elf.rs 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. use core::{
  2. cmp::min,
  3. intrinsics::{likely, unlikely},
  4. ops::Range,
  5. };
  6. use alloc::vec::Vec;
  7. use elf::{endian::AnyEndian, file::FileHeader, segment::ProgramHeader};
  8. use crate::{
  9. arch::MMArch,
  10. current_pcb,
  11. driver::base::block::SeekFrom,
  12. kerror,
  13. libs::align::page_align_up,
  14. mm::{
  15. allocator::page_frame::{PageFrameCount, VirtPageFrame},
  16. syscall::{MapFlags, ProtFlags},
  17. ucontext::InnerAddressSpace,
  18. MemoryManagementArch, VirtAddr,
  19. },
  20. process::{
  21. abi::AtType,
  22. exec::{BinaryLoader, BinaryLoaderResult, ExecError, ExecLoadMode, ExecParam},
  23. },
  24. syscall::{
  25. user_access::{clear_user, copy_to_user},
  26. SystemError,
  27. },
  28. };
  29. use super::rwlock::RwLockWriteGuard;
  30. #[derive(Debug)]
  31. pub struct ElfLoader;
  32. pub const ELF_LOADER: ElfLoader = ElfLoader::new();
  33. impl ElfLoader {
  34. #[cfg(target_arch = "x86_64")]
  35. pub const ELF_PAGE_SIZE: usize = MMArch::PAGE_SIZE;
  36. /// 读取文件的缓冲区大小
  37. pub const FILE_READ_BUF_SIZE: usize = 512 * 1024;
  38. pub const fn new() -> Self {
  39. Self
  40. }
  41. #[cfg(target_arch = "x86_64")]
  42. pub fn probe_x86_64(
  43. &self,
  44. param: &ExecParam,
  45. ehdr: &FileHeader<AnyEndian>,
  46. ) -> Result<(), ExecError> {
  47. // 只支持 64 位的 ELF 文件
  48. if ehdr.class != elf::file::Class::ELF64 {
  49. return Err(ExecError::WrongArchitecture);
  50. }
  51. // 判断架构是否匹配
  52. if ElfMachine::from(ehdr.e_machine) != ElfMachine::X86_64 {
  53. return Err(ExecError::WrongArchitecture);
  54. }
  55. // 判断是否以可执行文件的形式加载
  56. if param.load_mode() == ExecLoadMode::Exec {
  57. // 检查文件类型是否为可执行文件
  58. if ElfType::from(ehdr.e_type) != ElfType::Executable {
  59. return Err(ExecError::NotExecutable);
  60. }
  61. } else {
  62. return Err(ExecError::NotSupported);
  63. }
  64. return Ok(());
  65. }
  66. /// 设置用户堆空间,映射[start, end)区间的虚拟地址,并把brk指针指向end
  67. ///
  68. /// ## 参数
  69. ///
  70. /// - `user_vm_guard` - 用户虚拟地址空间
  71. /// - `start` - 本次映射的起始地址
  72. /// - `end` - 本次映射的结束地址(不包含)
  73. /// - `prot_flags` - 本次映射的权限
  74. fn set_elf_brk(
  75. &self,
  76. user_vm_guard: &mut RwLockWriteGuard<'_, InnerAddressSpace>,
  77. start: VirtAddr,
  78. end: VirtAddr,
  79. prot_flags: ProtFlags,
  80. ) -> Result<(), ExecError> {
  81. let start = self.elf_page_start(start);
  82. let end = self.elf_page_align_up(end);
  83. if end > start {
  84. let r = user_vm_guard.map_anonymous(
  85. start,
  86. end - start,
  87. prot_flags,
  88. MapFlags::MAP_ANONYMOUS | MapFlags::MAP_FIXED_NOREPLACE,
  89. false,
  90. );
  91. if r.is_err() {
  92. kerror!("set_elf_brk: map_anonymous failed, err={:?}", r);
  93. return Err(ExecError::OutOfMemory);
  94. }
  95. }
  96. user_vm_guard.elf_brk_start = end;
  97. user_vm_guard.elf_brk = end;
  98. return Ok(());
  99. }
  100. /// 计算addr在ELF PAGE内的偏移
  101. fn elf_page_offset(&self, addr: VirtAddr) -> usize {
  102. addr.data() & (Self::ELF_PAGE_SIZE - 1)
  103. }
  104. fn elf_page_start(&self, addr: VirtAddr) -> VirtAddr {
  105. VirtAddr::new(addr.data() & (!(Self::ELF_PAGE_SIZE - 1)))
  106. }
  107. fn elf_page_align_up(&self, addr: VirtAddr) -> VirtAddr {
  108. VirtAddr::new((addr.data() + Self::ELF_PAGE_SIZE - 1) & (!(Self::ELF_PAGE_SIZE - 1)))
  109. }
  110. /// 根据ELF的p_flags生成对应的ProtFlags
  111. fn make_prot(&self, p_flags: u32, _has_interpreter: bool, _is_interpreter: bool) -> ProtFlags {
  112. let mut prot = ProtFlags::empty();
  113. if p_flags & elf::abi::PF_R != 0 {
  114. prot |= ProtFlags::PROT_READ;
  115. }
  116. if p_flags & elf::abi::PF_W != 0 {
  117. prot |= ProtFlags::PROT_WRITE;
  118. }
  119. if p_flags & elf::abi::PF_X != 0 {
  120. prot |= ProtFlags::PROT_EXEC;
  121. }
  122. // todo: 增加与架构相关的处理
  123. // ref: https://opengrok.ringotek.cn/xref/linux-5.19.10/fs/binfmt_elf.c?r=&mo=22652&fi=824#572
  124. return prot;
  125. }
  126. /// 加载ELF文件到用户空间
  127. ///
  128. /// 参考Linux的elf_map函数
  129. /// https://opengrok.ringotek.cn/xref/linux-5.19.10/fs/binfmt_elf.c?r=&mo=22652&fi=824#365
  130. /// ## 参数
  131. ///
  132. /// - `user_vm_guard`:用户空间地址空间
  133. /// - `param`:执行参数
  134. /// - `phent`:ELF文件的ProgramHeader
  135. /// - `addr_to_map`:当前段应该被加载到的内存地址
  136. /// - `prot`:保护标志
  137. /// - `map_flags`:映射标志
  138. /// - `total_size`:ELF文件的总大小
  139. ///
  140. /// ## 返回值
  141. ///
  142. /// - `Ok((VirtAddr, bool))`:如果成功加载,则bool值为true,否则为false. VirtAddr为加载的地址
  143. fn load_elf_segment(
  144. &self,
  145. user_vm_guard: &mut RwLockWriteGuard<'_, InnerAddressSpace>,
  146. param: &mut ExecParam,
  147. phent: &ProgramHeader,
  148. mut addr_to_map: VirtAddr,
  149. prot: &ProtFlags,
  150. map_flags: &MapFlags,
  151. total_size: usize,
  152. ) -> Result<(VirtAddr, bool), SystemError> {
  153. // kdebug!("load_elf_segment: addr_to_map={:?}", addr_to_map);
  154. // 映射位置的偏移量(页内偏移)
  155. let beginning_page_offset = self.elf_page_offset(addr_to_map);
  156. addr_to_map = self.elf_page_start(addr_to_map);
  157. // 计算要映射的内存的大小
  158. let map_size = phent.p_filesz as usize + beginning_page_offset;
  159. let map_size = self.elf_page_align_up(VirtAddr::new(map_size)).data();
  160. // 当前段在文件中的大小
  161. let seg_in_file_size = phent.p_filesz as usize;
  162. // 当前段在文件中的偏移量
  163. let file_offset = phent.p_offset as usize;
  164. // 如果当前段的大小为0,则直接返回.
  165. // 段在文件中的大小为0,是合法的,但是段在内存中的大小不能为0
  166. if map_size == 0 {
  167. return Ok((addr_to_map, true));
  168. }
  169. let map_err_handler = |err: SystemError| {
  170. if err == SystemError::EEXIST {
  171. kerror!(
  172. "Pid: {}, elf segment at {:p} overlaps with existing mapping",
  173. current_pcb().pid,
  174. addr_to_map.as_ptr::<u8>()
  175. );
  176. }
  177. err
  178. };
  179. // 由于后面需要把ELF文件的内容加载到内存,因此暂时把当前段的权限设置为可写
  180. let tmp_prot = if !prot.contains(ProtFlags::PROT_WRITE) {
  181. *prot | ProtFlags::PROT_WRITE
  182. } else {
  183. *prot
  184. };
  185. // 映射到的虚拟地址。请注意,这个虚拟地址是user_vm_guard这个地址空间的虚拟地址。不一定是当前进程地址空间的
  186. let map_addr: VirtAddr;
  187. // total_size is the size of the ELF (interpreter) image.
  188. // The _first_ mmap needs to know the full size, otherwise
  189. // randomization might put this image into an overlapping
  190. // position with the ELF binary image. (since size < total_size)
  191. // So we first map the 'big' image - and unmap the remainder at
  192. // the end. (which unmap is needed for ELF images with holes.)
  193. if total_size != 0 {
  194. let total_size = self.elf_page_align_up(VirtAddr::new(total_size)).data();
  195. // kdebug!("total_size={}", total_size);
  196. map_addr = user_vm_guard
  197. .map_anonymous(addr_to_map, total_size, tmp_prot, *map_flags, false)
  198. .map_err(map_err_handler)?
  199. .virt_address();
  200. // kdebug!("map ok: addr_to_map={:?}", addr_to_map);
  201. let to_unmap = map_addr + map_size;
  202. let to_unmap_size = total_size - map_size;
  203. // kdebug!("to_unmap={:?}, to_unmap_size={}", to_unmap, to_unmap_size);
  204. user_vm_guard.munmap(
  205. VirtPageFrame::new(to_unmap),
  206. PageFrameCount::from_bytes(to_unmap_size).unwrap(),
  207. )?;
  208. // 加载文件到内存
  209. self.do_load_file(
  210. map_addr + beginning_page_offset,
  211. seg_in_file_size,
  212. file_offset,
  213. param,
  214. )?;
  215. if tmp_prot != *prot {
  216. user_vm_guard.mprotect(
  217. VirtPageFrame::new(map_addr),
  218. PageFrameCount::from_bytes(page_align_up(map_size)).unwrap(),
  219. *prot,
  220. )?;
  221. }
  222. } else {
  223. // kdebug!("total size = 0");
  224. map_addr = user_vm_guard
  225. .map_anonymous(addr_to_map, map_size, tmp_prot, *map_flags, false)?
  226. .virt_address();
  227. // kdebug!(
  228. // "map ok: addr_to_map={:?}, map_addr={map_addr:?},beginning_page_offset={beginning_page_offset:?}",
  229. // addr_to_map
  230. // );
  231. // 加载文件到内存
  232. self.do_load_file(
  233. map_addr + beginning_page_offset,
  234. seg_in_file_size,
  235. file_offset,
  236. param,
  237. )?;
  238. if tmp_prot != *prot {
  239. user_vm_guard.mprotect(
  240. VirtPageFrame::new(map_addr),
  241. PageFrameCount::from_bytes(page_align_up(map_size)).unwrap(),
  242. *prot,
  243. )?;
  244. }
  245. }
  246. // kdebug!("load_elf_segment OK: map_addr={:?}", map_addr);
  247. return Ok((map_addr, true));
  248. }
  249. /// 加载ELF文件到用户空间
  250. ///
  251. /// ## 参数
  252. ///
  253. /// - `vaddr`:要加载到的虚拟地址
  254. /// - `size`:要加载的大小
  255. /// - `offset_in_file`:在文件内的偏移量
  256. /// - `param`:执行参数
  257. fn do_load_file(
  258. &self,
  259. mut vaddr: VirtAddr,
  260. size: usize,
  261. offset_in_file: usize,
  262. param: &mut ExecParam,
  263. ) -> Result<(), SystemError> {
  264. let file = param.file_mut();
  265. if (file.metadata()?.size as usize) < offset_in_file + size {
  266. return Err(SystemError::ENOEXEC);
  267. }
  268. let buf_size = min(size, Self::FILE_READ_BUF_SIZE);
  269. let mut buf = vec![0u8; buf_size];
  270. let mut remain = size;
  271. file.lseek(SeekFrom::SeekSet(offset_in_file as i64))?;
  272. while remain > 0 {
  273. let read_size = min(remain, buf_size);
  274. file.read(read_size, &mut buf[..read_size])?;
  275. // kdebug!("copy_to_user: vaddr={:?}, read_size = {read_size}", vaddr);
  276. unsafe {
  277. copy_to_user(vaddr, &buf[..read_size]).map_err(|_| SystemError::EFAULT)?;
  278. }
  279. vaddr += read_size;
  280. remain -= read_size;
  281. }
  282. return Ok(());
  283. }
  284. /// 我们需要显式的把数据段之后剩余的内存页都清零。
  285. fn pad_zero(&self, elf_bss: VirtAddr) -> Result<(), SystemError> {
  286. let nbyte = self.elf_page_offset(elf_bss);
  287. if nbyte > 0 {
  288. let nbyte = Self::ELF_PAGE_SIZE - nbyte;
  289. unsafe { clear_user(elf_bss, nbyte).map_err(|_| SystemError::EFAULT) }?;
  290. }
  291. return Ok(());
  292. }
  293. /// 创建auxv
  294. ///
  295. /// ## 参数
  296. ///
  297. /// - `param`:执行参数
  298. /// - `entrypoint_vaddr`:程序入口地址
  299. /// - `phdr_vaddr`:程序头表地址
  300. /// - `elf_header`:ELF文件头
  301. fn create_auxv(
  302. &self,
  303. param: &mut ExecParam,
  304. entrypoint_vaddr: VirtAddr,
  305. phdr_vaddr: Option<VirtAddr>,
  306. ehdr: &elf::file::FileHeader<AnyEndian>,
  307. ) -> Result<(), ExecError> {
  308. let phdr_vaddr = phdr_vaddr.unwrap_or(VirtAddr::new(0));
  309. let init_info = param.init_info_mut();
  310. init_info
  311. .auxv
  312. .insert(AtType::PhEnt as u8, ehdr.e_phentsize as usize);
  313. init_info
  314. .auxv
  315. .insert(AtType::PageSize as u8, MMArch::PAGE_SIZE);
  316. init_info.auxv.insert(AtType::Phdr as u8, phdr_vaddr.data());
  317. init_info
  318. .auxv
  319. .insert(AtType::PhNum as u8, ehdr.e_phnum as usize);
  320. init_info
  321. .auxv
  322. .insert(AtType::Entry as u8, entrypoint_vaddr.data());
  323. return Ok(());
  324. }
  325. /// 解析文件的ehdr
  326. fn parse_ehdr(data: &[u8]) -> Result<FileHeader<AnyEndian>, elf::ParseError> {
  327. let ident_buf = data.get_bytes(0..elf::abi::EI_NIDENT)?;
  328. let ident = elf::file::parse_ident::<AnyEndian>(ident_buf)?;
  329. let tail_start = elf::abi::EI_NIDENT;
  330. let tail_end = match ident.1 {
  331. elf::file::Class::ELF32 => tail_start + elf::file::ELF32_EHDR_TAILSIZE,
  332. elf::file::Class::ELF64 => tail_start + elf::file::ELF64_EHDR_TAILSIZE,
  333. };
  334. let tail_buf = data.get_bytes(tail_start..tail_end)?;
  335. let ehdr: FileHeader<_> = FileHeader::parse_tail(ident, tail_buf)?;
  336. return Ok(ehdr);
  337. }
  338. /// 解析文件的program header table
  339. ///
  340. /// ## 参数
  341. ///
  342. /// - `param`:执行参数
  343. /// - `ehdr`:文件头
  344. /// - `data_buf`:用于缓存SegmentTable的Vec。
  345. /// 这是因为SegmentTable的生命周期与data_buf一致。初始化这个Vec的大小为0即可。
  346. ///
  347. /// ## 说明
  348. ///
  349. /// 这个函数由elf库的`elf::elf_bytes::find_phdrs`修改而来。
  350. fn parse_segments<'a>(
  351. param: &mut ExecParam,
  352. ehdr: &FileHeader<AnyEndian>,
  353. data_buf: &'a mut Vec<u8>,
  354. ) -> Result<Option<elf::segment::SegmentTable<'a, AnyEndian>>, elf::ParseError> {
  355. // It's Ok to have no program headers
  356. if ehdr.e_phoff == 0 {
  357. return Ok(None);
  358. }
  359. let file = param.file_mut();
  360. // If the number of segments is greater than or equal to PN_XNUM (0xffff),
  361. // e_phnum is set to PN_XNUM, and the actual number of program header table
  362. // entries is contained in the sh_info field of the section header at index 0.
  363. let mut phnum = ehdr.e_phnum as usize;
  364. if phnum == elf::abi::PN_XNUM as usize {
  365. let shoff: usize = ehdr.e_shoff.try_into()?;
  366. // 从磁盘读取shdr的前2个entry
  367. file.lseek(SeekFrom::SeekSet(shoff as i64))
  368. .map_err(|_| elf::ParseError::BadOffset(shoff as u64))?;
  369. let shdr_buf_size = ehdr.e_shentsize * 2;
  370. let mut shdr_buf = vec![0u8; shdr_buf_size as usize];
  371. file.read(shdr_buf_size as usize, &mut shdr_buf)
  372. .map_err(|_| elf::ParseError::BadOffset(shoff as u64))?;
  373. let mut offset = 0;
  374. let shdr0 = <elf::section::SectionHeader as elf::parse::ParseAt>::parse_at(
  375. ehdr.endianness,
  376. ehdr.class,
  377. &mut offset,
  378. &shdr_buf,
  379. )?;
  380. phnum = shdr0.sh_info.try_into()?;
  381. }
  382. // Validate phentsize before trying to read the table so that we can error early for corrupted files
  383. let entsize = <ProgramHeader as elf::parse::ParseAt>::validate_entsize(
  384. ehdr.class,
  385. ehdr.e_phentsize as usize,
  386. )?;
  387. let phoff: usize = ehdr.e_phoff.try_into()?;
  388. let size = entsize
  389. .checked_mul(phnum)
  390. .ok_or(elf::ParseError::IntegerOverflow)?;
  391. phoff
  392. .checked_add(size)
  393. .ok_or(elf::ParseError::IntegerOverflow)?;
  394. // 读取program header table
  395. file.lseek(SeekFrom::SeekSet(phoff as i64))
  396. .map_err(|_| elf::ParseError::BadOffset(phoff as u64))?;
  397. data_buf.clear();
  398. data_buf.resize(size, 0);
  399. file.read(size, data_buf)
  400. .expect("read program header table failed");
  401. let buf = data_buf.get_bytes(0..size)?;
  402. return Ok(Some(elf::segment::SegmentTable::new(
  403. ehdr.endianness,
  404. ehdr.class,
  405. buf,
  406. )));
  407. }
  408. }
  409. impl BinaryLoader for ElfLoader {
  410. fn probe(self: &'static Self, param: &ExecParam, buf: &[u8]) -> Result<(), ExecError> {
  411. // let elf_bytes =
  412. // ElfBytes::<AnyEndian>::minimal_parse(buf).map_err(|_| ExecError::NotExecutable)?;
  413. let ehdr = Self::parse_ehdr(buf).map_err(|_| ExecError::NotExecutable)?;
  414. #[cfg(target_arch = "x86_64")]
  415. return self.probe_x86_64(param, &ehdr);
  416. #[cfg(not(target_arch = "x86_64"))]
  417. unimplemented!("Unsupported architecture");
  418. }
  419. fn load(
  420. self: &'static Self,
  421. param: &mut ExecParam,
  422. head_buf: &[u8],
  423. ) -> Result<BinaryLoaderResult, ExecError> {
  424. // 解析elf文件头
  425. let ehdr = Self::parse_ehdr(head_buf).map_err(|_| ExecError::NotExecutable)?;
  426. // 参考linux-5.19的load_elf_binary函数
  427. // https://opengrok.ringotek.cn/xref/linux-5.19.10/fs/binfmt_elf.c?r=&mo=22652&fi=824#1034
  428. let elf_type = ElfType::from(ehdr.e_type);
  429. // kdebug!("ehdr = {:?}", ehdr);
  430. let binding = param.vm().clone();
  431. let mut user_vm = binding.write();
  432. // todo: 增加对user stack上的内存是否具有可执行权限的处理(方法:寻找phdr里面的PT_GNU_STACK段)
  433. // todo: 增加对动态链接的处理
  434. // kdebug!("to parse segments");
  435. // 加载ELF文件并映射到用户空间
  436. let mut phdr_buf = Vec::new();
  437. let loadable_sections = Self::parse_segments(param, &ehdr, &mut phdr_buf)
  438. .map_err(|_| ExecError::ParseError)?
  439. .ok_or(ExecError::ParseError)?
  440. .iter()
  441. .filter(|seg| seg.p_type == elf::abi::PT_LOAD);
  442. // kdebug!("loadable_sections = {:?}", loadable_sections);
  443. let mut elf_brk = VirtAddr::new(0);
  444. let mut elf_bss = VirtAddr::new(0);
  445. let mut start_code: Option<VirtAddr> = None;
  446. let mut end_code: Option<VirtAddr> = None;
  447. let mut start_data: Option<VirtAddr> = None;
  448. let mut end_data: Option<VirtAddr> = None;
  449. // 加载的时候的偏移量(这个偏移量在加载动态链接段的时候产生,由于还没有动态链接,因此暂时不可变。)
  450. // 请不要删除load_bias! 以免到时候写动态链接的时候忘记了。
  451. let load_bias = 0usize;
  452. let mut bss_prot_flags = ProtFlags::empty();
  453. // 是否是第一个加载的段
  454. let mut first_pt_load = true;
  455. // program header的虚拟地址
  456. let mut phdr_vaddr: Option<VirtAddr> = None;
  457. for seg_to_load in loadable_sections {
  458. // kdebug!("seg_to_load = {:?}", seg_to_load);
  459. if unlikely(elf_brk > elf_bss) {
  460. // kdebug!(
  461. // "to set brk, elf_brk = {:?}, elf_bss = {:?}",
  462. // elf_brk,
  463. // elf_bss
  464. // );
  465. self.set_elf_brk(
  466. &mut user_vm,
  467. elf_bss + load_bias,
  468. elf_brk + load_bias,
  469. bss_prot_flags,
  470. )?;
  471. let nbyte = self.elf_page_offset(elf_bss);
  472. if nbyte > 0 {
  473. let nbyte = min(Self::ELF_PAGE_SIZE - nbyte, elf_brk - elf_bss);
  474. unsafe {
  475. // This bss-zeroing can fail if the ELF file specifies odd protections.
  476. // So we don't check the return value.
  477. clear_user(elf_bss + load_bias, nbyte).ok();
  478. }
  479. }
  480. }
  481. // 生成ProtFlags.
  482. // TODO: 当有了动态链接之后,需要根据情况设置这里的has_interpreter
  483. let elf_prot_flags = self.make_prot(seg_to_load.p_flags, false, false);
  484. let mut elf_map_flags = MapFlags::MAP_PRIVATE;
  485. let vaddr = VirtAddr::new(seg_to_load.p_vaddr as usize);
  486. if !first_pt_load {
  487. elf_map_flags.insert(MapFlags::MAP_FIXED_NOREPLACE);
  488. } else if elf_type == ElfType::Executable {
  489. /*
  490. * This logic is run once for the first LOAD Program
  491. * Header for ET_EXEC binaries. No special handling
  492. * is needed.
  493. */
  494. elf_map_flags.insert(MapFlags::MAP_FIXED_NOREPLACE);
  495. } else if elf_type == ElfType::DSO {
  496. // TODO: 支持动态链接
  497. unimplemented!("DragonOS currently does not support dynamic linking!");
  498. }
  499. // 加载这个段到用户空间
  500. // todo: 引入动态链接后,这里的total_size要按照实际的填写,而不一定是0
  501. let e = self
  502. .load_elf_segment(
  503. &mut user_vm,
  504. param,
  505. &seg_to_load,
  506. vaddr + load_bias,
  507. &elf_prot_flags,
  508. &elf_map_flags,
  509. 0,
  510. )
  511. .map_err(|e| match e {
  512. SystemError::EFAULT => ExecError::BadAddress(None),
  513. SystemError::ENOMEM => ExecError::OutOfMemory,
  514. _ => ExecError::Other(format!("load_elf_segment failed: {:?}", e)),
  515. })?;
  516. // 如果地址不对,那么就报错
  517. if !e.1 {
  518. return Err(ExecError::BadAddress(Some(e.0)));
  519. }
  520. if first_pt_load {
  521. first_pt_load = false;
  522. if elf_type == ElfType::DSO {
  523. // todo: 在这里增加对load_bias和reloc_func_desc的更新代码
  524. todo!()
  525. }
  526. }
  527. // kdebug!("seg_to_load.p_offset={}", seg_to_load.p_offset);
  528. // kdebug!("e_phoff={}", ehdr.e_phoff);
  529. // kdebug!("seg_to_load.p_filesz={}", seg_to_load.p_filesz);
  530. // Figure out which segment in the file contains the Program Header Table,
  531. // and map to the associated virtual address.
  532. if (seg_to_load.p_offset <= ehdr.e_phoff)
  533. && (ehdr.e_phoff < (seg_to_load.p_offset + seg_to_load.p_filesz))
  534. {
  535. phdr_vaddr = Some(VirtAddr::new(
  536. (ehdr.e_phoff - seg_to_load.p_offset + seg_to_load.p_vaddr) as usize,
  537. ));
  538. }
  539. let p_vaddr = VirtAddr::new(seg_to_load.p_vaddr as usize);
  540. if (seg_to_load.p_flags & elf::abi::PF_X) != 0 {
  541. if start_code.is_none() || start_code.as_ref().unwrap() > &p_vaddr {
  542. start_code = Some(p_vaddr);
  543. }
  544. }
  545. if start_data.is_none()
  546. || (start_data.is_some() && start_data.as_ref().unwrap() > &p_vaddr)
  547. {
  548. start_data = Some(p_vaddr);
  549. }
  550. // 如果程序段要加载的目标地址不在用户空间内,或者是其他不合法的情况,那么就报错
  551. if !p_vaddr.check_user()
  552. || seg_to_load.p_filesz > seg_to_load.p_memsz
  553. || seg_to_load.p_memsz > MMArch::USER_END_VADDR.data() as u64
  554. {
  555. // kdebug!("ERR: p_vaddr={p_vaddr:?}");
  556. return Err(ExecError::InvalidParemeter);
  557. }
  558. drop(p_vaddr);
  559. // end vaddr of this segment(code+data+bss)
  560. let seg_end_vaddr_f = self.elf_page_align_up(VirtAddr::new(
  561. (seg_to_load.p_vaddr + seg_to_load.p_filesz) as usize,
  562. ));
  563. if seg_end_vaddr_f > elf_bss {
  564. elf_bss = seg_end_vaddr_f;
  565. }
  566. if ((seg_to_load.p_flags & elf::abi::PF_X) != 0)
  567. && (end_code.is_none()
  568. || (end_code.is_some() && end_code.as_ref().unwrap() < &seg_end_vaddr_f))
  569. {
  570. end_code = Some(seg_end_vaddr_f);
  571. }
  572. if end_data.is_none()
  573. || (end_data.is_some() && end_data.as_ref().unwrap() < &seg_end_vaddr_f)
  574. {
  575. end_data = Some(seg_end_vaddr_f);
  576. }
  577. drop(seg_end_vaddr_f);
  578. let seg_end_vaddr = VirtAddr::new((seg_to_load.p_vaddr + seg_to_load.p_memsz) as usize);
  579. if seg_end_vaddr > elf_brk {
  580. bss_prot_flags = elf_prot_flags;
  581. elf_brk = seg_end_vaddr;
  582. }
  583. }
  584. // kdebug!("elf load: phdr_vaddr={phdr_vaddr:?}");
  585. let program_entrypoint = VirtAddr::new(ehdr.e_entry as usize + load_bias);
  586. let phdr_vaddr = if phdr_vaddr.is_some() {
  587. Some(phdr_vaddr.unwrap() + load_bias)
  588. } else {
  589. None
  590. };
  591. elf_bss += load_bias;
  592. elf_brk += load_bias;
  593. start_code = start_code.map(|v| v + load_bias);
  594. end_code = end_code.map(|v| v + load_bias);
  595. start_data = start_data.map(|v| v + load_bias);
  596. end_data = end_data.map(|v| v + load_bias);
  597. // kdebug!(
  598. // "to set brk: elf_bss: {:?}, elf_brk: {:?}, bss_prot_flags: {:?}",
  599. // elf_bss,
  600. // elf_brk,
  601. // bss_prot_flags
  602. // );
  603. self.set_elf_brk(&mut user_vm, elf_bss, elf_brk, bss_prot_flags)?;
  604. if likely(elf_bss != elf_brk) && unlikely(self.pad_zero(elf_bss).is_err()) {
  605. // kdebug!("elf_bss = {elf_bss:?}, elf_brk = {elf_brk:?}");
  606. return Err(ExecError::BadAddress(Some(elf_bss)));
  607. }
  608. // todo: 动态链接:增加加载interpreter的代码
  609. // kdebug!("to create auxv");
  610. self.create_auxv(param, program_entrypoint, phdr_vaddr, &ehdr)?;
  611. // kdebug!("auxv create ok");
  612. user_vm.start_code = start_code.unwrap_or(VirtAddr::new(0));
  613. user_vm.end_code = end_code.unwrap_or(VirtAddr::new(0));
  614. user_vm.start_data = start_data.unwrap_or(VirtAddr::new(0));
  615. user_vm.end_data = end_data.unwrap_or(VirtAddr::new(0));
  616. let result = BinaryLoaderResult::new(program_entrypoint);
  617. // kdebug!("elf load OK!!!");
  618. return Ok(result);
  619. }
  620. }
  621. /// Elf机器架构,对应于e_machine字段。在ABI中,以EM_开头的常量是e_machine字段的值。
  622. #[derive(Debug, Eq, PartialEq)]
  623. pub enum ElfMachine {
  624. I386,
  625. AArch32,
  626. AArch64,
  627. X86_64,
  628. RiscV,
  629. /// 龙芯架构
  630. LoongArch,
  631. /// 未知架构
  632. Unknown,
  633. }
  634. impl From<u16> for ElfMachine {
  635. fn from(machine: u16) -> Self {
  636. match machine {
  637. 0x03 => Self::I386,
  638. 0x28 => Self::AArch32,
  639. 0xb7 => Self::AArch64,
  640. 0x3e => Self::X86_64,
  641. 0xf3 => Self::RiscV,
  642. 0x102 => Self::LoongArch,
  643. // 未知架构
  644. _ => Self::Unknown,
  645. }
  646. }
  647. }
  648. /// Elf文件类型,对应于e_type字段。在ABI中,以ET_开头的常量是e_type字段的值。
  649. #[derive(Debug, Eq, PartialEq)]
  650. pub enum ElfType {
  651. /// 可重定位文件
  652. Relocatable,
  653. /// 可执行文件
  654. Executable,
  655. /// 动态链接库
  656. DSO,
  657. /// 核心转储文件
  658. Core,
  659. /// 未知类型
  660. Unknown,
  661. }
  662. impl From<u16> for ElfType {
  663. fn from(elf_type: u16) -> Self {
  664. match elf_type {
  665. 0x01 => Self::Relocatable,
  666. 0x02 => Self::Executable,
  667. 0x03 => Self::DSO,
  668. 0x04 => Self::Core,
  669. _ => Self::Unknown,
  670. }
  671. }
  672. }
  673. // Simple convenience extension trait to wrap get() with .ok_or(SliceReadError)
  674. trait ReadBytesExt<'data> {
  675. fn get_bytes(self, range: Range<usize>) -> Result<&'data [u8], elf::ParseError>;
  676. }
  677. impl<'data> ReadBytesExt<'data> for &'data [u8] {
  678. fn get_bytes(self, range: Range<usize>) -> Result<&'data [u8], elf::ParseError> {
  679. let start = range.start;
  680. let end = range.end;
  681. self.get(range)
  682. .ok_or(elf::ParseError::SliceReadError((start, end)))
  683. }
  684. }