mm.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. #include <process/process.h>
  7. ul Total_Memory = 0;
  8. ul total_2M_pages = 0;
  9. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  10. /**
  11. * @brief 从页表中获取pdt页表项的内容
  12. *
  13. * @param proc_page_table_addr 页表的地址
  14. * @param is_phys 页表地址是否为物理地址
  15. * @param virt_addr_start 要清除的虚拟地址的起始地址
  16. * @param length 要清除的区域的长度
  17. * @param clear 是否清除标志位
  18. */
  19. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  20. void mm_init()
  21. {
  22. kinfo("Initializing memory management unit...");
  23. // 设置内核程序不同部分的起止地址
  24. memory_management_struct.kernel_code_start = (ul)&_text;
  25. memory_management_struct.kernel_code_end = (ul)&_etext;
  26. memory_management_struct.kernel_data_end = (ul)&_edata;
  27. memory_management_struct.rodata_end = (ul)&_erodata;
  28. memory_management_struct.start_brk = (ul)&_end;
  29. struct multiboot_mmap_entry_t mb2_mem_info[512];
  30. int count;
  31. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  32. for (int i = 0; i < count; ++i)
  33. {
  34. //可用的内存
  35. if (mb2_mem_info->type == 1)
  36. Total_Memory += mb2_mem_info->len;
  37. // 保存信息到mms
  38. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  39. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  40. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  41. memory_management_struct.len_e820 = i;
  42. // 脏数据
  43. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  44. break;
  45. }
  46. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  47. // 计算有效内存页数
  48. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  49. {
  50. if (memory_management_struct.e820[i].type != 1)
  51. continue;
  52. // 将内存段的起始物理地址按照2M进行对齐
  53. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  54. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  55. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  56. // 内存段不可用
  57. if (addr_end <= addr_start)
  58. continue;
  59. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  60. }
  61. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  62. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  63. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  64. // 初始化mms的bitmap
  65. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  66. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  67. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  68. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  69. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  70. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  71. // 初始化内存页结构
  72. // 将页结构映射于bmp之后
  73. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  74. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  75. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  76. // 将pages_struct全部清空,以备后续初始化
  77. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  78. // 初始化内存区域
  79. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  80. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  81. memory_management_struct.count_zones = 0;
  82. // zones-struct 成员变量暂时按照5个来计算
  83. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  84. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  85. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  86. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  87. {
  88. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  89. continue;
  90. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  91. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  92. if (addr_end <= addr_start)
  93. continue;
  94. // zone init
  95. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  96. ++memory_management_struct.count_zones;
  97. z->zone_addr_start = addr_start;
  98. z->zone_addr_end = addr_end;
  99. z->zone_length = addr_end - addr_start;
  100. z->count_pages_using = 0;
  101. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  102. z->total_pages_link = 0;
  103. z->attr = 0;
  104. z->gmd_struct = &memory_management_struct;
  105. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  106. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  107. // 初始化页
  108. struct Page *p = z->pages_group;
  109. for (int j = 0; j < z->count_pages; ++j, ++p)
  110. {
  111. p->zone = z;
  112. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  113. p->attr = 0;
  114. p->ref_counts = 0;
  115. p->age = 0;
  116. // 将bmp中对应的位 复位
  117. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  118. }
  119. }
  120. // 初始化0~2MB的物理页
  121. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  122. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  123. memory_management_struct.pages_struct->addr_phys = 0UL;
  124. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  125. memory_management_struct.pages_struct->ref_counts = 1;
  126. memory_management_struct.pages_struct->age = 0;
  127. // 将第0页的标志位给置上
  128. //*(memory_management_struct.bmp) |= 1UL;
  129. // 计算zone结构体的总长度(按照64位对齐)
  130. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  131. ZONE_DMA_INDEX = 0;
  132. ZONE_NORMAL_INDEX = 0;
  133. ZONE_UNMAPPED_INDEX = 0;
  134. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  135. {
  136. struct Zone *z = memory_management_struct.zones_struct + i;
  137. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  138. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  139. // 1GB以上的内存空间不做映射
  140. if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  141. ZONE_UNMAPPED_INDEX = i;
  142. }
  143. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  144. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  145. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  146. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  147. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  148. // 初始化内存管理单元结构所占的物理页的结构体
  149. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  150. // kdebug("mms_max_page=%ld", mms_max_page);
  151. struct Page *tmp_page = NULL;
  152. ul page_num;
  153. // 第0个page已经在上方配置
  154. for (ul j = 1; j <= mms_max_page; ++j)
  155. {
  156. tmp_page = memory_management_struct.pages_struct + j;
  157. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  158. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  159. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  160. ++tmp_page->zone->count_pages_using;
  161. --tmp_page->zone->count_pages_free;
  162. }
  163. global_CR3 = get_CR3();
  164. // root_page_table_phys_addr = global_CR3;
  165. // kdebug("global_CR3\t:%#018lx", global_CR3);
  166. // kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff));
  167. // kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff));
  168. // kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  169. // kinfo("Cleaning page table remapping at 0x0000");
  170. kinfo("Memory management unit initialize complete!");
  171. flush_tlb();
  172. // 初始化slab内存池
  173. slab_init();
  174. page_table_init();
  175. init_frame_buffer();
  176. }
  177. /**
  178. * @brief 初始化内存页
  179. *
  180. * @param page 内存页结构体
  181. * @param flags 标志位
  182. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  183. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  184. * @return unsigned long
  185. */
  186. unsigned long page_init(struct Page *page, ul flags)
  187. {
  188. page->attr |= flags;
  189. // 若页面的引用计数为0或是共享页,增加引用计数
  190. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  191. {
  192. ++page->ref_counts;
  193. ++page->zone->total_pages_link;
  194. }
  195. return 0;
  196. }
  197. /**
  198. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  199. *
  200. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  201. * @param num 需要申请的连续内存页的数量 num<64
  202. * @param flags 将页面属性设置成flag
  203. * @return struct Page*
  204. */
  205. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  206. {
  207. ul zone_start = 0, zone_end = 0;
  208. if (num >= 64 && num <= 0)
  209. {
  210. kerror("alloc_pages(): num is invalid.");
  211. return NULL;
  212. }
  213. ul attr = flags;
  214. switch (zone_select)
  215. {
  216. case ZONE_DMA:
  217. // DMA区域
  218. zone_start = 0;
  219. zone_end = ZONE_DMA_INDEX;
  220. attr |= PAGE_PGT_MAPPED;
  221. break;
  222. case ZONE_NORMAL:
  223. zone_start = ZONE_DMA_INDEX;
  224. zone_end = ZONE_NORMAL_INDEX;
  225. attr |= PAGE_PGT_MAPPED;
  226. break;
  227. case ZONE_UNMAPPED_IN_PGT:
  228. zone_start = ZONE_NORMAL_INDEX;
  229. zone_end = ZONE_UNMAPPED_INDEX;
  230. attr = 0;
  231. break;
  232. default:
  233. kerror("In alloc_pages: param: zone_select incorrect.");
  234. // 返回空
  235. return NULL;
  236. break;
  237. }
  238. for (int i = zone_start; i <= zone_end; ++i)
  239. {
  240. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  241. continue;
  242. struct Zone *z = memory_management_struct.zones_struct + i;
  243. // 区域对应的起止页号
  244. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  245. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  246. ul tmp = 64 - page_start % 64;
  247. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  248. {
  249. // 按照bmp中的每一个元素进行查找
  250. // 先将p定位到bmp的起始元素
  251. ul *p = memory_management_struct.bmp + (j >> 6);
  252. ul shift = j % 64;
  253. ul tmp_num = ((1UL << num) - 1);
  254. for (ul k = shift; k < 64; ++k)
  255. {
  256. // 寻找连续num个空页
  257. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  258. {
  259. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  260. for (ul l = 0; l < num; ++l)
  261. {
  262. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  263. // 分配页面,手动配置属性及计数器
  264. // 置位bmp
  265. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  266. ++z->count_pages_using;
  267. --z->count_pages_free;
  268. x->attr = attr;
  269. }
  270. // 成功分配了页面,返回第一个页面的指针
  271. // printk("start page num=%d\n",start_page_num);
  272. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  273. }
  274. }
  275. }
  276. }
  277. return NULL;
  278. }
  279. /**
  280. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  281. *
  282. * @param p 物理页结构体
  283. * @return unsigned long
  284. */
  285. unsigned long page_clean(struct Page *p)
  286. {
  287. --p->ref_counts;
  288. --p->zone->total_pages_link;
  289. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  290. if (!p->ref_counts)
  291. {
  292. p->attr &= PAGE_PGT_MAPPED;
  293. }
  294. return 0;
  295. }
  296. /**
  297. * @brief Get the page's attr
  298. *
  299. * @param page 内存页结构体
  300. * @return ul 属性
  301. */
  302. ul get_page_attr(struct Page *page)
  303. {
  304. if (page == NULL)
  305. {
  306. kBUG("get_page_attr(): page == NULL");
  307. return EPAGE_NULL;
  308. }
  309. else
  310. return page->attr;
  311. }
  312. /**
  313. * @brief Set the page's attr
  314. *
  315. * @param page 内存页结构体
  316. * @param flags 属性
  317. * @return ul 错误码
  318. */
  319. ul set_page_attr(struct Page *page, ul flags)
  320. {
  321. if (page == NULL)
  322. {
  323. kBUG("get_page_attr(): page == NULL");
  324. return EPAGE_NULL;
  325. }
  326. else
  327. {
  328. page->attr = flags;
  329. return 0;
  330. }
  331. }
  332. /**
  333. * @brief 释放连续number个内存页
  334. *
  335. * @param page 第一个要被释放的页面的结构体
  336. * @param number 要释放的内存页数量 number<64
  337. */
  338. void free_pages(struct Page *page, int number)
  339. {
  340. if (page == NULL)
  341. {
  342. kerror("free_pages() page is invalid.");
  343. return;
  344. }
  345. if (number >= 64 || number <= 0)
  346. {
  347. kerror("free_pages(): number %d is invalid.", number);
  348. return;
  349. }
  350. ul page_num;
  351. for (int i = 0; i < number; ++i, ++page)
  352. {
  353. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  354. // 复位bmp
  355. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  356. // 更新计数器
  357. --page->zone->count_pages_using;
  358. ++page->zone->count_pages_free;
  359. page->attr = 0;
  360. }
  361. return;
  362. }
  363. /**
  364. * @brief 重新初始化页表的函数
  365. * 将0~4GB的物理页映射到线性地址空间
  366. */
  367. void page_table_init()
  368. {
  369. kinfo("Re-Initializing page table...");
  370. global_CR3 = get_CR3();
  371. /*
  372. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  373. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  374. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  375. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  376. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  377. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  378. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  379. */
  380. ul *tmp_addr;
  381. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  382. {
  383. struct Zone *z = memory_management_struct.zones_struct + i;
  384. struct Page *p = z->pages_group;
  385. if (i == ZONE_UNMAPPED_INDEX)
  386. break;
  387. for (int j = 0; j < z->count_pages; ++j)
  388. {
  389. mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
  390. }
  391. }
  392. flush_tlb();
  393. kinfo("Page table Initialized.");
  394. }
  395. /**
  396. * @brief VBE帧缓存区的地址重新映射
  397. * 将帧缓存区映射到地址0xffff800003000000处
  398. */
  399. void init_frame_buffer()
  400. {
  401. kinfo("Re-mapping VBE frame buffer...");
  402. global_CR3 = get_CR3();
  403. ul fb_virt_addr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
  404. ul fb_phys_addr = get_VBE_FB_phys_addr();
  405. // 计算帧缓冲区的线性地址对应的pml4页表项的地址
  406. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  407. if (*tmp == 0)
  408. {
  409. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  410. memset(virt_addr, 0, PAGE_4K_SIZE);
  411. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  412. }
  413. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  414. if (*tmp == 0)
  415. {
  416. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  417. memset(virt_addr, 0, PAGE_4K_SIZE);
  418. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  419. }
  420. ul vbe_fb_length = get_VBE_FB_length();
  421. ul *tmp1;
  422. // 初始化2M物理页
  423. for (ul i = 0; i < (vbe_fb_length << 2); i += PAGE_2M_SIZE)
  424. {
  425. // 计算当前2M物理页对应的pdt的页表项的物理地址
  426. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff));
  427. // 页面写穿,禁止缓存
  428. set_pdt(tmp1, mk_pdt((ul)fb_phys_addr + i, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD));
  429. }
  430. set_pos_VBE_FB_addr((uint *)fb_virt_addr);
  431. flush_tlb();
  432. kinfo("VBE frame buffer successfully Re-mapped!");
  433. }
  434. /**
  435. * @brief 将物理地址映射到页表的函数
  436. *
  437. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  438. * @param phys_addr_start 物理地址的起始位置
  439. * @param length 要映射的区域的长度(字节)
  440. */
  441. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  442. {
  443. global_CR3 = get_CR3();
  444. // 计算线性地址对应的pml4页表项的地址
  445. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  446. if (*tmp == 0)
  447. {
  448. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  449. memset(virt_addr, 0, PAGE_4K_SIZE);
  450. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  451. }
  452. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  453. if (*tmp == 0)
  454. {
  455. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  456. memset(virt_addr, 0, PAGE_4K_SIZE);
  457. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  458. }
  459. ul *tmp1;
  460. // 初始化2M物理页
  461. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  462. {
  463. // 计算当前2M物理页对应的pdt的页表项的物理地址
  464. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  465. // 页面写穿,禁止缓存
  466. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags));
  467. }
  468. flush_tlb();
  469. }
  470. void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  471. {
  472. global_CR3 = get_CR3();
  473. // 计算线性地址对应的pml4页表项的地址
  474. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  475. if (*tmp == 0)
  476. {
  477. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  478. memset(virt_addr, 0, PAGE_4K_SIZE);
  479. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_USER_PGT));
  480. }
  481. else
  482. kdebug("*tmp != 0!!! \t tmp = %#018lx\t *tmp = %#018lx", tmp, *tmp);
  483. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  484. if (*tmp == 0)
  485. {
  486. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  487. memset(virt_addr, 0, PAGE_4K_SIZE);
  488. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_USER_DIR));
  489. }
  490. else
  491. kdebug("*tmp != 0!!! \t tmp = %#018lx\t *tmp = %#018lx", tmp, *tmp);
  492. ul *tmp1;
  493. // 初始化2M物理页
  494. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  495. {
  496. // 计算当前2M物理页对应的pdt的页表项的物理地址
  497. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  498. // 页面写穿,禁止缓存
  499. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | PAGE_USER_PAGE));
  500. }
  501. flush_tlb();
  502. }
  503. /**
  504. * @brief 将将物理地址填写到进程的页表的函数
  505. *
  506. * @param proc_page_table_addr 页表的基地址
  507. * @param is_phys 页表的基地址是否为物理地址
  508. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  509. * @param phys_addr_start 物理地址的起始位置
  510. * @param length 要映射的区域的长度(字节)
  511. * @param user 用户态是否可访问
  512. */
  513. void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user)
  514. {
  515. // kdebug("proc_page_table_addr=%#018lx", proc_page_table_addr);
  516. // 计算线性地址对应的pml4页表项的地址
  517. ul *tmp;
  518. if (is_phys)
  519. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  520. else
  521. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  522. if (*tmp == 0)
  523. {
  524. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  525. memset(virt_addr, 0, PAGE_4K_SIZE);
  526. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  527. }
  528. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  529. if (*tmp == 0)
  530. {
  531. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  532. memset(virt_addr, 0, PAGE_4K_SIZE);
  533. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  534. }
  535. ul *tmp1;
  536. // 初始化2M物理页
  537. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  538. {
  539. // 计算当前2M物理页对应的pdt的页表项的物理地址
  540. tmp1 = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff)));
  541. // 页面写穿,禁止缓存
  542. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  543. }
  544. flush_tlb();
  545. }
  546. /**
  547. * @brief 从页表中获取pdt页表项的内容
  548. *
  549. * @param proc_page_table_addr 页表的地址
  550. * @param is_phys 页表地址是否为物理地址
  551. * @param virt_addr_start 要清除的虚拟地址的起始地址
  552. * @param length 要清除的区域的长度
  553. * @param clear 是否清除标志位
  554. */
  555. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  556. {
  557. ul *tmp;
  558. if (is_phys)
  559. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  560. else
  561. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  562. // pml4页表项为0
  563. if (*tmp == 0)
  564. return 0;
  565. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  566. // pdpt页表项为0
  567. if (*tmp == 0)
  568. return 0;
  569. // 读取pdt页表项
  570. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  571. if (clear) // 清除页表项的标志位
  572. return *tmp & (~0x1fff);
  573. else
  574. return *tmp;
  575. }
  576. /**
  577. * @brief 从页表中清除虚拟地址的映射
  578. *
  579. * @param proc_page_table_addr 页表的地址
  580. * @param is_phys 页表地址是否为物理地址
  581. * @param virt_addr_start 要清除的虚拟地址的起始地址
  582. * @param length 要清除的区域的长度
  583. */
  584. void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
  585. {
  586. ul *tmp;
  587. if (is_phys)
  588. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  589. else
  590. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  591. // pml4页表项为0
  592. if (*tmp == 0)
  593. return;
  594. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  595. // pdpt页表项为0
  596. if (*tmp == 0)
  597. return;
  598. ul *tmp1;
  599. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  600. {
  601. // 计算当前2M物理页对应的pdt的页表项的物理地址
  602. tmp1 = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff)));
  603. // 清除映射
  604. *tmp1 = 0;
  605. }
  606. flush_tlb();
  607. }
  608. /**
  609. * @brief 从mms中寻找Page结构体
  610. *
  611. * @param phys_addr
  612. * @return struct Page*
  613. */
  614. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  615. {
  616. uint32_t zone_start, zone_end;
  617. switch (zone_select)
  618. {
  619. case ZONE_DMA:
  620. // DMA区域
  621. zone_start = 0;
  622. zone_end = ZONE_DMA_INDEX;
  623. break;
  624. case ZONE_NORMAL:
  625. zone_start = ZONE_DMA_INDEX;
  626. zone_end = ZONE_NORMAL_INDEX;
  627. break;
  628. case ZONE_UNMAPPED_IN_PGT:
  629. zone_start = ZONE_NORMAL_INDEX;
  630. zone_end = ZONE_UNMAPPED_INDEX;
  631. break;
  632. default:
  633. kerror("In mm_find_page: param: zone_select incorrect.");
  634. // 返回空
  635. return NULL;
  636. break;
  637. }
  638. for (int i = zone_start; i <= zone_end; ++i)
  639. {
  640. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  641. continue;
  642. struct Zone *z = memory_management_struct.zones_struct + i;
  643. // 区域对应的起止页号
  644. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  645. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  646. ul tmp = 64 - page_start % 64;
  647. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  648. {
  649. // 按照bmp中的每一个元素进行查找
  650. // 先将p定位到bmp的起始元素
  651. ul *p = memory_management_struct.bmp + (j >> 6);
  652. ul shift = j % 64;
  653. for (ul k = shift; k < 64; ++k)
  654. {
  655. if ((*p >> k) & 1) // 若当前页已分配
  656. {
  657. uint64_t page_num = j + k - shift;
  658. struct Page *x = memory_management_struct.pages_struct + page_num;
  659. if (x->addr_phys == phys_addr) // 找到对应的页
  660. return x;
  661. }
  662. }
  663. }
  664. }
  665. return NULL;
  666. }
  667. /**
  668. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  669. *
  670. * @todo 缩小堆区域
  671. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  672. * @param offset 新的地址相对于原地址的偏移量
  673. * @return uint64_t
  674. */
  675. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  676. {
  677. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  678. if (offset >= 0)
  679. {
  680. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  681. {
  682. kdebug("map [%#018lx]", i);
  683. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  684. }
  685. current_pcb->mm->brk_end = end_addr;
  686. }
  687. else
  688. {
  689. // 释放堆内存
  690. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  691. {
  692. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  693. // 找到对应的页
  694. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  695. if (p == NULL)
  696. {
  697. kerror("cannot find page addr=%#018lx", phys);
  698. return end_addr;
  699. }
  700. free_pages(p, 1);
  701. }
  702. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  703. // 在页表中取消映射
  704. }
  705. return end_addr;
  706. }