process.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <filesystem/devfs/devfs.h>
  15. #include <filesystem/rootfs/rootfs.h>
  16. #include <mm/slab.h>
  17. #include <common/spinlock.h>
  18. #include <syscall/syscall.h>
  19. #include <syscall/syscall_num.h>
  20. #include <sched/sched.h>
  21. #include <common/unistd.h>
  22. #include <debug/traceback/traceback.h>
  23. #include <driver/disk/ahci/ahci.h>
  24. #include <ktest/ktest.h>
  25. #include <mm/mmio.h>
  26. #include <common/lz4.h>
  27. // #pragma GCC push_options
  28. // #pragma GCC optimize("O0")
  29. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  30. long process_global_pid = 1; // 系统中最大的pid
  31. extern void system_call(void);
  32. extern void kernel_thread_func(void);
  33. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  34. extern struct mm_struct initial_mm;
  35. struct thread_struct initial_thread =
  36. {
  37. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  38. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  39. .fs = KERNEL_DS,
  40. .gs = KERNEL_DS,
  41. .cr2 = 0,
  42. .trap_num = 0,
  43. .err_code = 0};
  44. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  45. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  46. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  47. // 为每个核心初始化初始进程的tss
  48. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  49. /**
  50. * @brief 拷贝当前进程的标志位
  51. *
  52. * @param clone_flags 克隆标志位
  53. * @param pcb 新的进程的pcb
  54. * @return uint64_t
  55. */
  56. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  57. /**
  58. * @brief 拷贝当前进程的文件描述符等信息
  59. *
  60. * @param clone_flags 克隆标志位
  61. * @param pcb 新的进程的pcb
  62. * @return uint64_t
  63. */
  64. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  65. /**
  66. * @brief 回收进程的所有文件描述符
  67. *
  68. * @param pcb 要被回收的进程的pcb
  69. * @return uint64_t
  70. */
  71. uint64_t process_exit_files(struct process_control_block *pcb);
  72. /**
  73. * @brief 拷贝当前进程的内存空间分布结构体信息
  74. *
  75. * @param clone_flags 克隆标志位
  76. * @param pcb 新的进程的pcb
  77. * @return uint64_t
  78. */
  79. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  80. /**
  81. * @brief 释放进程的页表
  82. *
  83. * @param pcb 要被释放页表的进程
  84. * @return uint64_t
  85. */
  86. uint64_t process_exit_mm(struct process_control_block *pcb);
  87. /**
  88. * @brief 拷贝当前进程的线程结构体
  89. *
  90. * @param clone_flags 克隆标志位
  91. * @param pcb 新的进程的pcb
  92. * @return uint64_t
  93. */
  94. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  95. void process_exit_thread(struct process_control_block *pcb);
  96. /**
  97. * @brief 切换进程
  98. *
  99. * @param prev 上一个进程的pcb
  100. * @param next 将要切换到的进程的pcb
  101. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  102. * 这里切换fs和gs寄存器
  103. */
  104. #pragma GCC push_options
  105. #pragma GCC optimize("O0")
  106. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  107. {
  108. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  109. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  110. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  111. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  112. __asm__ __volatile__("movq %%fs, %0 \n\t"
  113. : "=a"(prev->thread->fs));
  114. __asm__ __volatile__("movq %%gs, %0 \n\t"
  115. : "=a"(prev->thread->gs));
  116. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  117. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  118. }
  119. #pragma GCC pop_options
  120. /**
  121. * @brief 打开要执行的程序文件
  122. *
  123. * @param path
  124. * @return struct vfs_file_t*
  125. */
  126. struct vfs_file_t *process_open_exec_file(char *path)
  127. {
  128. struct vfs_dir_entry_t *dentry = NULL;
  129. struct vfs_file_t *filp = NULL;
  130. dentry = vfs_path_walk(path, 0);
  131. if (dentry == NULL)
  132. return (void *)-ENOENT;
  133. if (dentry->dir_inode->attribute == VFS_IF_DIR)
  134. return (void *)-ENOTDIR;
  135. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  136. if (filp == NULL)
  137. return (void *)-ENOMEM;
  138. filp->position = 0;
  139. filp->mode = 0;
  140. filp->dEntry = dentry;
  141. filp->mode = ATTR_READ_ONLY;
  142. filp->file_ops = dentry->dir_inode->file_ops;
  143. return filp;
  144. }
  145. /**
  146. * @brief 加载elf格式的程序文件到内存中,并设置regs
  147. *
  148. * @param regs 寄存器
  149. * @param path 文件路径
  150. * @return int
  151. */
  152. static int process_load_elf_file(struct pt_regs *regs, char *path)
  153. {
  154. int retval = 0;
  155. struct vfs_file_t *filp = process_open_exec_file(path);
  156. if ((long)filp <= 0 && (long)filp >= -255)
  157. {
  158. // kdebug("(long)filp=%ld", (long)filp);
  159. return (unsigned long)filp;
  160. }
  161. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  162. memset(buf, 0, PAGE_4K_SIZE);
  163. uint64_t pos = 0;
  164. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  165. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  166. retval = 0;
  167. if (!elf_check(buf))
  168. {
  169. kerror("Not an ELF file: %s", path);
  170. retval = -ENOTSUP;
  171. goto load_elf_failed;
  172. }
  173. #if ARCH(X86_64)
  174. // 暂时只支持64位的文件
  175. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  176. {
  177. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  178. retval = -EUNSUPPORTED;
  179. goto load_elf_failed;
  180. }
  181. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  182. // 暂时只支持AMD64架构
  183. if (ehdr.e_machine != EM_AMD64)
  184. {
  185. kerror("e_machine=%d", ehdr.e_machine);
  186. retval = -EUNSUPPORTED;
  187. goto load_elf_failed;
  188. }
  189. #else
  190. #error Unsupported architecture!
  191. #endif
  192. if (ehdr.e_type != ET_EXEC)
  193. {
  194. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  195. retval = -EUNSUPPORTED;
  196. goto load_elf_failed;
  197. }
  198. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  199. regs->rip = ehdr.e_entry;
  200. current_pcb->mm->code_addr_start = ehdr.e_entry;
  201. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  202. // 将指针移动到program header处
  203. pos = ehdr.e_phoff;
  204. // 读取所有的phdr
  205. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  206. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  207. if ((unsigned long)filp <= 0)
  208. {
  209. kdebug("(unsigned long)filp=%d", (long)filp);
  210. retval = -ENOEXEC;
  211. goto load_elf_failed;
  212. }
  213. Elf64_Phdr *phdr = buf;
  214. // 将程序加载到内存中
  215. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  216. {
  217. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  218. // 不是可加载的段
  219. if (phdr->p_type != PT_LOAD)
  220. continue;
  221. int64_t remain_mem_size = phdr->p_memsz;
  222. int64_t remain_file_size = phdr->p_filesz;
  223. pos = phdr->p_offset;
  224. uint64_t virt_base = 0;
  225. uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
  226. if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
  227. virt_base = phdr->p_vaddr & PAGE_2M_MASK;
  228. else // 接下来只有4K页的映射
  229. virt_base = phdr->p_vaddr & PAGE_4K_MASK;
  230. beginning_offset = phdr->p_vaddr - virt_base;
  231. remain_mem_size += beginning_offset;
  232. while (remain_mem_size > 0)
  233. {
  234. // kdebug("loading...");
  235. int64_t map_size = 0;
  236. if (remain_mem_size >= PAGE_2M_SIZE)
  237. {
  238. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  239. struct vm_area_struct *vma = NULL;
  240. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  241. // 防止内存泄露
  242. if (ret == -EEXIST)
  243. free_pages(Phy_to_2M_Page(pa), 1);
  244. else
  245. mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
  246. // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  247. io_mfence();
  248. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  249. map_size = PAGE_2M_SIZE;
  250. }
  251. else
  252. {
  253. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  254. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  255. // 循环分配4K大小内存块
  256. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  257. {
  258. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  259. struct vm_area_struct *vma = NULL;
  260. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  261. // kdebug("virt_base=%#018lx", virt_base + off);
  262. if (val == -EEXIST)
  263. kfree(phys_2_virt(paddr));
  264. else
  265. mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
  266. // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
  267. io_mfence();
  268. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  269. }
  270. }
  271. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  272. int64_t val = 0;
  273. if (remain_file_size > 0)
  274. {
  275. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  276. val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos);
  277. }
  278. if (val < 0)
  279. goto load_elf_failed;
  280. remain_mem_size -= map_size;
  281. remain_file_size -= val;
  282. virt_base += map_size;
  283. }
  284. }
  285. // 分配2MB的栈内存空间
  286. regs->rsp = current_pcb->mm->stack_start;
  287. regs->rbp = current_pcb->mm->stack_start;
  288. {
  289. struct vm_area_struct *vma = NULL;
  290. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  291. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  292. if (val == -EEXIST)
  293. free_pages(Phy_to_2M_Page(pa), 1);
  294. else
  295. mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  296. }
  297. // 清空栈空间
  298. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  299. load_elf_failed:;
  300. if (buf != NULL)
  301. kfree(buf);
  302. return retval;
  303. }
  304. /**
  305. * @brief 使当前进程去执行新的代码
  306. *
  307. * @param regs 当前进程的寄存器
  308. * @param path 可执行程序的路径
  309. * @param argv 参数列表
  310. * @param envp 环境变量
  311. * @return ul 错误码
  312. */
  313. #pragma GCC push_options
  314. #pragma GCC optimize("O0")
  315. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  316. {
  317. // kdebug("do_execve is running...");
  318. // 当前进程正在与父进程共享地址空间,需要创建
  319. // 独立的地址空间才能使新程序正常运行
  320. if (current_pcb->flags & PF_VFORK)
  321. {
  322. kdebug("proc:%d creating new mem space", current_pcb->pid);
  323. // 分配新的内存空间分布结构体
  324. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  325. memset(new_mms, 0, sizeof(struct mm_struct));
  326. current_pcb->mm = new_mms;
  327. // 分配顶层页表, 并设置顶层页表的物理地址
  328. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  329. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  330. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  331. // 拷贝内核空间的页表指针
  332. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  333. }
  334. // 设置用户栈和用户堆的基地址
  335. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  336. const uint64_t brk_start_addr = 0x700000000000UL;
  337. process_switch_mm(current_pcb);
  338. // 为用户态程序设置地址边界
  339. if (!(current_pcb->flags & PF_KTHREAD))
  340. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  341. current_pcb->mm->code_addr_end = 0;
  342. current_pcb->mm->data_addr_start = 0;
  343. current_pcb->mm->data_addr_end = 0;
  344. current_pcb->mm->rodata_addr_start = 0;
  345. current_pcb->mm->rodata_addr_end = 0;
  346. current_pcb->mm->bss_start = 0;
  347. current_pcb->mm->bss_end = 0;
  348. current_pcb->mm->brk_start = brk_start_addr;
  349. current_pcb->mm->brk_end = brk_start_addr;
  350. current_pcb->mm->stack_start = stack_start_addr;
  351. // 关闭之前的文件描述符
  352. process_exit_files(current_pcb);
  353. // 清除进程的vfork标志位
  354. current_pcb->flags &= ~PF_VFORK;
  355. // 加载elf格式的可执行文件
  356. int tmp = process_load_elf_file(regs, path);
  357. if (tmp < 0)
  358. goto exec_failed;
  359. // 拷贝参数列表
  360. if (argv != NULL)
  361. {
  362. int argc = 0;
  363. // 目标程序的argv基地址指针,最大8个参数
  364. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  365. uint64_t str_addr = (uint64_t)dst_argv;
  366. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  367. {
  368. if (*argv[argc] == NULL)
  369. break;
  370. // 测量参数的长度(最大1023)
  371. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  372. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  373. str_addr -= argv_len;
  374. dst_argv[argc] = (char *)str_addr;
  375. // 字符串加上结尾字符
  376. ((char *)str_addr)[argv_len] = '\0';
  377. }
  378. // 重新设定栈基址,并预留空间防止越界
  379. stack_start_addr = str_addr - 8;
  380. current_pcb->mm->stack_start = stack_start_addr;
  381. regs->rsp = regs->rbp = stack_start_addr;
  382. // 传递参数
  383. regs->rdi = argc;
  384. regs->rsi = (uint64_t)dst_argv;
  385. }
  386. // kdebug("execve ok");
  387. regs->cs = USER_CS | 3;
  388. regs->ds = USER_DS | 3;
  389. regs->ss = USER_DS | 0x3;
  390. regs->rflags = 0x200246;
  391. regs->rax = 1;
  392. regs->es = 0;
  393. return 0;
  394. exec_failed:;
  395. process_do_exit(tmp);
  396. }
  397. #pragma GCC pop_options
  398. /**
  399. * @brief 内核init进程
  400. *
  401. * @param arg
  402. * @return ul 参数
  403. */
  404. #pragma GCC push_options
  405. #pragma GCC optimize("O0")
  406. ul initial_kernel_thread(ul arg)
  407. {
  408. // kinfo("initial proc running...\targ:%#018lx", arg);
  409. ahci_init();
  410. fat32_init();
  411. rootfs_umount();
  412. // 使用单独的内核线程来初始化usb驱动程序
  413. int usb_pid = kernel_thread(usb_init, 0, 0);
  414. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  415. // 对一些组件进行单元测试
  416. uint64_t tpid[] = {
  417. ktest_start(ktest_test_bitree, 0),
  418. ktest_start(ktest_test_kfifo, 0),
  419. ktest_start(ktest_test_mutex, 0),
  420. usb_pid,
  421. };
  422. kinfo("Waiting test thread exit...");
  423. // 等待测试进程退出
  424. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  425. waitpid(tpid[i], NULL, NULL);
  426. kinfo("All test done.");
  427. // 准备切换到用户态
  428. struct pt_regs *regs;
  429. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  430. cli();
  431. current_pcb->thread->rip = (ul)ret_from_system_call;
  432. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  433. current_pcb->thread->fs = USER_DS | 0x3;
  434. barrier();
  435. current_pcb->thread->gs = USER_DS | 0x3;
  436. // 主动放弃内核线程身份
  437. current_pcb->flags &= (~PF_KTHREAD);
  438. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  439. regs = (struct pt_regs *)current_pcb->thread->rsp;
  440. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  441. current_pcb->flags = 0;
  442. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  443. // 加载用户态程序:shell.elf
  444. char init_path[] = "/shell.elf";
  445. uint64_t addr = (uint64_t)&init_path;
  446. __asm__ __volatile__("movq %1, %%rsp \n\t"
  447. "pushq %2 \n\t"
  448. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  449. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  450. : "memory");
  451. return 1;
  452. }
  453. #pragma GCC pop_options
  454. /**
  455. * @brief 当子进程退出后向父进程发送通知
  456. *
  457. */
  458. void process_exit_notify()
  459. {
  460. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  461. }
  462. /**
  463. * @brief 进程退出时执行的函数
  464. *
  465. * @param code 返回码
  466. * @return ul
  467. */
  468. ul process_do_exit(ul code)
  469. {
  470. // kinfo("process exiting..., code is %ld.", (long)code);
  471. cli();
  472. struct process_control_block *pcb = current_pcb;
  473. // 进程退出时释放资源
  474. process_exit_files(pcb);
  475. process_exit_thread(pcb);
  476. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  477. pcb->state = PROC_ZOMBIE;
  478. pcb->exit_code = code;
  479. sti();
  480. process_exit_notify();
  481. sched();
  482. while (1)
  483. pause();
  484. }
  485. /**
  486. * @brief 初始化内核进程
  487. *
  488. * @param fn 目标程序的地址
  489. * @param arg 向目标程序传入的参数
  490. * @param flags
  491. * @return int
  492. */
  493. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  494. {
  495. struct pt_regs regs;
  496. barrier();
  497. memset(&regs, 0, sizeof(regs));
  498. barrier();
  499. // 在rbx寄存器中保存进程的入口地址
  500. regs.rbx = (ul)fn;
  501. // 在rdx寄存器中保存传入的参数
  502. regs.rdx = (ul)arg;
  503. barrier();
  504. regs.ds = KERNEL_DS;
  505. barrier();
  506. regs.es = KERNEL_DS;
  507. barrier();
  508. regs.cs = KERNEL_CS;
  509. barrier();
  510. regs.ss = KERNEL_DS;
  511. barrier();
  512. // 置位中断使能标志位
  513. regs.rflags = (1 << 9);
  514. barrier();
  515. // rip寄存器指向内核线程的引导程序
  516. regs.rip = (ul)kernel_thread_func;
  517. barrier();
  518. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  519. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  520. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  521. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  522. }
  523. /**
  524. * @brief 初始化进程模块
  525. * ☆前置条件:已完成系统调用模块的初始化
  526. */
  527. void process_init()
  528. {
  529. kinfo("Initializing process...");
  530. initial_mm.pgd = (pml4t_t *)get_CR3();
  531. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  532. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  533. initial_mm.data_addr_start = (ul)&_data;
  534. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  535. initial_mm.rodata_addr_start = (ul)&_rodata;
  536. initial_mm.rodata_addr_end = (ul)&_erodata;
  537. initial_mm.bss_start = (uint64_t)&_bss;
  538. initial_mm.bss_end = (uint64_t)&_ebss;
  539. initial_mm.brk_start = memory_management_struct.start_brk;
  540. initial_mm.brk_end = current_pcb->addr_limit;
  541. initial_mm.stack_start = _stack_start;
  542. initial_mm.vmas = NULL;
  543. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  544. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  545. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  546. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  547. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  548. for (int i = 256; i < 512; ++i)
  549. {
  550. uint64_t *tmp = idle_pml4t_vaddr + i;
  551. barrier();
  552. if (*tmp == 0)
  553. {
  554. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  555. barrier();
  556. memset(pdpt, 0, PAGE_4K_SIZE);
  557. barrier();
  558. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  559. }
  560. }
  561. barrier();
  562. flush_tlb();
  563. /*
  564. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  565. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  566. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  567. */
  568. // 初始化pid的写锁
  569. spin_init(&process_global_pid_write_lock);
  570. // 初始化进程的循环链表
  571. list_init(&initial_proc_union.pcb.list);
  572. barrier();
  573. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  574. barrier();
  575. initial_proc_union.pcb.state = PROC_RUNNING;
  576. initial_proc_union.pcb.preempt_count = 0;
  577. initial_proc_union.pcb.cpu_id = 0;
  578. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  579. current_pcb->virtual_runtime = (1UL << 60);
  580. }
  581. /**
  582. * @brief fork当前进程
  583. *
  584. * @param regs 新的寄存器值
  585. * @param clone_flags 克隆标志
  586. * @param stack_start 堆栈开始地址
  587. * @param stack_size 堆栈大小
  588. * @return unsigned long
  589. */
  590. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  591. {
  592. int retval = 0;
  593. struct process_control_block *tsk = NULL;
  594. // 为新的进程分配栈空间,并将pcb放置在底部
  595. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  596. barrier();
  597. if (tsk == NULL)
  598. {
  599. retval = -ENOMEM;
  600. return retval;
  601. }
  602. barrier();
  603. memset(tsk, 0, sizeof(struct process_control_block));
  604. io_mfence();
  605. // 将当前进程的pcb复制到新的pcb内
  606. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  607. io_mfence();
  608. // 初始化进程的循环链表结点
  609. list_init(&tsk->list);
  610. io_mfence();
  611. // 判断是否为内核态调用fork
  612. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  613. tsk->flags |= PF_KFORK;
  614. tsk->priority = 2;
  615. tsk->preempt_count = 0;
  616. // 增加全局的pid并赋值给新进程的pid
  617. spin_lock(&process_global_pid_write_lock);
  618. tsk->pid = process_global_pid++;
  619. barrier();
  620. // 加入到进程链表中
  621. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  622. barrier();
  623. initial_proc_union.pcb.next_pcb = tsk;
  624. barrier();
  625. tsk->parent_pcb = current_pcb;
  626. barrier();
  627. spin_unlock(&process_global_pid_write_lock);
  628. tsk->cpu_id = proc_current_cpu_id;
  629. tsk->state = PROC_UNINTERRUPTIBLE;
  630. tsk->parent_pcb = current_pcb;
  631. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  632. barrier();
  633. list_init(&tsk->list);
  634. retval = -ENOMEM;
  635. // 拷贝标志位
  636. if (process_copy_flags(clone_flags, tsk))
  637. goto copy_flags_failed;
  638. // 拷贝内存空间分布结构体
  639. if (process_copy_mm(clone_flags, tsk))
  640. goto copy_mm_failed;
  641. // 拷贝文件
  642. if (process_copy_files(clone_flags, tsk))
  643. goto copy_files_failed;
  644. // 拷贝线程结构体
  645. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  646. goto copy_thread_failed;
  647. // 拷贝成功
  648. retval = tsk->pid;
  649. tsk->flags &= ~PF_KFORK;
  650. // 唤醒进程
  651. process_wakeup(tsk);
  652. return retval;
  653. copy_thread_failed:;
  654. // 回收线程
  655. process_exit_thread(tsk);
  656. copy_files_failed:;
  657. // 回收文件
  658. process_exit_files(tsk);
  659. copy_mm_failed:;
  660. // 回收内存空间分布结构体
  661. process_exit_mm(tsk);
  662. copy_flags_failed:;
  663. kfree(tsk);
  664. return retval;
  665. return 0;
  666. }
  667. /**
  668. * @brief 根据pid获取进程的pcb
  669. *
  670. * @param pid
  671. * @return struct process_control_block*
  672. */
  673. struct process_control_block *process_get_pcb(long pid)
  674. {
  675. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  676. // 使用蛮力法搜索指定pid的pcb
  677. // todo: 使用哈希表来管理pcb
  678. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  679. {
  680. if (pcb->pid == pid)
  681. return pcb;
  682. }
  683. return NULL;
  684. }
  685. /**
  686. * @brief 将进程加入到调度器的就绪队列中
  687. *
  688. * @param pcb 进程的pcb
  689. */
  690. void process_wakeup(struct process_control_block *pcb)
  691. {
  692. pcb->state = PROC_RUNNING;
  693. sched_enqueue(pcb);
  694. }
  695. /**
  696. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  697. *
  698. * @param pcb 进程的pcb
  699. */
  700. void process_wakeup_immediately(struct process_control_block *pcb)
  701. {
  702. pcb->state = PROC_RUNNING;
  703. sched_enqueue(pcb);
  704. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  705. current_pcb->flags |= PF_NEED_SCHED;
  706. }
  707. /**
  708. * @brief 拷贝当前进程的标志位
  709. *
  710. * @param clone_flags 克隆标志位
  711. * @param pcb 新的进程的pcb
  712. * @return uint64_t
  713. */
  714. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  715. {
  716. if (clone_flags & CLONE_VM)
  717. pcb->flags |= PF_VFORK;
  718. return 0;
  719. }
  720. /**
  721. * @brief 拷贝当前进程的文件描述符等信息
  722. *
  723. * @param clone_flags 克隆标志位
  724. * @param pcb 新的进程的pcb
  725. * @return uint64_t
  726. */
  727. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  728. {
  729. int retval = 0;
  730. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  731. // 文件描述符已经在复制pcb时被拷贝
  732. if (clone_flags & CLONE_FS)
  733. return retval;
  734. // 为新进程拷贝新的文件描述符
  735. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  736. {
  737. if (current_pcb->fds[i] == NULL)
  738. continue;
  739. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  740. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  741. }
  742. return retval;
  743. }
  744. /**
  745. * @brief 回收进程的所有文件描述符
  746. *
  747. * @param pcb 要被回收的进程的pcb
  748. * @return uint64_t
  749. */
  750. uint64_t process_exit_files(struct process_control_block *pcb)
  751. {
  752. // 不与父进程共享文件描述符
  753. if (!(pcb->flags & PF_VFORK))
  754. {
  755. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  756. {
  757. if (pcb->fds[i] == NULL)
  758. continue;
  759. kfree(pcb->fds[i]);
  760. }
  761. }
  762. // 清空当前进程的文件描述符列表
  763. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  764. }
  765. /**
  766. * @brief 拷贝当前进程的内存空间分布结构体信息
  767. *
  768. * @param clone_flags 克隆标志位
  769. * @param pcb 新的进程的pcb
  770. * @return uint64_t
  771. */
  772. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  773. {
  774. int retval = 0;
  775. // 与父进程共享内存空间
  776. if (clone_flags & CLONE_VM)
  777. {
  778. pcb->mm = current_pcb->mm;
  779. return retval;
  780. }
  781. // 分配新的内存空间分布结构体
  782. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  783. memset(new_mms, 0, sizeof(struct mm_struct));
  784. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  785. new_mms->vmas = NULL;
  786. pcb->mm = new_mms;
  787. // 分配顶层页表, 并设置顶层页表的物理地址
  788. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  789. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  790. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  791. // 拷贝内核空间的页表指针
  792. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  793. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  794. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  795. // 拷贝用户空间的vma
  796. struct vm_area_struct *vma = current_pcb->mm->vmas;
  797. while (vma != NULL)
  798. {
  799. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  800. {
  801. vma = vma->vm_next;
  802. continue;
  803. }
  804. int64_t vma_size = vma->vm_end - vma->vm_start;
  805. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  806. if (vma_size > PAGE_2M_SIZE / 2)
  807. {
  808. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  809. for (int i = 0; i < page_to_alloc; ++i)
  810. {
  811. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  812. struct vm_area_struct *new_vma = NULL;
  813. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  814. // 防止内存泄露
  815. if (unlikely(ret == -EEXIST))
  816. free_pages(Phy_to_2M_Page(pa), 1);
  817. else
  818. mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
  819. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  820. vma_size -= PAGE_2M_SIZE;
  821. }
  822. }
  823. else
  824. {
  825. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  826. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  827. struct vm_area_struct *new_vma = NULL;
  828. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  829. // 防止内存泄露
  830. if (unlikely(ret == -EEXIST))
  831. kfree((void *)va);
  832. else
  833. mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
  834. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  835. }
  836. vma = vma->vm_next;
  837. }
  838. return retval;
  839. }
  840. /**
  841. * @brief 释放进程的页表
  842. *
  843. * @param pcb 要被释放页表的进程
  844. * @return uint64_t
  845. */
  846. uint64_t process_exit_mm(struct process_control_block *pcb)
  847. {
  848. if (pcb->flags & CLONE_VM)
  849. return 0;
  850. if (pcb->mm == NULL)
  851. {
  852. kdebug("pcb->mm==NULL");
  853. return 0;
  854. }
  855. if (pcb->mm->pgd == NULL)
  856. {
  857. kdebug("pcb->mm->pgd==NULL");
  858. return 0;
  859. }
  860. // // 获取顶层页表
  861. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  862. // 循环释放VMA中的内存
  863. struct vm_area_struct *vma = pcb->mm->vmas;
  864. while (vma != NULL)
  865. {
  866. struct vm_area_struct *cur_vma = vma;
  867. vma = cur_vma->vm_next;
  868. uint64_t pa;
  869. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  870. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  871. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  872. // 释放内存
  873. switch (size)
  874. {
  875. case PAGE_4K_SIZE:
  876. kfree(phys_2_virt(pa));
  877. break;
  878. default:
  879. break;
  880. }
  881. vm_area_del(cur_vma);
  882. vm_area_free(cur_vma);
  883. }
  884. // 释放顶层页表
  885. kfree(current_pgd);
  886. if (unlikely(pcb->mm->vmas != NULL))
  887. {
  888. kwarn("pcb.mm.vmas!=NULL");
  889. }
  890. // 释放内存空间分布结构体
  891. kfree(pcb->mm);
  892. return 0;
  893. }
  894. /**
  895. * @brief 重写内核栈中的rbp地址
  896. *
  897. * @param new_regs 子进程的reg
  898. * @param new_pcb 子进程的pcb
  899. * @return int
  900. */
  901. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  902. {
  903. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  904. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  905. uint64_t *rbp = &new_regs->rbp;
  906. uint64_t *tmp = rbp;
  907. // 超出内核栈范围
  908. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  909. return 0;
  910. while (1)
  911. {
  912. // 计算delta
  913. uint64_t delta = old_top - *rbp;
  914. // 计算新的rbp值
  915. uint64_t newVal = new_top - delta;
  916. // 新的值不合法
  917. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  918. break;
  919. // 将新的值写入对应位置
  920. *rbp = newVal;
  921. // 跳转栈帧
  922. rbp = (uint64_t *)*rbp;
  923. }
  924. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  925. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  926. return 0;
  927. }
  928. /**
  929. * @brief 拷贝当前进程的线程结构体
  930. *
  931. * @param clone_flags 克隆标志位
  932. * @param pcb 新的进程的pcb
  933. * @return uint64_t
  934. */
  935. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  936. {
  937. // 将线程结构体放置在pcb后方
  938. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  939. memset(thd, 0, sizeof(struct thread_struct));
  940. pcb->thread = thd;
  941. struct pt_regs *child_regs = NULL;
  942. // 拷贝栈空间
  943. if (pcb->flags & PF_KFORK) // 内核态下的fork
  944. {
  945. // 内核态下则拷贝整个内核栈
  946. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  947. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  948. memcpy(child_regs, (void *)current_regs, size);
  949. barrier();
  950. // 然后重写新的栈中,每个栈帧的rbp值
  951. process_rewrite_rbp(child_regs, pcb);
  952. }
  953. else
  954. {
  955. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  956. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  957. barrier();
  958. child_regs->rsp = stack_start;
  959. }
  960. // 设置子进程的返回值为0
  961. child_regs->rax = 0;
  962. if (pcb->flags & PF_KFORK)
  963. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  964. else
  965. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  966. // 设置新的内核线程开始执行的时候的rsp
  967. thd->rsp = (uint64_t)child_regs;
  968. thd->fs = current_pcb->thread->fs;
  969. thd->gs = current_pcb->thread->gs;
  970. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  971. if (pcb->flags & PF_KFORK)
  972. thd->rip = (uint64_t)ret_from_system_call;
  973. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  974. thd->rip = (uint64_t)kernel_thread_func;
  975. else
  976. thd->rip = (uint64_t)ret_from_system_call;
  977. return 0;
  978. }
  979. /**
  980. * @brief todo: 回收线程结构体
  981. *
  982. * @param pcb
  983. */
  984. void process_exit_thread(struct process_control_block *pcb)
  985. {
  986. }
  987. /**
  988. * @brief 申请可用的文件句柄
  989. *
  990. * @return int
  991. */
  992. int process_fd_alloc(struct vfs_file_t *file)
  993. {
  994. int fd_num = -1;
  995. struct vfs_file_t **f = current_pcb->fds;
  996. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  997. {
  998. /* 找到指针数组中的空位 */
  999. if (f[i] == NULL)
  1000. {
  1001. fd_num = i;
  1002. f[i] = file;
  1003. break;
  1004. }
  1005. }
  1006. return fd_num;
  1007. }