process.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. #include <common/libELF/elf.h>
  13. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  14. long process_global_pid = 1; // 系统中最大的pid
  15. extern void system_call(void);
  16. extern void kernel_thread_func(void);
  17. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  18. struct mm_struct initial_mm = {0};
  19. struct thread_struct initial_thread =
  20. {
  21. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  22. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  23. .fs = KERNEL_DS,
  24. .gs = KERNEL_DS,
  25. .cr2 = 0,
  26. .trap_num = 0,
  27. .err_code = 0};
  28. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  29. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  30. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  31. // 为每个核心初始化初始进程的tss
  32. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  33. /**
  34. * @brief 拷贝当前进程的标志位
  35. *
  36. * @param clone_flags 克隆标志位
  37. * @param pcb 新的进程的pcb
  38. * @return uint64_t
  39. */
  40. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  41. /**
  42. * @brief 拷贝当前进程的文件描述符等信息
  43. *
  44. * @param clone_flags 克隆标志位
  45. * @param pcb 新的进程的pcb
  46. * @return uint64_t
  47. */
  48. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  49. /**
  50. * @brief 回收进程的所有文件描述符
  51. *
  52. * @param pcb 要被回收的进程的pcb
  53. * @return uint64_t
  54. */
  55. uint64_t process_exit_files(struct process_control_block *pcb);
  56. /**
  57. * @brief 拷贝当前进程的内存空间分布结构体信息
  58. *
  59. * @param clone_flags 克隆标志位
  60. * @param pcb 新的进程的pcb
  61. * @return uint64_t
  62. */
  63. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  64. /**
  65. * @brief 释放进程的页表
  66. *
  67. * @param pcb 要被释放页表的进程
  68. * @return uint64_t
  69. */
  70. uint64_t process_exit_mm(struct process_control_block *pcb);
  71. /**
  72. * @brief 拷贝当前进程的线程结构体
  73. *
  74. * @param clone_flags 克隆标志位
  75. * @param pcb 新的进程的pcb
  76. * @return uint64_t
  77. */
  78. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  79. void process_exit_thread(struct process_control_block *pcb);
  80. /**
  81. * @brief 切换进程
  82. *
  83. * @param prev 上一个进程的pcb
  84. * @param next 将要切换到的进程的pcb
  85. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  86. * 这里切换fs和gs寄存器
  87. */
  88. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  89. {
  90. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  91. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  92. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  93. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  94. if (next->pid == 2)
  95. {
  96. struct pt_regs *child_regs = (struct pt_regs *)next->thread->rsp;
  97. kdebug("next->thd->rip=%#018lx", next->thread->rip);
  98. kdebug("next proc's ret addr = %#018lx\t next child_regs->rsp = %#018lx, next new_rip=%#018lx)", child_regs->rip, child_regs->rsp, child_regs->rip);
  99. }
  100. __asm__ __volatile__("movq %%fs, %0 \n\t"
  101. : "=a"(prev->thread->fs));
  102. __asm__ __volatile__("movq %%gs, %0 \n\t"
  103. : "=a"(prev->thread->gs));
  104. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  105. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  106. // wrmsr(0x175, next->thread->rbp);
  107. }
  108. /**
  109. * @brief 这是一个用户态的程序
  110. *
  111. */
  112. void user_level_function()
  113. {
  114. // kinfo("Program (user_level_function) is runing...");
  115. // kinfo("Try to enter syscall id 15...");
  116. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  117. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  118. // while(1);
  119. long ret = 0;
  120. // printk_color(RED,BLACK,"user_level_function task is running\n");
  121. /*
  122. // 测试sys put string
  123. char string[] = "User level process.\n";
  124. long err_code = 1;
  125. ul addr = (ul)string;
  126. __asm__ __volatile__(
  127. "movq %2, %%r8 \n\t"
  128. "int $0x80 \n\t"
  129. : "=a"(err_code)
  130. : "a"(SYS_PUT_STRING), "m"(addr)
  131. : "memory", "r8");
  132. */
  133. while (1)
  134. {
  135. // 测试sys_open
  136. char string[] = "333.txt";
  137. long err_code = 1;
  138. int zero = 0;
  139. uint64_t addr = (ul)string;
  140. __asm__ __volatile__(
  141. "movq %2, %%r8 \n\t"
  142. "movq %3, %%r9 \n\t"
  143. "movq %4, %%r10 \n\t"
  144. "movq %5, %%r11 \n\t"
  145. "movq %6, %%r12 \n\t"
  146. "movq %7, %%r13 \n\t"
  147. "movq %8, %%r14 \n\t"
  148. "movq %9, %%r15 \n\t"
  149. "int $0x80 \n\t"
  150. : "=a"(err_code)
  151. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  152. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  153. int fd_num = err_code;
  154. int count = 128;
  155. // while (count)
  156. //{
  157. uchar buf[128] = {0};
  158. // Test sys_read
  159. addr = (uint64_t)&buf;
  160. __asm__ __volatile__(
  161. "movq %2, %%r8 \n\t"
  162. "movq %3, %%r9 \n\t"
  163. "movq %4, %%r10 \n\t"
  164. "movq %5, %%r11 \n\t"
  165. "movq %6, %%r12 \n\t"
  166. "movq %7, %%r13 \n\t"
  167. "movq %8, %%r14 \n\t"
  168. "movq %9, %%r15 \n\t"
  169. "int $0x80 \n\t"
  170. : "=a"(err_code)
  171. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  172. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  173. count = err_code;
  174. // 将读取到的数据打印出来
  175. addr = (ul)buf;
  176. __asm__ __volatile__(
  177. "movq %2, %%r8 \n\t"
  178. "int $0x80 \n\t"
  179. : "=a"(err_code)
  180. : "a"(SYS_PUT_STRING), "m"(addr)
  181. : "memory", "r8");
  182. // SYS_WRITE
  183. char test1[] = "GGGGHHHHHHHHh112343";
  184. addr = (uint64_t)&test1;
  185. count = 19;
  186. __asm__ __volatile__(
  187. "movq %2, %%r8 \n\t"
  188. "movq %3, %%r9 \n\t"
  189. "movq %4, %%r10 \n\t"
  190. "movq %5, %%r11 \n\t"
  191. "movq %6, %%r12 \n\t"
  192. "movq %7, %%r13 \n\t"
  193. "movq %8, %%r14 \n\t"
  194. "movq %9, %%r15 \n\t"
  195. "int $0x80 \n\t"
  196. : "=a"(err_code)
  197. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  198. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  199. addr = 1;
  200. count = SEEK_SET;
  201. fd_num = 0;
  202. // Test lseek
  203. __asm__ __volatile__(
  204. "movq %2, %%r8 \n\t"
  205. "movq %3, %%r9 \n\t"
  206. "movq %4, %%r10 \n\t"
  207. "movq %5, %%r11 \n\t"
  208. "movq %6, %%r12 \n\t"
  209. "movq %7, %%r13 \n\t"
  210. "movq %8, %%r14 \n\t"
  211. "movq %9, %%r15 \n\t"
  212. "int $0x80 \n\t"
  213. : "=a"(err_code)
  214. : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  215. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  216. // SYS_WRITE
  217. char test2[] = "K123456789K";
  218. addr = (uint64_t)&test2;
  219. count = 11;
  220. __asm__ __volatile__(
  221. "movq %2, %%r8 \n\t"
  222. "movq %3, %%r9 \n\t"
  223. "movq %4, %%r10 \n\t"
  224. "movq %5, %%r11 \n\t"
  225. "movq %6, %%r12 \n\t"
  226. "movq %7, %%r13 \n\t"
  227. "movq %8, %%r14 \n\t"
  228. "movq %9, %%r15 \n\t"
  229. "int $0x80 \n\t"
  230. : "=a"(err_code)
  231. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  232. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  233. // Test sys_close
  234. __asm__ __volatile__(
  235. "movq %2, %%r8 \n\t"
  236. "movq %3, %%r9 \n\t"
  237. "movq %4, %%r10 \n\t"
  238. "movq %5, %%r11 \n\t"
  239. "movq %6, %%r12 \n\t"
  240. "movq %7, %%r13 \n\t"
  241. "movq %8, %%r14 \n\t"
  242. "movq %9, %%r15 \n\t"
  243. "int $0x80 \n\t"
  244. : "=a"(err_code)
  245. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  246. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  247. addr = (ul)string;
  248. __asm__ __volatile__(
  249. "movq %2, %%r8 \n\t"
  250. "movq %3, %%r9 \n\t"
  251. "movq %4, %%r10 \n\t"
  252. "movq %5, %%r11 \n\t"
  253. "movq %6, %%r12 \n\t"
  254. "movq %7, %%r13 \n\t"
  255. "movq %8, %%r14 \n\t"
  256. "movq %9, %%r15 \n\t"
  257. "int $0x80 \n\t"
  258. : "=a"(err_code)
  259. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  260. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  261. fd_num = err_code;
  262. count = 128;
  263. // Test sys_read
  264. addr = (uint64_t)&buf;
  265. __asm__ __volatile__(
  266. "movq %2, %%r8 \n\t"
  267. "movq %3, %%r9 \n\t"
  268. "movq %4, %%r10 \n\t"
  269. "movq %5, %%r11 \n\t"
  270. "movq %6, %%r12 \n\t"
  271. "movq %7, %%r13 \n\t"
  272. "movq %8, %%r14 \n\t"
  273. "movq %9, %%r15 \n\t"
  274. "int $0x80 \n\t"
  275. : "=a"(err_code)
  276. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  277. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  278. count = err_code;
  279. // 将读取到的数据打印出来
  280. addr = (ul)buf;
  281. __asm__ __volatile__(
  282. "movq %2, %%r8 \n\t"
  283. "int $0x80 \n\t"
  284. : "=a"(err_code)
  285. : "a"(SYS_PUT_STRING), "m"(addr)
  286. : "memory", "r8");
  287. // Test Sys
  288. //}
  289. while (1)
  290. pause();
  291. }
  292. while (1)
  293. pause();
  294. }
  295. /**
  296. * @brief 打开要执行的程序文件
  297. *
  298. * @param path
  299. * @return struct vfs_file_t*
  300. */
  301. struct vfs_file_t *process_open_exec_file(char *path)
  302. {
  303. struct vfs_dir_entry_t *dentry = NULL;
  304. struct vfs_file_t *filp = NULL;
  305. dentry = vfs_path_walk(path, 0);
  306. if (dentry == NULL)
  307. return (void *)-ENOENT;
  308. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  309. return (void *)-ENOTDIR;
  310. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  311. if (filp == NULL)
  312. return (void *)-ENOMEM;
  313. filp->position = 0;
  314. filp->mode = 0;
  315. filp->dEntry = dentry;
  316. filp->mode = ATTR_READ_ONLY;
  317. filp->file_ops = dentry->dir_inode->file_ops;
  318. return filp;
  319. }
  320. /**
  321. * @brief 加载elf格式的程序文件到内存中,并设置regs
  322. *
  323. * @param regs 寄存器
  324. * @param path 文件路径
  325. * @return int
  326. */
  327. static int process_load_elf_file(struct pt_regs *regs, char *path)
  328. {
  329. int retval = 0;
  330. struct vfs_file_t *filp = process_open_exec_file(path);
  331. if ((unsigned long)filp <= 0)
  332. {
  333. kdebug("(unsigned long)filp=%d", (long)filp);
  334. return (unsigned long)filp;
  335. }
  336. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  337. memset(buf, 0, PAGE_4K_SIZE);
  338. uint64_t pos = 0;
  339. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  340. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  341. retval = 0;
  342. if (!elf_check(buf))
  343. {
  344. kerror("Not an ELF file: %s", path);
  345. retval = -ENOTSUP;
  346. goto load_elf_failed;
  347. }
  348. #if ARCH(X86_64)
  349. // 暂时只支持64位的文件
  350. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  351. {
  352. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  353. retval = -EUNSUPPORTED;
  354. goto load_elf_failed;
  355. }
  356. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  357. // 暂时只支持AMD64架构
  358. if (ehdr.e_machine != EM_AMD64)
  359. {
  360. kerror("e_machine=%d", ehdr.e_machine);
  361. retval = -EUNSUPPORTED;
  362. goto load_elf_failed;
  363. }
  364. #else
  365. #error Unsupported architecture!
  366. #endif
  367. if (ehdr.e_type != ET_EXEC)
  368. {
  369. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  370. retval = -EUNSUPPORTED;
  371. goto load_elf_failed;
  372. }
  373. kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  374. regs->rip = ehdr.e_entry;
  375. current_pcb->mm->code_addr_start = ehdr.e_entry;
  376. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  377. // 将指针移动到program header处
  378. pos = ehdr.e_phoff;
  379. // 读取所有的phdr
  380. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  381. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  382. if ((unsigned long)filp <= 0)
  383. {
  384. kdebug("(unsigned long)filp=%d", (long)filp);
  385. retval = -ENOEXEC;
  386. goto load_elf_failed;
  387. }
  388. Elf64_Phdr *phdr = buf;
  389. // 将程序加载到内存中
  390. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  391. {
  392. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  393. // 不是可加载的段
  394. if (phdr->p_type != PT_LOAD)
  395. continue;
  396. int64_t remain_mem_size = phdr->p_memsz;
  397. int64_t remain_file_size = phdr->p_filesz;
  398. pos = phdr->p_offset;
  399. uint64_t virt_base = phdr->p_vaddr;
  400. while (remain_mem_size > 0)
  401. {
  402. // todo: 改用slab分配4K大小内存块并映射到4K页
  403. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  404. {
  405. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  406. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  407. }
  408. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  409. int64_t val = 0;
  410. if (remain_file_size != 0)
  411. {
  412. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  413. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  414. }
  415. if (val < 0)
  416. goto load_elf_failed;
  417. remain_mem_size -= PAGE_2M_SIZE;
  418. remain_file_size -= val;
  419. virt_base += PAGE_2M_SIZE;
  420. }
  421. }
  422. // 分配2MB的栈内存空间
  423. regs->rsp = current_pcb->mm->stack_start;
  424. regs->rbp = current_pcb->mm->stack_start;
  425. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  426. // 清空栈空间
  427. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  428. load_elf_failed:;
  429. if (buf != NULL)
  430. kfree(buf);
  431. return retval;
  432. }
  433. /**
  434. * @brief 使当前进程去执行新的代码
  435. *
  436. * @param regs 当前进程的寄存器
  437. * @param path 可执行程序的路径
  438. * @param argv 参数列表
  439. * @param envp 环境变量
  440. * @return ul 错误码
  441. */
  442. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  443. {
  444. kdebug("do_execve is running...");
  445. // 当前进程正在与父进程共享地址空间,需要创建
  446. // 独立的地址空间才能使新程序正常运行
  447. if (current_pcb->flags & PF_VFORK)
  448. {
  449. kdebug("proc:%d creating new mem space", current_pcb->pid);
  450. // 分配新的内存空间分布结构体
  451. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  452. memset(new_mms, 0, sizeof(struct mm_struct));
  453. current_pcb->mm = new_mms;
  454. // 分配顶层页表, 并设置顶层页表的物理地址
  455. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  456. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  457. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  458. // 拷贝内核空间的页表指针
  459. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  460. }
  461. // 设置用户栈和用户堆的基地址
  462. unsigned long stack_start_addr = 0x6fffffc00000;
  463. const uint64_t brk_start_addr = 0x6fffffc00000;
  464. process_switch_mm(current_pcb);
  465. // 为用户态程序设置地址边界
  466. if (!(current_pcb->flags & PF_KTHREAD))
  467. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  468. current_pcb->mm->code_addr_end = 0;
  469. current_pcb->mm->data_addr_start = 0;
  470. current_pcb->mm->data_addr_end = 0;
  471. current_pcb->mm->rodata_addr_start = 0;
  472. current_pcb->mm->rodata_addr_end = 0;
  473. current_pcb->mm->bss_start = 0;
  474. current_pcb->mm->bss_end = 0;
  475. current_pcb->mm->brk_start = brk_start_addr;
  476. current_pcb->mm->brk_end = brk_start_addr;
  477. current_pcb->mm->stack_start = stack_start_addr;
  478. // 关闭之前的文件描述符
  479. process_exit_files(current_pcb);
  480. // 清除进程的vfork标志位
  481. current_pcb->flags &= ~PF_VFORK;
  482. // 加载elf格式的可执行文件
  483. int tmp = process_load_elf_file(regs, path);
  484. if (tmp < 0)
  485. return tmp;
  486. // 拷贝参数列表
  487. if (argv != NULL)
  488. {
  489. int argc = 0;
  490. // 目标程序的argv基地址指针,最大8个参数
  491. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  492. uint64_t str_addr = (uint64_t)dst_argv;
  493. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  494. {
  495. // 测量参数的长度(最大1023)
  496. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  497. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  498. str_addr -= argv_len;
  499. dst_argv[argc] = (char *)str_addr;
  500. //字符串加上结尾字符
  501. ((char *)str_addr)[argv_len] = '\0';
  502. }
  503. // 重新设定栈基址,并预留空间防止越界
  504. stack_start_addr = str_addr - 8;
  505. current_pcb->mm->stack_start = stack_start_addr;
  506. regs->rsp = regs->rbp = stack_start_addr;
  507. // 传递参数
  508. regs->rdi = argc;
  509. regs->rsi = (uint64_t)dst_argv;
  510. }
  511. kdebug("execve ok");
  512. regs->cs = USER_CS | 3;
  513. regs->ds = USER_DS | 3;
  514. regs->ss = USER_DS | 0x3;
  515. regs->rflags = 0x200246;
  516. regs->rax = 1;
  517. regs->es = 0;
  518. return 0;
  519. }
  520. /**
  521. * @brief 内核init进程
  522. *
  523. * @param arg
  524. * @return ul 参数
  525. */
  526. ul initial_kernel_thread(ul arg)
  527. {
  528. // kinfo("initial proc running...\targ:%#018lx", arg);
  529. fat32_init();
  530. struct pt_regs *regs;
  531. current_pcb->thread->rip = (ul)ret_from_system_call;
  532. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  533. current_pcb->thread->fs = USER_DS | 0x3;
  534. current_pcb->thread->gs = USER_DS | 0x3;
  535. // 主动放弃内核线程身份
  536. current_pcb->flags &= (~PF_KTHREAD);
  537. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  538. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  539. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  540. regs = (struct pt_regs *)current_pcb->thread->rsp;
  541. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  542. current_pcb->flags = 0;
  543. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  544. // 加载用户态程序:shell.elf
  545. char init_path[] = "/shell.elf";
  546. uint64_t addr = (uint64_t)&init_path;
  547. __asm__ __volatile__("movq %1, %%rsp \n\t"
  548. "pushq %2 \n\t"
  549. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  550. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  551. : "memory");
  552. return 1;
  553. }
  554. /**
  555. * @brief 当子进程退出后向父进程发送通知
  556. *
  557. */
  558. void process_exit_notify()
  559. {
  560. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  561. }
  562. /**
  563. * @brief 进程退出时执行的函数
  564. *
  565. * @param code 返回码
  566. * @return ul
  567. */
  568. ul process_do_exit(ul code)
  569. {
  570. kinfo("process exiting..., code is %#018lx.", code);
  571. cli();
  572. struct process_control_block *pcb = current_pcb;
  573. // 进程退出时释放资源
  574. process_exit_files(pcb);
  575. process_exit_thread(pcb);
  576. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  577. pcb->state = PROC_ZOMBIE;
  578. pcb->exit_code = pcb;
  579. sti();
  580. process_exit_notify();
  581. sched_cfs();
  582. while (1)
  583. hlt();
  584. }
  585. /**
  586. * @brief 初始化内核进程
  587. *
  588. * @param fn 目标程序的地址
  589. * @param arg 向目标程序传入的参数
  590. * @param flags
  591. * @return int
  592. */
  593. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  594. {
  595. struct pt_regs regs;
  596. memset(&regs, 0, sizeof(regs));
  597. // 在rbx寄存器中保存进程的入口地址
  598. regs.rbx = (ul)fn;
  599. // 在rdx寄存器中保存传入的参数
  600. regs.rdx = (ul)arg;
  601. regs.ds = KERNEL_DS;
  602. regs.es = KERNEL_DS;
  603. regs.cs = KERNEL_CS;
  604. regs.ss = KERNEL_DS;
  605. // 置位中断使能标志位
  606. regs.rflags = (1 << 9);
  607. // rip寄存器指向内核线程的引导程序
  608. regs.rip = (ul)kernel_thread_func;
  609. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  610. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  611. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  612. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  613. }
  614. /**
  615. * @brief 初始化进程模块
  616. * ☆前置条件:已完成系统调用模块的初始化
  617. */
  618. void process_init()
  619. {
  620. kinfo("Initializing process...");
  621. initial_mm.pgd = (pml4t_t *)get_CR3();
  622. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  623. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  624. initial_mm.data_addr_start = (ul)&_data;
  625. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  626. initial_mm.rodata_addr_start = (ul)&_rodata;
  627. initial_mm.rodata_addr_end = (ul)&_erodata;
  628. initial_mm.bss_start = (uint64_t)&_bss;
  629. initial_mm.bss_end = (uint64_t)&_ebss;
  630. initial_mm.brk_start = memory_management_struct.start_brk;
  631. initial_mm.brk_end = current_pcb->addr_limit;
  632. initial_mm.stack_start = _stack_start;
  633. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  634. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  635. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  636. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  637. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  638. for (int i = 256; i < 512; ++i)
  639. {
  640. uint64_t *tmp = idle_pml4t_vaddr + i;
  641. if (*tmp == 0)
  642. {
  643. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  644. memset(pdpt, 0, PAGE_4K_SIZE);
  645. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  646. }
  647. }
  648. /*
  649. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  650. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  651. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  652. */
  653. // 初始化pid的写锁
  654. spin_init(&process_global_pid_write_lock);
  655. // 初始化进程的循环链表
  656. list_init(&initial_proc_union.pcb.list);
  657. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  658. initial_proc_union.pcb.state = PROC_RUNNING;
  659. initial_proc_union.pcb.preempt_count = 0;
  660. initial_proc_union.pcb.cpu_id = 0;
  661. }
  662. /**
  663. * @brief fork当前进程
  664. *
  665. * @param regs 新的寄存器值
  666. * @param clone_flags 克隆标志
  667. * @param stack_start 堆栈开始地址
  668. * @param stack_size 堆栈大小
  669. * @return unsigned long
  670. */
  671. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  672. {
  673. int retval = 0;
  674. struct process_control_block *tsk = NULL;
  675. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  676. // 为新的进程分配栈空间,并将pcb放置在底部
  677. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  678. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  679. if (tsk == NULL)
  680. {
  681. retval = -ENOMEM;
  682. return retval;
  683. }
  684. memset(tsk, 0, sizeof(struct process_control_block));
  685. // 将当前进程的pcb复制到新的pcb内
  686. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  687. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  688. // 将进程加入循环链表
  689. list_init(&tsk->list);
  690. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  691. tsk->priority = 2;
  692. tsk->preempt_count = 0;
  693. // 增加全局的pid并赋值给新进程的pid
  694. spin_lock(&process_global_pid_write_lock);
  695. tsk->pid = process_global_pid++;
  696. // 加入到进程链表中
  697. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  698. initial_proc_union.pcb.next_pcb = tsk;
  699. tsk->parent_pcb = current_pcb;
  700. spin_unlock(&process_global_pid_write_lock);
  701. tsk->cpu_id = proc_current_cpu_id;
  702. tsk->state = PROC_UNINTERRUPTIBLE;
  703. tsk->parent_pcb = current_pcb;
  704. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  705. list_init(&tsk->list);
  706. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  707. retval = -ENOMEM;
  708. // 拷贝标志位
  709. if (process_copy_flags(clone_flags, tsk))
  710. goto copy_flags_failed;
  711. // 拷贝内存空间分布结构体
  712. if (process_copy_mm(clone_flags, tsk))
  713. goto copy_mm_failed;
  714. // 拷贝文件
  715. if (process_copy_files(clone_flags, tsk))
  716. goto copy_files_failed;
  717. // 拷贝线程结构体
  718. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  719. goto copy_thread_failed;
  720. // 拷贝成功
  721. retval = tsk->pid;
  722. kdebug("fork done: tsk->pid=%d", tsk->pid);
  723. // 唤醒进程
  724. process_wakeup(tsk);
  725. return retval;
  726. copy_thread_failed:;
  727. // 回收线程
  728. process_exit_thread(tsk);
  729. copy_files_failed:;
  730. // 回收文件
  731. process_exit_files(tsk);
  732. copy_mm_failed:;
  733. // 回收内存空间分布结构体
  734. process_exit_mm(tsk);
  735. copy_flags_failed:;
  736. kfree(tsk);
  737. return retval;
  738. return 0;
  739. }
  740. /**
  741. * @brief 根据pid获取进程的pcb
  742. *
  743. * @param pid
  744. * @return struct process_control_block*
  745. */
  746. struct process_control_block *process_get_pcb(long pid)
  747. {
  748. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  749. // 使用蛮力法搜索指定pid的pcb
  750. // todo: 使用哈希表来管理pcb
  751. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  752. {
  753. if (pcb->pid == pid)
  754. return pcb;
  755. }
  756. return NULL;
  757. }
  758. /**
  759. * @brief 将进程加入到调度器的就绪队列中
  760. *
  761. * @param pcb 进程的pcb
  762. */
  763. void process_wakeup(struct process_control_block *pcb)
  764. {
  765. pcb->state = PROC_RUNNING;
  766. sched_cfs_enqueue(pcb);
  767. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  768. current_pcb->flags |= PF_NEED_SCHED;
  769. }
  770. /**
  771. * @brief 拷贝当前进程的标志位
  772. *
  773. * @param clone_flags 克隆标志位
  774. * @param pcb 新的进程的pcb
  775. * @return uint64_t
  776. */
  777. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  778. {
  779. if (clone_flags & CLONE_VM)
  780. pcb->flags |= PF_VFORK;
  781. return 0;
  782. }
  783. /**
  784. * @brief 拷贝当前进程的文件描述符等信息
  785. *
  786. * @param clone_flags 克隆标志位
  787. * @param pcb 新的进程的pcb
  788. * @return uint64_t
  789. */
  790. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  791. {
  792. int retval = 0;
  793. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  794. // 文件描述符已经在复制pcb时被拷贝
  795. if (clone_flags & CLONE_FS)
  796. return retval;
  797. // 为新进程拷贝新的文件描述符
  798. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  799. {
  800. if (current_pcb->fds[i] == NULL)
  801. continue;
  802. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  803. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  804. }
  805. return retval;
  806. }
  807. /**
  808. * @brief 回收进程的所有文件描述符
  809. *
  810. * @param pcb 要被回收的进程的pcb
  811. * @return uint64_t
  812. */
  813. uint64_t process_exit_files(struct process_control_block *pcb)
  814. {
  815. // 不与父进程共享文件描述符
  816. if (!(pcb->flags & PF_VFORK))
  817. {
  818. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  819. {
  820. if (pcb->fds[i] == NULL)
  821. continue;
  822. kfree(pcb->fds[i]);
  823. }
  824. }
  825. // 清空当前进程的文件描述符列表
  826. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  827. }
  828. /**
  829. * @brief 拷贝当前进程的内存空间分布结构体信息
  830. *
  831. * @param clone_flags 克隆标志位
  832. * @param pcb 新的进程的pcb
  833. * @return uint64_t
  834. */
  835. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  836. {
  837. int retval = 0;
  838. // 与父进程共享内存空间
  839. if (clone_flags & CLONE_VM)
  840. {
  841. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  842. pcb->mm = current_pcb->mm;
  843. return retval;
  844. }
  845. // 分配新的内存空间分布结构体
  846. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  847. memset(new_mms, 0, sizeof(struct mm_struct));
  848. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  849. pcb->mm = new_mms;
  850. // 分配顶层页表, 并设置顶层页表的物理地址
  851. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  852. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  853. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  854. // 拷贝内核空间的页表指针
  855. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  856. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  857. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  858. // 迭代地拷贝用户空间
  859. for (int i = 0; i <= 255; ++i)
  860. {
  861. // 当前页表项为空
  862. if ((*(uint64_t *)(current_pgd + i)) == 0)
  863. continue;
  864. // 分配新的二级页表
  865. pdpt_t *new_pdpt = (pdpt_t *)kmalloc(PAGE_4K_SIZE, 0);
  866. memset(new_pdpt, 0, PAGE_4K_SIZE);
  867. // 在新的一级页表中设置新的二级页表表项
  868. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  869. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt(*(uint64_t *)(current_pgd + i) & (~0xfffUL));
  870. kdebug("i=%d, current pdpt=%#018lx \t (current_pgd + i)->pml4t=%#018lx", i, current_pdpt, *(uint64_t *)(current_pgd + i));
  871. // 设置二级页表
  872. for (int j = 0; j < 512; ++j)
  873. {
  874. if (*(uint64_t *)(current_pdpt + j) == 0)
  875. continue;
  876. kdebug("j=%d *(uint64_t *)(current_pdpt + j)=%#018lx", j, *(uint64_t *)(current_pdpt + j));
  877. // 分配新的三级页表
  878. pdt_t *new_pdt = (pdt_t *)kmalloc(PAGE_4K_SIZE, 0);
  879. memset(new_pdt, 0, PAGE_4K_SIZE);
  880. // 在新的二级页表中设置三级页表的表项
  881. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(uint64_t *)(current_pdpt + j)) & 0xfffUL));
  882. pdt_t *current_pdt = (pdt_t *)phys_2_virt((*(uint64_t *)(current_pdpt + j)) & (~0xfffUL));
  883. // 拷贝内存页
  884. for (int k = 0; k < 512; ++k)
  885. {
  886. if ((current_pdt + k)->pdt == 0)
  887. continue;
  888. kdebug("k=%d, (current_pdt + k)->pdt=%#018lx", k, (current_pdt + k)->pdt);
  889. // 获取一个新页
  890. struct Page *pg = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  891. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pg->addr_phys, (current_pdt + k)->pdt & 0x1ffUL));
  892. kdebug("k=%d, cpy dest=%#018lx, src=%#018lx", k, phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1ffUL)));
  893. // 拷贝数据
  894. memcpy(phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1ffUL)), PAGE_2M_SIZE);
  895. }
  896. }
  897. }
  898. return retval;
  899. }
  900. /**
  901. * @brief 释放进程的页表
  902. *
  903. * @param pcb 要被释放页表的进程
  904. * @return uint64_t
  905. */
  906. uint64_t process_exit_mm(struct process_control_block *pcb)
  907. {
  908. if (pcb->flags & CLONE_VM)
  909. return 0;
  910. if (pcb->mm == NULL)
  911. {
  912. kdebug("pcb->mm==NULL");
  913. return 0;
  914. }
  915. if (pcb->mm->pgd == NULL)
  916. {
  917. kdebug("pcb->mm->pgd==NULL");
  918. return 0;
  919. }
  920. // 获取顶层页表
  921. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  922. // 迭代地释放用户空间
  923. for (int i = 0; i <= 255; ++i)
  924. {
  925. // 当前页表项为空
  926. if ((current_pgd + i)->pml4t == 0)
  927. continue;
  928. // 二级页表entry
  929. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  930. // 遍历二级页表
  931. for (int j = 0; j < 512; ++j)
  932. {
  933. if ((current_pdpt + j)->pdpt == 0)
  934. continue;
  935. // 三级页表的entry
  936. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  937. // 释放三级页表的内存页
  938. for (int k = 0; k < 512; ++k)
  939. {
  940. if ((current_pdt + k)->pdt == 0)
  941. continue;
  942. // 释放内存页
  943. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  944. }
  945. // 释放三级页表
  946. kfree(current_pdt);
  947. }
  948. // 释放二级页表
  949. kfree(current_pdpt);
  950. }
  951. // 释放顶层页表
  952. kfree(current_pgd);
  953. // 释放内存空间分布结构体
  954. kfree(pcb->mm);
  955. return 0;
  956. }
  957. /**
  958. * @brief 拷贝当前进程的线程结构体
  959. *
  960. * @param clone_flags 克隆标志位
  961. * @param pcb 新的进程的pcb
  962. * @return uint64_t
  963. */
  964. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  965. {
  966. // 将线程结构体放置在pcb后方
  967. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  968. memset(thd, 0, sizeof(struct thread_struct));
  969. pcb->thread = thd;
  970. // 拷贝栈空间
  971. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  972. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  973. // 设置子进程的返回值为0
  974. child_regs->rax = 0;
  975. child_regs->rsp = stack_start;
  976. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  977. thd->rsp = (uint64_t)child_regs;
  978. thd->fs = current_pcb->thread->fs;
  979. thd->gs = current_pcb->thread->gs;
  980. kdebug("pcb->flags=%ld", pcb->flags);
  981. // 根据是否为内核线程,设置进程的开始执行的地址
  982. if (pcb->flags & PF_KTHREAD)
  983. thd->rip = (uint64_t)kernel_thread_func;
  984. else
  985. thd->rip = (uint64_t)ret_from_system_call;
  986. kdebug("new proc's ret addr = %#018lx\tthd->rip=%#018lx stack_start=%#018lx child_regs->rsp = %#018lx, new_rip=%#018lx)", child_regs->rbx, thd->rip,stack_start,child_regs->rsp, child_regs->rip);
  987. return 0;
  988. }
  989. /**
  990. * @brief todo: 回收线程结构体
  991. *
  992. * @param pcb
  993. */
  994. void process_exit_thread(struct process_control_block *pcb)
  995. {
  996. }