process.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. #include <common/libELF/elf.h>
  13. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  14. long process_global_pid = 1; // 系统中最大的pid
  15. extern void system_call(void);
  16. extern void kernel_thread_func(void);
  17. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  18. struct mm_struct initial_mm = {0};
  19. struct thread_struct initial_thread =
  20. {
  21. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  22. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  23. .fs = KERNEL_DS,
  24. .gs = KERNEL_DS,
  25. .cr2 = 0,
  26. .trap_num = 0,
  27. .err_code = 0};
  28. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  29. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  30. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  31. // 为每个核心初始化初始进程的tss
  32. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  33. /**
  34. * @brief 拷贝当前进程的标志位
  35. *
  36. * @param clone_flags 克隆标志位
  37. * @param pcb 新的进程的pcb
  38. * @return uint64_t
  39. */
  40. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  41. /**
  42. * @brief 拷贝当前进程的文件描述符等信息
  43. *
  44. * @param clone_flags 克隆标志位
  45. * @param pcb 新的进程的pcb
  46. * @return uint64_t
  47. */
  48. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  49. /**
  50. * @brief 回收进程的所有文件描述符
  51. *
  52. * @param pcb 要被回收的进程的pcb
  53. * @return uint64_t
  54. */
  55. uint64_t process_exit_files(struct process_control_block *pcb);
  56. /**
  57. * @brief 拷贝当前进程的内存空间分布结构体信息
  58. *
  59. * @param clone_flags 克隆标志位
  60. * @param pcb 新的进程的pcb
  61. * @return uint64_t
  62. */
  63. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  64. /**
  65. * @brief 释放进程的页表
  66. *
  67. * @param pcb 要被释放页表的进程
  68. * @return uint64_t
  69. */
  70. uint64_t process_exit_mm(struct process_control_block *pcb);
  71. /**
  72. * @brief 拷贝当前进程的线程结构体
  73. *
  74. * @param clone_flags 克隆标志位
  75. * @param pcb 新的进程的pcb
  76. * @return uint64_t
  77. */
  78. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  79. void process_exit_thread(struct process_control_block *pcb);
  80. /**
  81. * @brief 切换进程
  82. *
  83. * @param prev 上一个进程的pcb
  84. * @param next 将要切换到的进程的pcb
  85. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  86. * 这里切换fs和gs寄存器
  87. */
  88. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  89. {
  90. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  91. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  92. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  93. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  94. __asm__ __volatile__("movq %%fs, %0 \n\t"
  95. : "=a"(prev->thread->fs));
  96. __asm__ __volatile__("movq %%gs, %0 \n\t"
  97. : "=a"(prev->thread->gs));
  98. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  99. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  100. // wrmsr(0x175, next->thread->rbp);
  101. }
  102. /**
  103. * @brief 这是一个用户态的程序
  104. *
  105. */
  106. void user_level_function()
  107. {
  108. // kinfo("Program (user_level_function) is runing...");
  109. // kinfo("Try to enter syscall id 15...");
  110. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  111. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  112. // while(1);
  113. long ret = 0;
  114. // printk_color(RED,BLACK,"user_level_function task is running\n");
  115. /*
  116. // 测试sys put string
  117. char string[] = "User level process.\n";
  118. long err_code = 1;
  119. ul addr = (ul)string;
  120. __asm__ __volatile__(
  121. "movq %2, %%r8 \n\t"
  122. "int $0x80 \n\t"
  123. : "=a"(err_code)
  124. : "a"(SYS_PUT_STRING), "m"(addr)
  125. : "memory", "r8");
  126. */
  127. while (1)
  128. {
  129. // 测试sys_open
  130. char string[] = "333.txt";
  131. long err_code = 1;
  132. int zero = 0;
  133. uint64_t addr = (ul)string;
  134. __asm__ __volatile__(
  135. "movq %2, %%r8 \n\t"
  136. "movq %3, %%r9 \n\t"
  137. "movq %4, %%r10 \n\t"
  138. "movq %5, %%r11 \n\t"
  139. "movq %6, %%r12 \n\t"
  140. "movq %7, %%r13 \n\t"
  141. "movq %8, %%r14 \n\t"
  142. "movq %9, %%r15 \n\t"
  143. "int $0x80 \n\t"
  144. : "=a"(err_code)
  145. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  146. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  147. int fd_num = err_code;
  148. int count = 128;
  149. // while (count)
  150. //{
  151. uchar buf[128] = {0};
  152. // Test sys_read
  153. addr = (uint64_t)&buf;
  154. __asm__ __volatile__(
  155. "movq %2, %%r8 \n\t"
  156. "movq %3, %%r9 \n\t"
  157. "movq %4, %%r10 \n\t"
  158. "movq %5, %%r11 \n\t"
  159. "movq %6, %%r12 \n\t"
  160. "movq %7, %%r13 \n\t"
  161. "movq %8, %%r14 \n\t"
  162. "movq %9, %%r15 \n\t"
  163. "int $0x80 \n\t"
  164. : "=a"(err_code)
  165. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  166. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  167. count = err_code;
  168. // 将读取到的数据打印出来
  169. addr = (ul)buf;
  170. __asm__ __volatile__(
  171. "movq %2, %%r8 \n\t"
  172. "int $0x80 \n\t"
  173. : "=a"(err_code)
  174. : "a"(SYS_PUT_STRING), "m"(addr)
  175. : "memory", "r8");
  176. // SYS_WRITE
  177. char test1[] = "GGGGHHHHHHHHh112343";
  178. addr = (uint64_t)&test1;
  179. count = 19;
  180. __asm__ __volatile__(
  181. "movq %2, %%r8 \n\t"
  182. "movq %3, %%r9 \n\t"
  183. "movq %4, %%r10 \n\t"
  184. "movq %5, %%r11 \n\t"
  185. "movq %6, %%r12 \n\t"
  186. "movq %7, %%r13 \n\t"
  187. "movq %8, %%r14 \n\t"
  188. "movq %9, %%r15 \n\t"
  189. "int $0x80 \n\t"
  190. : "=a"(err_code)
  191. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  192. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  193. addr = 1;
  194. count = SEEK_SET;
  195. fd_num = 0;
  196. // Test lseek
  197. __asm__ __volatile__(
  198. "movq %2, %%r8 \n\t"
  199. "movq %3, %%r9 \n\t"
  200. "movq %4, %%r10 \n\t"
  201. "movq %5, %%r11 \n\t"
  202. "movq %6, %%r12 \n\t"
  203. "movq %7, %%r13 \n\t"
  204. "movq %8, %%r14 \n\t"
  205. "movq %9, %%r15 \n\t"
  206. "int $0x80 \n\t"
  207. : "=a"(err_code)
  208. : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  209. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  210. // SYS_WRITE
  211. char test2[] = "K123456789K";
  212. addr = (uint64_t)&test2;
  213. count = 11;
  214. __asm__ __volatile__(
  215. "movq %2, %%r8 \n\t"
  216. "movq %3, %%r9 \n\t"
  217. "movq %4, %%r10 \n\t"
  218. "movq %5, %%r11 \n\t"
  219. "movq %6, %%r12 \n\t"
  220. "movq %7, %%r13 \n\t"
  221. "movq %8, %%r14 \n\t"
  222. "movq %9, %%r15 \n\t"
  223. "int $0x80 \n\t"
  224. : "=a"(err_code)
  225. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  226. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  227. // Test sys_close
  228. __asm__ __volatile__(
  229. "movq %2, %%r8 \n\t"
  230. "movq %3, %%r9 \n\t"
  231. "movq %4, %%r10 \n\t"
  232. "movq %5, %%r11 \n\t"
  233. "movq %6, %%r12 \n\t"
  234. "movq %7, %%r13 \n\t"
  235. "movq %8, %%r14 \n\t"
  236. "movq %9, %%r15 \n\t"
  237. "int $0x80 \n\t"
  238. : "=a"(err_code)
  239. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  240. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  241. addr = (ul)string;
  242. __asm__ __volatile__(
  243. "movq %2, %%r8 \n\t"
  244. "movq %3, %%r9 \n\t"
  245. "movq %4, %%r10 \n\t"
  246. "movq %5, %%r11 \n\t"
  247. "movq %6, %%r12 \n\t"
  248. "movq %7, %%r13 \n\t"
  249. "movq %8, %%r14 \n\t"
  250. "movq %9, %%r15 \n\t"
  251. "int $0x80 \n\t"
  252. : "=a"(err_code)
  253. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  254. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  255. fd_num = err_code;
  256. count = 128;
  257. // Test sys_read
  258. addr = (uint64_t)&buf;
  259. __asm__ __volatile__(
  260. "movq %2, %%r8 \n\t"
  261. "movq %3, %%r9 \n\t"
  262. "movq %4, %%r10 \n\t"
  263. "movq %5, %%r11 \n\t"
  264. "movq %6, %%r12 \n\t"
  265. "movq %7, %%r13 \n\t"
  266. "movq %8, %%r14 \n\t"
  267. "movq %9, %%r15 \n\t"
  268. "int $0x80 \n\t"
  269. : "=a"(err_code)
  270. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  271. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  272. count = err_code;
  273. // 将读取到的数据打印出来
  274. addr = (ul)buf;
  275. __asm__ __volatile__(
  276. "movq %2, %%r8 \n\t"
  277. "int $0x80 \n\t"
  278. : "=a"(err_code)
  279. : "a"(SYS_PUT_STRING), "m"(addr)
  280. : "memory", "r8");
  281. // Test Sys
  282. //}
  283. while (1)
  284. pause();
  285. }
  286. while (1)
  287. pause();
  288. }
  289. /**
  290. * @brief 打开要执行的程序文件
  291. *
  292. * @param path
  293. * @return struct vfs_file_t*
  294. */
  295. struct vfs_file_t *process_open_exec_file(char *path)
  296. {
  297. struct vfs_dir_entry_t *dentry = NULL;
  298. struct vfs_file_t *filp = NULL;
  299. dentry = vfs_path_walk(path, 0);
  300. if (dentry == NULL)
  301. return (void *)-ENOENT;
  302. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  303. return (void *)-ENOTDIR;
  304. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  305. if (filp == NULL)
  306. return (void *)-ENOMEM;
  307. filp->position = 0;
  308. filp->mode = 0;
  309. filp->dEntry = dentry;
  310. filp->mode = ATTR_READ_ONLY;
  311. filp->file_ops = dentry->dir_inode->file_ops;
  312. return filp;
  313. }
  314. /**
  315. * @brief 加载elf格式的程序文件到内存中,并设置regs
  316. *
  317. * @param regs 寄存器
  318. * @param path 文件路径
  319. * @return int
  320. */
  321. static int process_load_elf_file(struct pt_regs *regs, char *path)
  322. {
  323. int retval = 0;
  324. struct vfs_file_t *filp = process_open_exec_file(path);
  325. if ((unsigned long)filp <= 0)
  326. {
  327. kdebug("(unsigned long)filp=%d", (long)filp);
  328. return (unsigned long)filp;
  329. }
  330. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  331. memset(buf, 0, PAGE_4K_SIZE);
  332. uint64_t pos = 0;
  333. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  334. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  335. retval = 0;
  336. if (!elf_check(buf))
  337. {
  338. kerror("Not an ELF file: %s", path);
  339. retval = -ENOTSUP;
  340. goto load_elf_failed;
  341. }
  342. #if ARCH(X86_64)
  343. // 暂时只支持64位的文件
  344. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  345. {
  346. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  347. retval = -EUNSUPPORTED;
  348. goto load_elf_failed;
  349. }
  350. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  351. // 暂时只支持AMD64架构
  352. if (ehdr.e_machine != EM_AMD64)
  353. {
  354. kerror("e_machine=%d", ehdr.e_machine);
  355. retval = -EUNSUPPORTED;
  356. goto load_elf_failed;
  357. }
  358. #else
  359. #error Unsupported architecture!
  360. #endif
  361. if (ehdr.e_type != ET_EXEC)
  362. {
  363. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  364. retval = -EUNSUPPORTED;
  365. goto load_elf_failed;
  366. }
  367. kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  368. regs->rip = ehdr.e_entry;
  369. current_pcb->mm->code_addr_start = ehdr.e_entry;
  370. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  371. // 将指针移动到program header处
  372. pos = ehdr.e_phoff;
  373. // 读取所有的phdr
  374. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  375. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  376. if ((unsigned long)filp <= 0)
  377. {
  378. kdebug("(unsigned long)filp=%d", (long)filp);
  379. return (unsigned long)filp;
  380. }
  381. Elf64_Phdr *phdr = buf;
  382. // 将程序加载到内存中
  383. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  384. {
  385. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  386. // 不是可加载的段
  387. if (phdr->p_type != PT_LOAD)
  388. continue;
  389. int64_t remain_mem_size = phdr->p_memsz;
  390. int64_t remain_file_size = phdr->p_filesz;
  391. pos = phdr->p_offset;
  392. uint64_t virt_base = phdr->p_vaddr;
  393. while (remain_mem_size > 0)
  394. {
  395. // todo: 改用slab分配4K大小内存块并映射到4K页
  396. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  397. {
  398. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  399. memset((void*)virt_base, 0, PAGE_2M_SIZE);
  400. }
  401. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  402. int64_t val = 0;
  403. if (remain_file_size != 0)
  404. {
  405. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  406. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  407. }
  408. if (val < 0)
  409. goto load_elf_failed;
  410. remain_mem_size -= PAGE_2M_SIZE;
  411. remain_file_size -= val;
  412. virt_base += PAGE_2M_SIZE;
  413. }
  414. }
  415. // 分配2MB的栈内存空间
  416. regs->rsp = current_pcb->mm->stack_start;
  417. regs->rbp = current_pcb->mm->stack_start;
  418. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  419. // 清空栈空间
  420. memset((void*)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  421. load_elf_failed:;
  422. if (buf != NULL)
  423. kfree(buf);
  424. return retval;
  425. }
  426. /**
  427. * @brief 使当前进程去执行新的代码
  428. *
  429. * @param regs 当前进程的寄存器
  430. * @param path 可执行程序的路径
  431. * @return ul 错误码
  432. */
  433. ul do_execve(struct pt_regs *regs, char *path)
  434. {
  435. // 选择这两个寄存器是对应了sysexit指令的需要
  436. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  437. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  438. regs->cs = USER_CS | 3;
  439. regs->ds = USER_DS | 3;
  440. regs->ss = USER_DS | 0x3;
  441. regs->rflags = 0x200246;
  442. regs->rax = 1;
  443. regs->es = 0;
  444. kdebug("do_execve is running...");
  445. // 当前进程正在与父进程共享地址空间,需要创建
  446. // 独立的地址空间才能使新程序正常运行
  447. if (current_pcb->flags & PF_VFORK)
  448. {
  449. kdebug("proc:%d creating new mem space", current_pcb->pid);
  450. // 分配新的内存空间分布结构体
  451. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  452. memset(new_mms, 0, sizeof(struct mm_struct));
  453. current_pcb->mm = new_mms;
  454. // 分配顶层页表, 并设置顶层页表的物理地址
  455. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  456. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  457. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  458. // 拷贝内核空间的页表指针
  459. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  460. }
  461. /**
  462. * @todo: 加载elf文件并映射对应的页
  463. *
  464. */
  465. // 映射1个2MB的物理页
  466. unsigned long stack_start_addr = 0x6fffffc00000;
  467. uint64_t brk_start_addr = 0x6fffffc00000;
  468. process_switch_mm(current_pcb);
  469. // 为用户态程序设置地址边界
  470. if (!(current_pcb->flags & PF_KTHREAD))
  471. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  472. current_pcb->mm->code_addr_end = 0;
  473. current_pcb->mm->data_addr_start = 0;
  474. current_pcb->mm->data_addr_end = 0;
  475. current_pcb->mm->rodata_addr_start = 0;
  476. current_pcb->mm->rodata_addr_end = 0;
  477. current_pcb->mm->bss_start = 0;
  478. current_pcb->mm->bss_end = 0;
  479. current_pcb->mm->brk_start = brk_start_addr;
  480. current_pcb->mm->brk_end = brk_start_addr;
  481. current_pcb->mm->stack_start = stack_start_addr;
  482. // 关闭之前的文件描述符
  483. process_exit_files(current_pcb);
  484. // 清除进程的vfork标志位
  485. current_pcb->flags &= ~PF_VFORK;
  486. process_load_elf_file(regs, path);
  487. kdebug("execve ok");
  488. return 0;
  489. }
  490. /**
  491. * @brief 内核init进程
  492. *
  493. * @param arg
  494. * @return ul 参数
  495. */
  496. ul initial_kernel_thread(ul arg)
  497. {
  498. // kinfo("initial proc running...\targ:%#018lx", arg);
  499. fat32_init();
  500. struct pt_regs *regs;
  501. current_pcb->thread->rip = (ul)ret_from_system_call;
  502. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  503. current_pcb->thread->fs = USER_DS | 0x3;
  504. current_pcb->thread->gs = USER_DS | 0x3;
  505. // 主动放弃内核线程身份
  506. current_pcb->flags &= (~PF_KTHREAD);
  507. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  508. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  509. regs = (struct pt_regs *)current_pcb->thread->rsp;
  510. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  511. current_pcb->flags = 0;
  512. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  513. // 加载用户态程序:shell.elf
  514. char init_path[] = "/shell.elf";
  515. uint64_t addr = (uint64_t)&init_path;
  516. __asm__ __volatile__("movq %1, %%rsp \n\t"
  517. "pushq %2 \n\t"
  518. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  519. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf")
  520. : "memory");
  521. return 1;
  522. }
  523. /**
  524. * @brief 进程退出时执行的函数
  525. *
  526. * @param code 返回码
  527. * @return ul
  528. */
  529. ul process_thread_do_exit(ul code)
  530. {
  531. kinfo("thread_exiting..., code is %#018lx.", code);
  532. while (1)
  533. ;
  534. }
  535. /**
  536. * @brief 初始化内核进程
  537. *
  538. * @param fn 目标程序的地址
  539. * @param arg 向目标程序传入的参数
  540. * @param flags
  541. * @return int
  542. */
  543. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  544. {
  545. struct pt_regs regs;
  546. memset(&regs, 0, sizeof(regs));
  547. // 在rbx寄存器中保存进程的入口地址
  548. regs.rbx = (ul)fn;
  549. // 在rdx寄存器中保存传入的参数
  550. regs.rdx = (ul)arg;
  551. regs.ds = KERNEL_DS;
  552. regs.es = KERNEL_DS;
  553. regs.cs = KERNEL_CS;
  554. regs.ss = KERNEL_DS;
  555. // 置位中断使能标志位
  556. regs.rflags = (1 << 9);
  557. // rip寄存器指向内核线程的引导程序
  558. regs.rip = (ul)kernel_thread_func;
  559. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  560. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  561. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  562. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  563. }
  564. /**
  565. * @brief 初始化进程模块
  566. * ☆前置条件:已完成系统调用模块的初始化
  567. */
  568. void process_init()
  569. {
  570. kinfo("Initializing process...");
  571. initial_mm.pgd = (pml4t_t *)get_CR3();
  572. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  573. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  574. initial_mm.data_addr_start = (ul)&_data;
  575. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  576. initial_mm.rodata_addr_start = (ul)&_rodata;
  577. initial_mm.rodata_addr_end = (ul)&_erodata;
  578. initial_mm.bss_start = (uint64_t)&_bss;
  579. initial_mm.bss_end = (uint64_t)&_ebss;
  580. initial_mm.brk_start = memory_management_struct.start_brk;
  581. initial_mm.brk_end = current_pcb->addr_limit;
  582. initial_mm.stack_start = _stack_start;
  583. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  584. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  585. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  586. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  587. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  588. for (int i = 256; i < 512; ++i)
  589. {
  590. uint64_t *tmp = idle_pml4t_vaddr + i;
  591. if (*tmp == 0)
  592. {
  593. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  594. memset(pdpt, 0, PAGE_4K_SIZE);
  595. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  596. }
  597. }
  598. /*
  599. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  600. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  601. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  602. */
  603. // 初始化pid的写锁
  604. spin_init(&process_global_pid_write_lock);
  605. // 初始化进程的循环链表
  606. list_init(&initial_proc_union.pcb.list);
  607. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  608. initial_proc_union.pcb.state = PROC_RUNNING;
  609. initial_proc_union.pcb.preempt_count = 0;
  610. initial_proc_union.pcb.cpu_id = 0;
  611. }
  612. /**
  613. * @brief fork当前进程
  614. *
  615. * @param regs 新的寄存器值
  616. * @param clone_flags 克隆标志
  617. * @param stack_start 堆栈开始地址
  618. * @param stack_size 堆栈大小
  619. * @return unsigned long
  620. */
  621. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  622. {
  623. int retval = 0;
  624. struct process_control_block *tsk = NULL;
  625. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  626. // 为新的进程分配栈空间,并将pcb放置在底部
  627. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  628. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  629. if (tsk == NULL)
  630. {
  631. retval = -ENOMEM;
  632. return retval;
  633. }
  634. memset(tsk, 0, sizeof(struct process_control_block));
  635. // 将当前进程的pcb复制到新的pcb内
  636. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  637. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  638. // 将进程加入循环链表
  639. list_init(&tsk->list);
  640. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  641. tsk->priority = 2;
  642. tsk->preempt_count = 0;
  643. // 增加全局的pid并赋值给新进程的pid
  644. spin_lock(&process_global_pid_write_lock);
  645. tsk->pid = process_global_pid++;
  646. // 加入到进程链表中
  647. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  648. initial_proc_union.pcb.next_pcb = tsk;
  649. tsk->parent_pcb = current_pcb;
  650. spin_unlock(&process_global_pid_write_lock);
  651. tsk->cpu_id = proc_current_cpu_id;
  652. tsk->state = PROC_UNINTERRUPTIBLE;
  653. list_init(&tsk->list);
  654. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  655. retval = -ENOMEM;
  656. // 拷贝标志位
  657. if (process_copy_flags(clone_flags, tsk))
  658. goto copy_flags_failed;
  659. // 拷贝内存空间分布结构体
  660. if (process_copy_mm(clone_flags, tsk))
  661. goto copy_mm_failed;
  662. // 拷贝文件
  663. if (process_copy_files(clone_flags, tsk))
  664. goto copy_files_failed;
  665. // 拷贝线程结构体
  666. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  667. goto copy_thread_failed;
  668. // 拷贝成功
  669. retval = tsk->pid;
  670. // 唤醒进程
  671. process_wakeup(tsk);
  672. return retval;
  673. copy_thread_failed:;
  674. // 回收线程
  675. process_exit_thread(tsk);
  676. copy_files_failed:;
  677. // 回收文件
  678. process_exit_files(tsk);
  679. copy_mm_failed:;
  680. // 回收内存空间分布结构体
  681. process_exit_mm(tsk);
  682. copy_flags_failed:;
  683. kfree(tsk);
  684. return retval;
  685. return 0;
  686. }
  687. /**
  688. * @brief 根据pid获取进程的pcb
  689. *
  690. * @param pid
  691. * @return struct process_control_block*
  692. */
  693. struct process_control_block *process_get_pcb(long pid)
  694. {
  695. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  696. // 使用蛮力法搜索指定pid的pcb
  697. // todo: 使用哈希表来管理pcb
  698. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  699. {
  700. if (pcb->pid == pid)
  701. return pcb;
  702. }
  703. return NULL;
  704. }
  705. /**
  706. * @brief 将进程加入到调度器的就绪队列中
  707. *
  708. * @param pcb 进程的pcb
  709. */
  710. void process_wakeup(struct process_control_block *pcb)
  711. {
  712. pcb->state = PROC_RUNNING;
  713. sched_cfs_enqueue(pcb);
  714. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  715. current_pcb->flags |= PF_NEED_SCHED;
  716. }
  717. /**
  718. * @brief 拷贝当前进程的标志位
  719. *
  720. * @param clone_flags 克隆标志位
  721. * @param pcb 新的进程的pcb
  722. * @return uint64_t
  723. */
  724. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  725. {
  726. if (clone_flags & CLONE_VM)
  727. pcb->flags |= PF_VFORK;
  728. return 0;
  729. }
  730. /**
  731. * @brief 拷贝当前进程的文件描述符等信息
  732. *
  733. * @param clone_flags 克隆标志位
  734. * @param pcb 新的进程的pcb
  735. * @return uint64_t
  736. */
  737. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  738. {
  739. int retval = 0;
  740. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  741. // 文件描述符已经在复制pcb时被拷贝
  742. if (clone_flags & CLONE_FS)
  743. return retval;
  744. // 为新进程拷贝新的文件描述符
  745. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  746. {
  747. if (current_pcb->fds[i] == NULL)
  748. continue;
  749. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  750. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  751. }
  752. return retval;
  753. }
  754. /**
  755. * @brief 回收进程的所有文件描述符
  756. *
  757. * @param pcb 要被回收的进程的pcb
  758. * @return uint64_t
  759. */
  760. uint64_t process_exit_files(struct process_control_block *pcb)
  761. {
  762. // 不与父进程共享文件描述符
  763. if (!(pcb->flags & PF_VFORK))
  764. {
  765. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  766. {
  767. if (pcb->fds[i] == NULL)
  768. continue;
  769. kfree(pcb->fds[i]);
  770. }
  771. }
  772. // 清空当前进程的文件描述符列表
  773. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  774. }
  775. /**
  776. * @brief 拷贝当前进程的内存空间分布结构体信息
  777. *
  778. * @param clone_flags 克隆标志位
  779. * @param pcb 新的进程的pcb
  780. * @return uint64_t
  781. */
  782. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  783. {
  784. int retval = 0;
  785. // 与父进程共享内存空间
  786. if (clone_flags & CLONE_VM)
  787. {
  788. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  789. pcb->mm = current_pcb->mm;
  790. return retval;
  791. }
  792. // 分配新的内存空间分布结构体
  793. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  794. memset(new_mms, 0, sizeof(struct mm_struct));
  795. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  796. pcb->mm = new_mms;
  797. // 分配顶层页表, 并设置顶层页表的物理地址
  798. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  799. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  800. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  801. // 拷贝内核空间的页表指针
  802. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  803. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  804. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  805. // 迭代地拷贝用户空间
  806. for (int i = 0; i <= 255; ++i)
  807. {
  808. // 当前页表项为空
  809. if ((*(uint64_t *)(current_pgd + i)) == 0)
  810. continue;
  811. // 分配新的二级页表
  812. pdpt_t *new_pdpt = (pdpt_t *)kmalloc(PAGE_4K_SIZE, 0);
  813. memset(new_pdpt, 0, PAGE_4K_SIZE);
  814. // 在新的一级页表中设置新的二级页表表项
  815. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  816. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt(*(uint64_t *)(current_pgd + i) & (~0xfffUL));
  817. // kdebug("current pdpt=%#018lx \t (current_pgd + i)->pml4t=%#018lx", current_pdpt, *(uint64_t *)(current_pgd+i));
  818. // 设置二级页表
  819. for (int j = 0; j < 512; ++j)
  820. {
  821. if (*(uint64_t *)(current_pdpt + j) == 0)
  822. continue;
  823. // 分配新的三级页表
  824. pdt_t *new_pdt = (pdt_t *)kmalloc(PAGE_4K_SIZE, 0);
  825. memset(new_pdt, 0, PAGE_4K_SIZE);
  826. // 在新的二级页表中设置三级页表的表项
  827. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(uint64_t *)(current_pdpt + j)) & 0xfffUL));
  828. pdt_t *current_pdt = (pdt_t *)phys_2_virt((*(uint64_t *)(current_pdpt + j)) & (~0xfffUL));
  829. // 拷贝内存页
  830. for (int k = 0; k < 512; ++k)
  831. {
  832. if ((current_pdt + k)->pdt == 0)
  833. continue;
  834. // 获取一个新页
  835. struct Page *pg = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  836. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pg->addr_phys, (current_pdt + k)->pdt & 0x1fffUL));
  837. // 拷贝数据
  838. memcpy(phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL)), PAGE_2M_SIZE);
  839. }
  840. }
  841. }
  842. return retval;
  843. }
  844. /**
  845. * @brief 释放进程的页表
  846. *
  847. * @param pcb 要被释放页表的进程
  848. * @return uint64_t
  849. */
  850. uint64_t process_exit_mm(struct process_control_block *pcb)
  851. {
  852. if (pcb->flags & CLONE_VM)
  853. return 0;
  854. if (pcb->mm == NULL)
  855. {
  856. kdebug("pcb->mm==NULL");
  857. return 0;
  858. }
  859. if (pcb->mm->pgd == NULL)
  860. {
  861. kdebug("pcb->mm->pgd==NULL");
  862. return 0;
  863. }
  864. // 获取顶层页表
  865. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  866. // 迭代地释放用户空间
  867. for (int i = 0; i <= 255; ++i)
  868. {
  869. // 当前页表项为空
  870. if ((current_pgd + i)->pml4t == 0)
  871. continue;
  872. // 二级页表entry
  873. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  874. // 遍历二级页表
  875. for (int j = 0; j < 512; ++j)
  876. {
  877. if ((current_pdpt + j)->pdpt == 0)
  878. continue;
  879. // 三级页表的entry
  880. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  881. // 释放三级页表的内存页
  882. for (int k = 0; k < 512; ++k)
  883. {
  884. if ((current_pdt + k)->pdt == 0)
  885. continue;
  886. // 释放内存页
  887. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  888. }
  889. // 释放三级页表
  890. kfree(current_pdt);
  891. }
  892. // 释放二级页表
  893. kfree(current_pdpt);
  894. }
  895. // 释放顶层页表
  896. kfree(current_pgd);
  897. // 释放内存空间分布结构体
  898. kfree(pcb->mm);
  899. return 0;
  900. }
  901. /**
  902. * @brief 拷贝当前进程的线程结构体
  903. *
  904. * @param clone_flags 克隆标志位
  905. * @param pcb 新的进程的pcb
  906. * @return uint64_t
  907. */
  908. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  909. {
  910. // 将线程结构体放置在pcb后方
  911. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  912. memset(thd, 0, sizeof(struct thread_struct));
  913. pcb->thread = thd;
  914. // 拷贝栈空间
  915. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  916. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  917. // 设置子进程的返回值为0
  918. child_regs->rax = 0;
  919. child_regs->rsp = stack_start;
  920. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  921. thd->rsp = (uint64_t)child_regs;
  922. thd->fs = current_pcb->thread->fs;
  923. thd->gs = current_pcb->thread->gs;
  924. // 根据是否为内核线程,设置进程的开始执行的地址
  925. if (pcb->flags & PF_KTHREAD)
  926. thd->rip = (uint64_t)kernel_thread_func;
  927. else
  928. thd->rip = (uint64_t)ret_from_system_call;
  929. kdebug("new proc's ret addr = %#018lx\tchild_regs->rsp = %#018lx", child_regs->rbx, child_regs->rsp);
  930. return 0;
  931. }
  932. /**
  933. * @brief todo: 回收线程结构体
  934. *
  935. * @param pcb
  936. */
  937. void process_exit_thread(struct process_control_block *pcb)
  938. {
  939. }