的进程的pcb
  730. * @return uint64_t
  731. */
  732. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  733. {
  734. int retval = 0;
  735. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  736. // 文件描述符已经在复制pcb时被拷贝
  737. if (clone_flags & CLONE_FS)
  738. return retval;
  739. // 为新进程拷贝新的文件描述符
  740. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  741. {
  742. if (current_pcb->fds[i] == NULL)
  743. continue;
  744. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  745. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  746. }
  747. return retval;
  748. }
  749. /**
  750. * @brief 回收进程的所有文件描述符
  751. *
  752. * @param pcb 要被回收的进程的pcb
  753. * @return uint64_t
  754. */
  755. uint64_t process_exit_files(struct process_control_block *pcb)
  756. {
  757. // 不与父进程共享文件描述符
  758. if (!(pcb->flags & PF_VFORK))
  759. {
  760. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  761. {
  762. if (pcb->fds[i] == NULL)
  763. continue;
  764. kfree(pcb->fds[i]);
  765. }
  766. }
  767. // 清空当前进程的文件描述符列表
  768. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  769. }
  770. /**
  771. * @brief 拷贝当前进程的内存空间分布结构体信息
  772. *
  773. * @param clone_flags 克隆标志位
  774. * @param pcb 新的进程的pcb
  775. * @return uint64_t
  776. */
  777. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  778. {
  779. int retval = 0;
  780. // 与父进程共享内存空间
  781. if (clone_flags & CLONE_VM)
  782. {
  783. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  784. pcb->mm = current_pcb->mm;
  785. return retval;
  786. }
  787. // 分配新的内存空间分布结构体
  788. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  789. memset(new_mms, 0, sizeof(struct mm_struct));
  790. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  791. pcb->mm = new_mms;
  792. // 分配顶层页表, 并设置顶层页表的物理地址
  793. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  794. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  795. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  796. // 拷贝内核空间的页表指针
  797. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  798. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  799. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  800. // 迭代地拷贝用户空间
  801. for (int i = 0; i <= 255; ++i)
  802. {
  803. // 当前页表项为空
  804. if ((*(uint64_t *)(current_pgd + i)) == 0)
  805. continue;
  806. // 分配新的二级页表
  807. pdpt_t *new_pdpt = (pdpt_t *)kmalloc(PAGE_4K_SIZE, 0);
  808. memset(new_pdpt, 0, PAGE_4K_SIZE);
  809. // 在新的一级页表中设置新的二级页表表项
  810. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  811. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt(*(uint64_t *)(current_pgd + i) & (~0xfffUL));
  812. // kdebug("current pdpt=%#018lx \t (current_pgd + i)->pml4t=%#018lx", current_pdpt, *(uint64_t *)(current_pgd+i));
  813. // 设置二级页表
  814. for (int j = 0; j < 512; ++j)
  815. {
  816. if (*(uint64_t *)(current_pdpt + j) == 0)
  817. continue;
  818. // 分配新的三级页表
  819. pdt_t *new_pdt = (pdt_t *)kmalloc(PAGE_4K_SIZE, 0);
  820. memset(new_pdt, 0, PAGE_4K_SIZE);
  821. // 在新的二级页表中设置三级页表的表项
  822. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(uint64_t *)(current_pdpt + j)) & 0xfffUL));
  823. pdt_t *current_pdt = (pdt_t *)phys_2_virt((*(uint64_t *)(current_pdpt + j)) & (~0xfffUL));
  824. // 拷贝内存页
  825. for (int k = 0; k < 512; ++k)
  826. {
  827. if ((current_pdt + k)->pdt == 0)
  828. continue;
  829. // 获取一个新页
  830. struct Page *pg = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  831. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pg->addr_phys, (current_pdt + k)->pdt & 0x1fffUL));
  832. // 拷贝数据
  833. memcpy(phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL)), PAGE_2M_SIZE);
  834. }
  835. }
  836. }
  837. return retval;
  838. }
  839. /**
  840. * @brief 释放进程的页表
  841. *
  842. * @param pcb 要被释放页表的进程
  843. * @return uint64_t
  844. */
  845. uint64_t process_exit_mm(struct process_control_block *pcb)
  846. {
  847. if (pcb->flags & CLONE_VM)
  848. return 0;
  849. if (pcb->mm == NULL)
  850. {
  851. kdebug("pcb->mm==NULL");
  852. return 0;
  853. }
  854. if (pcb->mm->pgd == NULL)
  855. {
  856. kdebug("pcb->mm->pgd==NULL");
  857. return 0;
  858. }
  859. // 获取顶层页表
  860. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  861. // 迭代地释放用户空间
  862. for (int i = 0; i <= 255; ++i)
  863. {
  864. // 当前页表项为空
  865. if ((current_pgd + i)->pml4t == 0)
  866. continue;
  867. // 二级页表entry
  868. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  869. // 遍历二级页表
  870. for (int j = 0; j < 512; ++j)
  871. {
  872. if ((current_pdpt + j)->pdpt == 0)
  873. continue;
  874. // 三级页表的entry
  875. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  876. // 释放三级页表的内存页
  877. for (int k = 0; k < 512; ++k)
  878. {
  879. if ((current_pdt + k)->pdt == 0)
  880. continue;
  881. // 释放内存页
  882. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  883. }
  884. // 释放三级页表
  885. kfree(current_pdt);
  886. }
  887. // 释放二级页表
  888. kfree(current_pdpt);
  889. }
  890. // 释放顶层页表
  891. kfree(current_pgd);
  892. // 释放内存空间分布结构体
  893. kfree(pcb->mm);
  894. return 0;
  895. }
  896. /**
  897. * @brief 拷贝当前进程的线程结构体
  898. *
  899. * @param clone_flags 克隆标志位
  900. * @param pcb 新的进程的pcb
  901. * @return uint64_t
  902. */
  903. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  904. {
  905. // 将线程结构体放置在pcb后方
  906. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  907. memset(thd, 0, sizeof(struct thread_struct));
  908. pcb->thread = thd;
  909. // 拷贝栈空间
  910. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  911. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  912. // 设置子进程的返回值为0
  913. child_regs->rax = 0;
  914. child_regs->rsp = stack_start;
  915. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  916. thd->rsp = (uint64_t)child_regs;
  917. thd->fs = current_pcb->thread->fs;
  918. thd->gs = current_pcb->thread->gs;
  919. // 根据是否为内核线程,设置进程的开始执行的地址
  920. if (pcb->flags & PF_KTHREAD)
  921. thd->rip = (uint64_t)kernel_thread_func;
  922. else
  923. thd->rip = (uint64_t)ret_from_system_call;
  924. kdebug("new proc's ret addr = %#018lx\tchild_regs->rsp = %#018lx", child_regs->rbx, child_regs->rsp);
  925. return 0;
  926. }
  927. /**
  928. * @brief todo: 回收线程结构体
  929. *
  930. * @param pcb
  931. */
  932. void process_exit_thread(struct process_control_block *pcb)
  933. {
  934. }