malloc.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. #include <libc/stdlib.h>
  2. #include <libsystem/syscall.h>
  3. #include <libc/stddef.h>
  4. #include <libc/unistd.h>
  5. #include <libc/errno.h>
  6. #include <libc/stdio.h>
  7. /**
  8. * @brief 显式链表的结点
  9. *
  10. */
  11. typedef struct malloc_mem_chunk_t
  12. {
  13. uint64_t length; // 整个块所占用的内存区域的大小
  14. struct malloc_mem_chunk_t *prev; // 上一个结点的指针
  15. struct malloc_mem_chunk_t *next; // 下一个结点的指针
  16. } malloc_mem_chunk_t;
  17. static uint64_t brk_base_addr = 0; // 堆区域的内存基地址
  18. static uint64_t brk_max_addr = 0; // 堆区域的内存最大地址
  19. static uint64_t brk_managed_addr = 0; // 堆区域已经被管理的地址
  20. // 空闲链表
  21. // 按start_addr升序排序
  22. static malloc_mem_chunk_t *malloc_free_list = NULL;
  23. /**
  24. * @brief 获取一块堆内存(不尝试扩大堆内存)
  25. *
  26. * @param size
  27. * @return void* 内存的地址指针,获取失败时返回-ENOMEM
  28. */
  29. static void *malloc_no_enlarge(ssize_t size);
  30. /**
  31. * @brief 将块插入空闲链表
  32. *
  33. * @param ck 待插入的块
  34. */
  35. static void malloc_insert_free_list(malloc_mem_chunk_t *ck);
  36. /**
  37. * @brief 在链表中检索符合要求的空闲块(best fit)
  38. *
  39. * @param size 块的大小
  40. * @return malloc_mem_chunk_t*
  41. */
  42. static malloc_mem_chunk_t *malloc_query_free_chunk_bf(uint64_t size)
  43. {
  44. // 在满足best fit的前提下,尽可能的使分配的内存在低地址
  45. // 使得总的堆内存可以更快被释放
  46. if (malloc_free_list == NULL)
  47. {
  48. printf("free list is none.\n");
  49. return NULL;
  50. }
  51. malloc_mem_chunk_t *ptr = malloc_free_list;
  52. malloc_mem_chunk_t *best = NULL;
  53. // printf("query size=%d", size);
  54. while (ptr != NULL)
  55. {
  56. // printf("ptr->length=%#010lx\n", ptr->length);
  57. if (ptr->length == size)
  58. {
  59. best = ptr;
  60. break;
  61. }
  62. if (ptr->length > size)
  63. {
  64. if (best == NULL)
  65. best = ptr;
  66. else if (best->length > ptr->length)
  67. best = ptr;
  68. }
  69. ptr = ptr->next;
  70. }
  71. return best;
  72. }
  73. /**
  74. * @brief 在链表中检索符合要求的空闲块(first fit)
  75. *
  76. * @param size
  77. * @return malloc_mem_chunk_t*
  78. */
  79. static malloc_mem_chunk_t *malloc_query_free_chunk_ff(uint64_t size)
  80. {
  81. if (malloc_free_list == NULL)
  82. return NULL;
  83. malloc_mem_chunk_t *ptr = malloc_free_list;
  84. while (ptr)
  85. {
  86. if (ptr->length >= size)
  87. {
  88. return ptr;
  89. }
  90. ptr = ptr->next;
  91. }
  92. return NULL;
  93. }
  94. /**
  95. * @brief 扩容malloc管理的内存区域
  96. *
  97. * @param size 扩大的内存大小
  98. */
  99. static int malloc_enlarge(int32_t size)
  100. {
  101. if (brk_base_addr == 0) // 第一次调用,需要初始化
  102. {
  103. brk_base_addr = brk(-1);
  104. printf("brk_base_addr=%#018lx\n", brk_base_addr);
  105. brk_managed_addr = brk_base_addr;
  106. brk_max_addr = brk(-2);
  107. }
  108. int64_t tmp = brk_managed_addr + size - brk_max_addr;
  109. if (tmp > 0) // 现有堆空间不足
  110. {
  111. if (sbrk(tmp) != (void *)(-1))
  112. brk_max_addr = brk((-2));
  113. else
  114. {
  115. put_string("malloc_enlarge(): no_mem\n", COLOR_YELLOW, COLOR_BLACK);
  116. return -ENOMEM;
  117. }
  118. }
  119. // 扩展管理的堆空间
  120. // 在新分配的内存的底部放置header
  121. malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)brk_managed_addr;
  122. new_ck->length = brk_max_addr - brk_managed_addr;
  123. printf("new_ck->start_addr=%#018lx\tbrk_max_addr=%#018lx\tbrk_managed_addr=%#018lx\n", (uint64_t)new_ck, brk_max_addr, brk_managed_addr);
  124. new_ck->prev = new_ck->next = NULL;
  125. brk_managed_addr = brk_max_addr;
  126. malloc_insert_free_list(new_ck);
  127. return 0;
  128. }
  129. /**
  130. * @brief 合并空闲块
  131. *
  132. */
  133. static void malloc_merge_free_chunk()
  134. {
  135. if (malloc_free_list == NULL)
  136. return;
  137. malloc_mem_chunk_t *ptr = malloc_free_list->next;
  138. while (ptr)
  139. {
  140. // 内存块连续
  141. if (((uint64_t)(ptr->prev) + ptr->prev->length == (uint64_t)ptr))
  142. {
  143. // 将ptr与前面的空闲块合并
  144. ptr->prev->length += ptr->length;
  145. ptr->prev->next = ptr->next;
  146. // 由于内存组成结构的原因,不需要free掉header
  147. ptr = ptr->prev;
  148. }
  149. ptr = ptr->next;
  150. }
  151. }
  152. /**
  153. * @brief 将块插入空闲链表
  154. *
  155. * @param ck 待插入的块
  156. */
  157. static void malloc_insert_free_list(malloc_mem_chunk_t *ck)
  158. {
  159. if (malloc_free_list == NULL) // 空闲链表为空
  160. {
  161. malloc_free_list = ck;
  162. ck->prev = ck->next = NULL;
  163. return;
  164. }
  165. else
  166. {
  167. uint64_t ck_end = (uint64_t)ck + ck->length;
  168. malloc_mem_chunk_t *ptr = malloc_free_list;
  169. while (ptr)
  170. {
  171. if ((uint64_t)ptr < (uint64_t)ck)
  172. {
  173. if (ptr->next == NULL) // 当前是最后一个项
  174. {
  175. ptr->next = ck;
  176. ck->next = NULL;
  177. ck->prev = ptr;
  178. break;
  179. }
  180. else if ((uint64_t)(ptr->next) > (uint64_t)ck)
  181. {
  182. ck->prev = ptr;
  183. ck->next = ptr->next;
  184. ck->prev->next = ck;
  185. ck->next->prev = ck;
  186. break;
  187. }
  188. }
  189. else // 在ptr之前插入
  190. {
  191. if (ptr->prev == NULL) // 是第一个项
  192. {
  193. malloc_free_list = ck;
  194. ck->prev = NULL;
  195. ck->next = ptr;
  196. ptr->prev = ck;
  197. break;
  198. }
  199. else
  200. {
  201. ck->prev = ptr->prev;
  202. ck->next = ptr;
  203. ck->prev->next = ck;
  204. ptr->prev = ck;
  205. break;
  206. }
  207. }
  208. ptr = ptr->next;
  209. }
  210. }
  211. }
  212. /**
  213. * @brief 获取一块堆内存
  214. *
  215. * @param size 内存大小
  216. * @return void* 内存空间的指针
  217. *
  218. * 分配内存的时候,结点的prev next指针所占用的空间被当做空闲空间分配出去
  219. */
  220. void *malloc(ssize_t size)
  221. {
  222. // 计算需要分配的块的大小
  223. if (size + sizeof(uint64_t) <= sizeof(malloc_mem_chunk_t))
  224. size = sizeof(malloc_mem_chunk_t);
  225. else
  226. size += sizeof(uint64_t);
  227. // 采用best fit
  228. malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
  229. if (ck == NULL) // 没有空闲块
  230. {
  231. // 尝试合并空闲块
  232. printf("merge\n");
  233. malloc_merge_free_chunk();
  234. ck = malloc_query_free_chunk_bf(size);
  235. // 找到了合适的块
  236. if (ck)
  237. goto found;
  238. // 找不到合适的块,扩容堆区域
  239. printf("enlarge\n");
  240. if (malloc_enlarge(size) == -ENOMEM)
  241. return (void *)-ENOMEM; // 内存不足
  242. // 扩容后再次尝试获取
  243. printf("query\n");
  244. ck = malloc_query_free_chunk_bf(size);
  245. }
  246. found:;
  247. // printf("ck = %#018lx\n", (uint64_t)ck);
  248. if (ck == NULL)
  249. return (void *)-ENOMEM;
  250. // 分配空闲块
  251. // 从空闲链表取出
  252. if (ck->prev == NULL) // 当前是链表的第一个块
  253. {
  254. malloc_free_list = ck->next;
  255. }
  256. else
  257. ck->prev->next = ck->next;
  258. if (ck->next != NULL) // 当前不是最后一个块
  259. ck->next->prev = ck->prev;
  260. // 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
  261. if (ck->length - size > sizeof(malloc_mem_chunk_t))
  262. {
  263. malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)(((uint64_t)ck) + size);
  264. new_ck->length = ck->length - size;
  265. new_ck->prev = new_ck->next = NULL;
  266. // printf("new_ck=%#018lx, new_ck->length=%#010lx\n", (uint64_t)new_ck, new_ck->length);
  267. ck->length = size;
  268. malloc_insert_free_list(new_ck);
  269. }
  270. // printf("ck=%lld\n", (uint64_t)ck);
  271. // 此时链表结点的指针的空间被分配出去
  272. return (void *)((uint64_t)ck + sizeof(uint64_t));
  273. }
  274. /**
  275. * @brief 释放一块堆内存
  276. *
  277. * @param ptr 堆内存的指针
  278. */
  279. void free(void *ptr)
  280. {
  281. // 找到结点(此时prev和next都处于未初始化的状态)
  282. malloc_mem_chunk_t * ck = (malloc_mem_chunk_t *)((uint64_t)ptr-sizeof(uint64_t));
  283. // printf("free(): addr = %#018lx\t len=%#018lx\n", (uint64_t)ck, ck->length);
  284. malloc_insert_free_list(ck);
  285. }