process.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  13. long process_global_pid = 1; // 系统中最大的pid
  14. extern void system_call(void);
  15. extern void kernel_thread_func(void);
  16. /**
  17. * @brief 将进程加入到调度器的就绪队列中
  18. *
  19. * @param pcb 进程的pcb
  20. */
  21. static inline void process_wakeup(struct process_control_block *pcb);
  22. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  23. struct mm_struct initial_mm = {0};
  24. struct thread_struct initial_thread =
  25. {
  26. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  27. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  28. .fs = KERNEL_DS,
  29. .gs = KERNEL_DS,
  30. .cr2 = 0,
  31. .trap_num = 0,
  32. .err_code = 0};
  33. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  34. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  35. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  36. // 为每个核心初始化初始进程的tss
  37. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  38. /**
  39. * @brief 拷贝当前进程的标志位
  40. *
  41. * @param clone_flags 克隆标志位
  42. * @param pcb 新的进程的pcb
  43. * @return uint64_t
  44. */
  45. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  46. /**
  47. * @brief 拷贝当前进程的文件描述符等信息
  48. *
  49. * @param clone_flags 克隆标志位
  50. * @param pcb 新的进程的pcb
  51. * @return uint64_t
  52. */
  53. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  54. /**
  55. * @brief 回收进程的所有文件描述符
  56. *
  57. * @param pcb 要被回收的进程的pcb
  58. * @return uint64_t
  59. */
  60. uint64_t process_exit_files(struct process_control_block *pcb);
  61. /**
  62. * @brief 拷贝当前进程的内存空间分布结构体信息
  63. *
  64. * @param clone_flags 克隆标志位
  65. * @param pcb 新的进程的pcb
  66. * @return uint64_t
  67. */
  68. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  69. /**
  70. * @brief 释放进程的页表
  71. *
  72. * @param pcb 要被释放页表的进程
  73. * @return uint64_t
  74. */
  75. uint64_t process_exit_mm(struct process_control_block *pcb);
  76. /**
  77. * @brief 拷贝当前进程的线程结构体
  78. *
  79. * @param clone_flags 克隆标志位
  80. * @param pcb 新的进程的pcb
  81. * @return uint64_t
  82. */
  83. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  84. void process_exit_thread(struct process_control_block *pcb);
  85. /**
  86. * @brief 切换进程
  87. *
  88. * @param prev 上一个进程的pcb
  89. * @param next 将要切换到的进程的pcb
  90. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  91. * 这里切换fs和gs寄存器
  92. */
  93. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  94. {
  95. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  96. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  97. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  98. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  99. __asm__ __volatile__("movq %%fs, %0 \n\t"
  100. : "=a"(prev->thread->fs));
  101. __asm__ __volatile__("movq %%gs, %0 \n\t"
  102. : "=a"(prev->thread->gs));
  103. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  104. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  105. // wrmsr(0x175, next->thread->rbp);
  106. }
  107. /**
  108. * @brief 这是一个用户态的程序
  109. *
  110. */
  111. void user_level_function()
  112. {
  113. // kinfo("Program (user_level_function) is runing...");
  114. // kinfo("Try to enter syscall id 15...");
  115. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  116. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  117. // while(1);
  118. long ret = 0;
  119. // printk_color(RED,BLACK,"user_level_function task is running\n");
  120. /*
  121. // 测试sys put string
  122. char string[] = "User level process.\n";
  123. long err_code = 1;
  124. ul addr = (ul)string;
  125. __asm__ __volatile__(
  126. "movq %2, %%r8 \n\t"
  127. "int $0x80 \n\t"
  128. : "=a"(err_code)
  129. : "a"(SYS_PUT_STRING), "m"(addr)
  130. : "memory", "r8");
  131. */
  132. while (1)
  133. {
  134. // 测试sys_open
  135. char string[] = "333.txt";
  136. long err_code = 1;
  137. int zero = 0;
  138. uint64_t addr = (ul)string;
  139. __asm__ __volatile__(
  140. "movq %2, %%r8 \n\t"
  141. "movq %3, %%r9 \n\t"
  142. "movq %4, %%r10 \n\t"
  143. "movq %5, %%r11 \n\t"
  144. "movq %6, %%r12 \n\t"
  145. "movq %7, %%r13 \n\t"
  146. "movq %8, %%r14 \n\t"
  147. "movq %9, %%r15 \n\t"
  148. "int $0x80 \n\t"
  149. : "=a"(err_code)
  150. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  151. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  152. int fd_num = err_code;
  153. int count = 128;
  154. // while (count)
  155. //{
  156. uchar buf[128] = {0};
  157. // Test sys_read
  158. addr = (uint64_t)&buf;
  159. __asm__ __volatile__(
  160. "movq %2, %%r8 \n\t"
  161. "movq %3, %%r9 \n\t"
  162. "movq %4, %%r10 \n\t"
  163. "movq %5, %%r11 \n\t"
  164. "movq %6, %%r12 \n\t"
  165. "movq %7, %%r13 \n\t"
  166. "movq %8, %%r14 \n\t"
  167. "movq %9, %%r15 \n\t"
  168. "int $0x80 \n\t"
  169. : "=a"(err_code)
  170. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  171. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  172. count = err_code;
  173. // 将读取到的数据打印出来
  174. addr = (ul)buf;
  175. __asm__ __volatile__(
  176. "movq %2, %%r8 \n\t"
  177. "int $0x80 \n\t"
  178. : "=a"(err_code)
  179. : "a"(SYS_PUT_STRING), "m"(addr)
  180. : "memory", "r8");
  181. // SYS_WRITE
  182. char test1[] = "GGGGHHHHHHHHh112343";
  183. addr = (uint64_t)&test1;
  184. count = 19;
  185. __asm__ __volatile__(
  186. "movq %2, %%r8 \n\t"
  187. "movq %3, %%r9 \n\t"
  188. "movq %4, %%r10 \n\t"
  189. "movq %5, %%r11 \n\t"
  190. "movq %6, %%r12 \n\t"
  191. "movq %7, %%r13 \n\t"
  192. "movq %8, %%r14 \n\t"
  193. "movq %9, %%r15 \n\t"
  194. "int $0x80 \n\t"
  195. : "=a"(err_code)
  196. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  197. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  198. addr = 1;
  199. count = SEEK_SET;
  200. fd_num = 0;
  201. // Test lseek
  202. __asm__ __volatile__(
  203. "movq %2, %%r8 \n\t"
  204. "movq %3, %%r9 \n\t"
  205. "movq %4, %%r10 \n\t"
  206. "movq %5, %%r11 \n\t"
  207. "movq %6, %%r12 \n\t"
  208. "movq %7, %%r13 \n\t"
  209. "movq %8, %%r14 \n\t"
  210. "movq %9, %%r15 \n\t"
  211. "int $0x80 \n\t"
  212. : "=a"(err_code)
  213. : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  214. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  215. // SYS_WRITE
  216. char test2[] = "K123456789K";
  217. addr = (uint64_t)&test2;
  218. count = 11;
  219. __asm__ __volatile__(
  220. "movq %2, %%r8 \n\t"
  221. "movq %3, %%r9 \n\t"
  222. "movq %4, %%r10 \n\t"
  223. "movq %5, %%r11 \n\t"
  224. "movq %6, %%r12 \n\t"
  225. "movq %7, %%r13 \n\t"
  226. "movq %8, %%r14 \n\t"
  227. "movq %9, %%r15 \n\t"
  228. "int $0x80 \n\t"
  229. : "=a"(err_code)
  230. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  231. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  232. // Test sys_close
  233. __asm__ __volatile__(
  234. "movq %2, %%r8 \n\t"
  235. "movq %3, %%r9 \n\t"
  236. "movq %4, %%r10 \n\t"
  237. "movq %5, %%r11 \n\t"
  238. "movq %6, %%r12 \n\t"
  239. "movq %7, %%r13 \n\t"
  240. "movq %8, %%r14 \n\t"
  241. "movq %9, %%r15 \n\t"
  242. "int $0x80 \n\t"
  243. : "=a"(err_code)
  244. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  245. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  246. addr = (ul)string;
  247. __asm__ __volatile__(
  248. "movq %2, %%r8 \n\t"
  249. "movq %3, %%r9 \n\t"
  250. "movq %4, %%r10 \n\t"
  251. "movq %5, %%r11 \n\t"
  252. "movq %6, %%r12 \n\t"
  253. "movq %7, %%r13 \n\t"
  254. "movq %8, %%r14 \n\t"
  255. "movq %9, %%r15 \n\t"
  256. "int $0x80 \n\t"
  257. : "=a"(err_code)
  258. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  259. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  260. fd_num = err_code;
  261. count = 128;
  262. // Test sys_read
  263. addr = (uint64_t)&buf;
  264. __asm__ __volatile__(
  265. "movq %2, %%r8 \n\t"
  266. "movq %3, %%r9 \n\t"
  267. "movq %4, %%r10 \n\t"
  268. "movq %5, %%r11 \n\t"
  269. "movq %6, %%r12 \n\t"
  270. "movq %7, %%r13 \n\t"
  271. "movq %8, %%r14 \n\t"
  272. "movq %9, %%r15 \n\t"
  273. "int $0x80 \n\t"
  274. : "=a"(err_code)
  275. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  276. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  277. count = err_code;
  278. // 将读取到的数据打印出来
  279. addr = (ul)buf;
  280. __asm__ __volatile__(
  281. "movq %2, %%r8 \n\t"
  282. "int $0x80 \n\t"
  283. : "=a"(err_code)
  284. : "a"(SYS_PUT_STRING), "m"(addr)
  285. : "memory", "r8");
  286. // Test Sys
  287. //}
  288. while (1)
  289. pause();
  290. }
  291. while (1)
  292. pause();
  293. }
  294. /**
  295. * @brief 打开要执行的程序文件
  296. *
  297. * @param path
  298. * @return struct vfs_file_t*
  299. */
  300. struct vfs_file_t *process_open_exec_file(char *path)
  301. {
  302. struct vfs_dir_entry_t *dentry = NULL;
  303. struct vfs_file_t *filp = NULL;
  304. dentry = vfs_path_walk(path, 0);
  305. if (dentry == NULL)
  306. return (void *)-ENOENT;
  307. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  308. return (void *)-ENOTDIR;
  309. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  310. if (filp == NULL)
  311. return (void *)-ENOMEM;
  312. filp->position = 0;
  313. filp->mode = 0;
  314. filp->dEntry = dentry;
  315. filp->mode = ATTR_READ_ONLY;
  316. filp->file_ops = dentry->dir_inode->file_ops;
  317. return filp;
  318. }
  319. /**
  320. * @brief 使当前进程去执行新的代码
  321. *
  322. * @param regs 当前进程的寄存器
  323. * @param path 可执行程序的路径
  324. * @return ul 错误码
  325. */
  326. ul do_execve(struct pt_regs *regs, char *path)
  327. {
  328. // 选择这两个寄存器是对应了sysexit指令的需要
  329. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  330. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  331. regs->cs = USER_CS | 3;
  332. regs->ds = USER_DS | 3;
  333. regs->ss = USER_DS | 0x3;
  334. regs->rflags = 0x200246;
  335. regs->rax = 1;
  336. regs->es = 0;
  337. kdebug("do_execve is running...");
  338. // 当前进程正在与父进程共享地址空间,需要创建
  339. // 独立的地址空间才能使新程序正常运行
  340. if (current_pcb->flags & PF_VFORK)
  341. {
  342. kdebug("proc:%d creating new mem space", current_pcb->pid);
  343. // 分配新的内存空间分布结构体
  344. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  345. memset(new_mms, 0, sizeof(struct mm_struct));
  346. current_pcb->mm = new_mms;
  347. // 分配顶层页表, 并设置顶层页表的物理地址
  348. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  349. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  350. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  351. // 拷贝内核空间的页表指针
  352. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  353. }
  354. /**
  355. * @todo: 加载elf文件并映射对应的页
  356. *
  357. */
  358. // 映射1个2MB的物理页
  359. unsigned long code_start_addr = 0x800000;
  360. unsigned long stack_start_addr = 0xa00000;
  361. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, code_start_addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  362. process_switch_mm(current_pcb);
  363. // 为用户态程序设置地址边界
  364. if (!(current_pcb->flags & PF_KTHREAD))
  365. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  366. current_pcb->mm->code_addr_start = code_start_addr;
  367. current_pcb->mm->code_addr_end = 0;
  368. current_pcb->mm->data_addr_start = 0;
  369. current_pcb->mm->data_addr_end = 0;
  370. current_pcb->mm->rodata_addr_start = 0;
  371. current_pcb->mm->rodata_addr_end = 0;
  372. current_pcb->mm->bss_start = 0;
  373. current_pcb->mm->bss_end = 0;
  374. current_pcb->mm->brk_start = 0;
  375. current_pcb->mm->brk_end = 0;
  376. current_pcb->mm->stack_start = stack_start_addr;
  377. // 关闭之前的文件描述符
  378. process_exit_files(current_pcb);
  379. // 清除进程的vfork标志位
  380. current_pcb->flags &= ~PF_VFORK;
  381. struct vfs_file_t *filp = process_open_exec_file(path);
  382. if ((unsigned long)filp <= 0)
  383. return (unsigned long)filp;
  384. memset((void *)code_start_addr, 0, PAGE_2M_SIZE);
  385. uint64_t pos = 0;
  386. int retval = filp->file_ops->read(filp, (char *)code_start_addr, PAGE_2M_SIZE, &pos);
  387. kdebug("execve ok");
  388. return 0;
  389. }
  390. /**
  391. * @brief 内核init进程
  392. *
  393. * @param arg
  394. * @return ul 参数
  395. */
  396. ul initial_kernel_thread(ul arg)
  397. {
  398. // kinfo("initial proc running...\targ:%#018lx", arg);
  399. fat32_init();
  400. struct pt_regs *regs;
  401. current_pcb->thread->rip = (ul)ret_from_system_call;
  402. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  403. current_pcb->thread->fs = USER_DS | 0x3;
  404. current_pcb->thread->gs = USER_DS | 0x3;
  405. // 主动放弃内核线程身份
  406. current_pcb->flags &= (~PF_KTHREAD);
  407. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  408. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  409. regs = (struct pt_regs *)current_pcb->thread->rsp;
  410. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  411. current_pcb->flags = 0;
  412. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  413. // 加载用户态程序:init.bin
  414. char init_path[] = "/init.bin";
  415. uint64_t addr = (uint64_t)&init_path;
  416. __asm__ __volatile__("movq %1, %%rsp \n\t"
  417. "pushq %2 \n\t"
  418. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  419. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/init.bin")
  420. : "memory");
  421. return 1;
  422. }
  423. /**
  424. * @brief 进程退出时执行的函数
  425. *
  426. * @param code 返回码
  427. * @return ul
  428. */
  429. ul process_thread_do_exit(ul code)
  430. {
  431. kinfo("thread_exiting..., code is %#018lx.", code);
  432. while (1)
  433. ;
  434. }
  435. /**
  436. * @brief 初始化内核进程
  437. *
  438. * @param fn 目标程序的地址
  439. * @param arg 向目标程序传入的参数
  440. * @param flags
  441. * @return int
  442. */
  443. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  444. {
  445. struct pt_regs regs;
  446. memset(&regs, 0, sizeof(regs));
  447. // 在rbx寄存器中保存进程的入口地址
  448. regs.rbx = (ul)fn;
  449. // 在rdx寄存器中保存传入的参数
  450. regs.rdx = (ul)arg;
  451. regs.ds = KERNEL_DS;
  452. regs.es = KERNEL_DS;
  453. regs.cs = KERNEL_CS;
  454. regs.ss = KERNEL_DS;
  455. // 置位中断使能标志位
  456. regs.rflags = (1 << 9);
  457. // rip寄存器指向内核线程的引导程序
  458. regs.rip = (ul)kernel_thread_func;
  459. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  460. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  461. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  462. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  463. }
  464. /**
  465. * @brief 初始化进程模块
  466. * ☆前置条件:已完成系统调用模块的初始化
  467. */
  468. void process_init()
  469. {
  470. kinfo("Initializing process...");
  471. initial_mm.pgd = (pml4t_t *)global_CR3;
  472. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  473. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  474. initial_mm.data_addr_start = (ul)&_data;
  475. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  476. initial_mm.rodata_addr_start = (ul)&_rodata;
  477. initial_mm.rodata_addr_end = (ul)&_erodata;
  478. initial_mm.bss_start = (uint64_t)&_bss;
  479. initial_mm.bss_end = (uint64_t)&_ebss;
  480. initial_mm.brk_start = 0;
  481. initial_mm.brk_end = memory_management_struct.kernel_end;
  482. initial_mm.stack_start = _stack_start;
  483. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  484. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  485. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  486. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  487. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  488. for (int i = 256; i < 512; ++i)
  489. {
  490. uint64_t *tmp = idle_pml4t_vaddr + i;
  491. if (*tmp == 0)
  492. {
  493. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  494. memset(pdpt, 0, PAGE_4K_SIZE);
  495. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  496. }
  497. }
  498. /*
  499. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  500. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  501. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  502. */
  503. // 初始化pid的写锁
  504. spin_init(&process_global_pid_write_lock);
  505. // 初始化进程的循环链表
  506. list_init(&initial_proc_union.pcb.list);
  507. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  508. initial_proc_union.pcb.state = PROC_RUNNING;
  509. initial_proc_union.pcb.preempt_count = 0;
  510. initial_proc_union.pcb.cpu_id = 0;
  511. }
  512. /**
  513. * @brief fork当前进程
  514. *
  515. * @param regs 新的寄存器值
  516. * @param clone_flags 克隆标志
  517. * @param stack_start 堆栈开始地址
  518. * @param stack_size 堆栈大小
  519. * @return unsigned long
  520. */
  521. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  522. {
  523. int retval = 0;
  524. struct process_control_block *tsk = NULL;
  525. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  526. // 为新的进程分配栈空间,并将pcb放置在底部
  527. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  528. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  529. if (tsk == NULL)
  530. {
  531. retval = -ENOMEM;
  532. return retval;
  533. }
  534. memset(tsk, 0, sizeof(struct process_control_block));
  535. // 将当前进程的pcb复制到新的pcb内
  536. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  537. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  538. // 将进程加入循环链表
  539. list_init(&tsk->list);
  540. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  541. tsk->priority = 2;
  542. tsk->preempt_count = 0;
  543. // 增加全局的pid并赋值给新进程的pid
  544. spin_lock(&process_global_pid_write_lock);
  545. tsk->pid = process_global_pid++;
  546. // 加入到进程链表中
  547. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  548. initial_proc_union.pcb.next_pcb = tsk;
  549. tsk->parent_pcb = current_pcb;
  550. spin_unlock(&process_global_pid_write_lock);
  551. tsk->cpu_id = proc_current_cpu_id;
  552. tsk->state = PROC_UNINTERRUPTIBLE;
  553. list_init(&tsk->list);
  554. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  555. retval = -ENOMEM;
  556. // 拷贝标志位
  557. if (process_copy_flags(clone_flags, tsk))
  558. goto copy_flags_failed;
  559. // 拷贝内存空间分布结构体
  560. if (process_copy_mm(clone_flags, tsk))
  561. goto copy_mm_failed;
  562. // 拷贝文件
  563. if (process_copy_files(clone_flags, tsk))
  564. goto copy_files_failed;
  565. // 拷贝线程结构体
  566. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  567. goto copy_thread_failed;
  568. // 拷贝成功
  569. retval = tsk->pid;
  570. // 唤醒进程
  571. process_wakeup(tsk);
  572. return retval;
  573. copy_thread_failed:;
  574. // 回收线程
  575. process_exit_thread(tsk);
  576. copy_files_failed:;
  577. // 回收文件
  578. process_exit_files(tsk);
  579. copy_mm_failed:;
  580. // 回收内存空间分布结构体
  581. process_exit_mm(tsk);
  582. copy_flags_failed:;
  583. kfree(tsk);
  584. return retval;
  585. return 0;
  586. }
  587. /**
  588. * @brief 根据pid获取进程的pcb
  589. *
  590. * @param pid
  591. * @return struct process_control_block*
  592. */
  593. struct process_control_block *process_get_pcb(long pid)
  594. {
  595. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  596. // 使用蛮力法搜索指定pid的pcb
  597. // todo: 使用哈希表来管理pcb
  598. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  599. {
  600. if (pcb->pid == pid)
  601. return pcb;
  602. }
  603. return NULL;
  604. }
  605. /**
  606. * @brief 将进程加入到调度器的就绪队列中
  607. *
  608. * @param pcb 进程的pcb
  609. */
  610. static inline void process_wakeup(struct process_control_block *pcb)
  611. {
  612. pcb->state = PROC_RUNNING;
  613. sched_cfs_enqueue(pcb);
  614. }
  615. /**
  616. * @brief 拷贝当前进程的标志位
  617. *
  618. * @param clone_flags 克隆标志位
  619. * @param pcb 新的进程的pcb
  620. * @return uint64_t
  621. */
  622. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  623. {
  624. if (clone_flags & CLONE_VM)
  625. pcb->flags |= PF_VFORK;
  626. return 0;
  627. }
  628. /**
  629. * @brief 拷贝当前进程的文件描述符等信息
  630. *
  631. * @param clone_flags 克隆标志位
  632. * @param pcb 新的进程的pcb
  633. * @return uint64_t
  634. */
  635. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  636. {
  637. int retval = 0;
  638. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  639. // 文件描述符已经在复制pcb时被拷贝
  640. if (clone_flags & CLONE_FS)
  641. return retval;
  642. // 为新进程拷贝新的文件描述符
  643. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  644. {
  645. if (current_pcb->fds[i] == NULL)
  646. continue;
  647. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  648. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  649. }
  650. return retval;
  651. }
  652. /**
  653. * @brief 回收进程的所有文件描述符
  654. *
  655. * @param pcb 要被回收的进程的pcb
  656. * @return uint64_t
  657. */
  658. uint64_t process_exit_files(struct process_control_block *pcb)
  659. {
  660. // 不与父进程共享文件描述符
  661. if (!(pcb->flags & PF_VFORK))
  662. {
  663. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  664. {
  665. if (pcb->fds[i] == NULL)
  666. continue;
  667. kfree(pcb->fds[i]);
  668. }
  669. }
  670. // 清空当前进程的文件描述符列表
  671. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  672. }
  673. /**
  674. * @brief 拷贝当前进程的内存空间分布结构体信息
  675. *
  676. * @param clone_flags 克隆标志位
  677. * @param pcb 新的进程的pcb
  678. * @return uint64_t
  679. */
  680. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  681. {
  682. int retval = 0;
  683. // 与父进程共享内存空间
  684. if (clone_flags & CLONE_VM)
  685. {
  686. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  687. pcb->mm = current_pcb->mm;
  688. return retval;
  689. }
  690. // 分配新的内存空间分布结构体
  691. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  692. memset(new_mms, 0, sizeof(struct mm_struct));
  693. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  694. pcb->mm = new_mms;
  695. // 分配顶层页表, 并设置顶层页表的物理地址
  696. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  697. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  698. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  699. // 拷贝内核空间的页表指针
  700. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  701. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  702. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  703. // 迭代地拷贝用户空间
  704. for (int i = 0; i <= 255; ++i)
  705. {
  706. // 当前页表项为空
  707. if ((*(uint64_t *)(current_pgd + i)) == 0)
  708. continue;
  709. // 分配新的二级页表
  710. pdpt_t *new_pdpt = (pdpt_t *)kmalloc(PAGE_4K_SIZE, 0);
  711. memset(new_pdpt, 0, PAGE_4K_SIZE);
  712. // 在新的一级页表中设置新的二级页表表项
  713. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  714. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt(*(uint64_t *)(current_pgd + i) & (~0xfffUL));
  715. // kdebug("current pdpt=%#018lx \t (current_pgd + i)->pml4t=%#018lx", current_pdpt, *(uint64_t *)(current_pgd+i));
  716. // 设置二级页表
  717. for (int j = 0; j < 512; ++j)
  718. {
  719. if (*(uint64_t *)(current_pdpt + j) == 0)
  720. continue;
  721. // 分配新的三级页表
  722. pdt_t *new_pdt = (pdt_t *)kmalloc(PAGE_4K_SIZE, 0);
  723. memset(new_pdt, 0, PAGE_4K_SIZE);
  724. // 在新的二级页表中设置三级页表的表项
  725. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(uint64_t *)(current_pdpt + j)) & 0xfffUL));
  726. pdt_t *current_pdt = (pdt_t *)phys_2_virt((*(uint64_t *)(current_pdpt + j)) & (~0xfffUL));
  727. // 拷贝内存页
  728. for (int k = 0; k < 512; ++k)
  729. {
  730. if ((current_pdt + k)->pdt == 0)
  731. continue;
  732. // 获取一个新页
  733. struct Page *pg = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  734. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pg->addr_phys, (current_pdt + k)->pdt & 0x1fffUL));
  735. // 拷贝数据
  736. memcpy(phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL)), PAGE_2M_SIZE);
  737. }
  738. }
  739. }
  740. return retval;
  741. }
  742. /**
  743. * @brief 释放进程的页表
  744. *
  745. * @param pcb 要被释放页表的进程
  746. * @return uint64_t
  747. */
  748. uint64_t process_exit_mm(struct process_control_block *pcb)
  749. {
  750. if (pcb->flags & CLONE_VM)
  751. return 0;
  752. if (pcb->mm == NULL)
  753. {
  754. kdebug("pcb->mm==NULL");
  755. return 0;
  756. }
  757. if (pcb->mm->pgd == NULL)
  758. {
  759. kdebug("pcb->mm->pgd==NULL");
  760. return 0;
  761. }
  762. // 获取顶层页表
  763. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  764. // 迭代地释放用户空间
  765. for (int i = 0; i <= 255; ++i)
  766. {
  767. // 当前页表项为空
  768. if ((current_pgd + i)->pml4t == 0)
  769. continue;
  770. // 二级页表entry
  771. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  772. // 遍历二级页表
  773. for (int j = 0; j < 512; ++j)
  774. {
  775. if ((current_pdpt + j)->pdpt == 0)
  776. continue;
  777. // 三级页表的entry
  778. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  779. // 释放三级页表的内存页
  780. for (int k = 0; k < 512; ++k)
  781. {
  782. if ((current_pdt + k)->pdt == 0)
  783. continue;
  784. // 释放内存页
  785. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  786. }
  787. // 释放三级页表
  788. kfree(current_pdt);
  789. }
  790. // 释放二级页表
  791. kfree(current_pdpt);
  792. }
  793. // 释放顶层页表
  794. kfree(current_pgd);
  795. // 释放内存空间分布结构体
  796. kfree(pcb->mm);
  797. return 0;
  798. }
  799. /**
  800. * @brief 拷贝当前进程的线程结构体
  801. *
  802. * @param clone_flags 克隆标志位
  803. * @param pcb 新的进程的pcb
  804. * @return uint64_t
  805. */
  806. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  807. {
  808. // 将线程结构体放置在pcb后方
  809. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  810. memset(thd, 0, sizeof(struct thread_struct));
  811. pcb->thread = thd;
  812. // 拷贝栈空间
  813. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  814. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  815. // 设置子进程的返回值为0
  816. child_regs->rax = 0;
  817. child_regs->rsp = stack_start;
  818. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  819. thd->rsp = (uint64_t)child_regs;
  820. thd->fs = current_pcb->thread->fs;
  821. thd->gs = current_pcb->thread->gs;
  822. // 根据是否为内核线程,设置进程的开始执行的地址
  823. if (pcb->flags & PF_KTHREAD)
  824. thd->rip = (uint64_t)kernel_thread_func;
  825. else
  826. thd->rip = (uint64_t)ret_from_system_call;
  827. kdebug("new proc's ret addr = %#018lx\tchild_regs->rsp = %#018lx", child_regs->rbx, child_regs->rsp);
  828. return 0;
  829. }
  830. /**
  831. * @brief todo: 回收线程结构体
  832. *
  833. * @param pcb
  834. */
  835. void process_exit_thread(struct process_control_block *pcb)
  836. {
  837. }