process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. extern void system_call(void);
  10. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  11. struct mm_struct initial_mm = {0};
  12. struct thread_struct initial_thread =
  13. {
  14. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  15. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  16. .fs = KERNEL_DS,
  17. .gs = KERNEL_DS,
  18. .cr2 = 0,
  19. .trap_num = 0,
  20. .err_code = 0};
  21. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  22. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  23. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  24. // 为每个核心初始化初始进程的tss
  25. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  26. /**
  27. * @brief 切换进程
  28. *
  29. * @param prev 上一个进程的pcb
  30. * @param next 将要切换到的进程的pcb
  31. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  32. * 这里切换fs和gs寄存器
  33. */
  34. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  35. {
  36. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  37. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  38. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  39. __asm__ __volatile__("movq %%fs, %0 \n\t"
  40. : "=a"(prev->thread->fs));
  41. __asm__ __volatile__("movq %%gs, %0 \n\t"
  42. : "=a"(prev->thread->gs));
  43. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  44. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  45. // wrmsr(0x175, next->thread->rbp);
  46. }
  47. /**
  48. * @brief 这是一个用户态的程序
  49. *
  50. */
  51. void user_level_function()
  52. {
  53. // kinfo("Program (user_level_function) is runing...");
  54. // kinfo("Try to enter syscall id 15...");
  55. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  56. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  57. // while(1);
  58. long ret = 0;
  59. // printk_color(RED,BLACK,"user_level_function task is running\n");
  60. char string[] = "User level process.\n";
  61. /*
  62. __asm__ __volatile__("leaq sysexit_return_address(%%rip), %%rdx \n\t"
  63. "movq %%rsp, %%rcx \n\t"
  64. "sysenter \n\t"
  65. "sysexit_return_address: \n\t"
  66. : "=a"(ret)
  67. : "0"(1), "D"(string)
  68. : "memory");
  69. */
  70. long err_code=1;
  71. ul addr = (ul)string;
  72. __asm__ __volatile__(
  73. "movq %2, %%r8 \n\t"
  74. "int $0x80 \n\t"
  75. : "=a"(err_code)
  76. : "a"(SYS_PUT_STRING), "m"(addr)
  77. : "memory", "r8");
  78. if(err_code ==0)
  79. {
  80. char str[] ="errno is 0";
  81. addr = (ul)str;
  82. __asm__ __volatile__(
  83. "movq %2, %%r8 \n\t"
  84. "int $0x80 \n\t"
  85. : "=a"(err_code)
  86. : "a"(SYS_PUT_STRING), "m"(addr)
  87. : "memory", "r8");
  88. }
  89. // enter_syscall_int(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  90. // kinfo("Return from syscall id 15...");
  91. while (1)
  92. pause();
  93. }
  94. /**
  95. * @brief 使当前进程去执行新的代码
  96. *
  97. * @param regs 当前进程的寄存器
  98. * @return ul 错误码
  99. */
  100. ul do_execve(struct pt_regs *regs)
  101. {
  102. // 选择这两个寄存器是对应了sysexit指令的需要
  103. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  104. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  105. regs->cs = USER_CS | 3;
  106. regs->ds = USER_DS | 3;
  107. regs->ss = USER_DS | 0x3;
  108. regs->rflags = 0x200246;
  109. regs->rax = 1;
  110. regs->es = 0;
  111. // kdebug("do_execve is running...");
  112. // 映射起始页面
  113. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  114. uint64_t addr = 0x800000UL;
  115. /*
  116. unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
  117. unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
  118. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  119. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  120. virtual = kmalloc(PAGE_4K_SIZE, 0);
  121. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  122. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  123. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  124. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  125. flush_tlb();
  126. */
  127. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  128. if (!(current_pcb->flags & PF_KTHREAD))
  129. current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
  130. // 将程序代码拷贝到对应的内存中
  131. memcpy((void *)0x800000, user_level_function, 1024);
  132. // kdebug("program copied!");
  133. return 0;
  134. }
  135. /**
  136. * @brief 内核init进程
  137. *
  138. * @param arg
  139. * @return ul 参数
  140. */
  141. ul initial_kernel_thread(ul arg)
  142. {
  143. // kinfo("initial proc running...\targ:%#018lx", arg);
  144. struct pt_regs *regs;
  145. current_pcb->thread->rip = (ul)ret_from_system_call;
  146. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  147. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  148. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  149. regs = (struct pt_regs *)current_pcb->thread->rsp;
  150. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  151. current_pcb->flags = 0;
  152. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  153. __asm__ __volatile__("movq %1, %%rsp \n\t"
  154. "pushq %2 \n\t"
  155. "jmp do_execve \n\t" ::"D"(regs),
  156. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  157. : "memory");
  158. return 1;
  159. }
  160. /**
  161. * @brief 进程退出时执行的函数
  162. *
  163. * @param code 返回码
  164. * @return ul
  165. */
  166. ul process_thread_do_exit(ul code)
  167. {
  168. kinfo("thread_exiting..., code is %#018lx.", code);
  169. while (1)
  170. ;
  171. }
  172. /**
  173. * @brief 导出内核线程的执行引导程序
  174. * 目的是还原执行现场(在kernel_thread中伪造的)
  175. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  176. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  177. */
  178. extern void kernel_thread_func(void);
  179. __asm__(
  180. "kernel_thread_func: \n\t"
  181. " popq %r15 \n\t"
  182. " popq %r14 \n\t"
  183. " popq %r13 \n\t"
  184. " popq %r12 \n\t"
  185. " popq %r11 \n\t"
  186. " popq %r10 \n\t"
  187. " popq %r9 \n\t"
  188. " popq %r8 \n\t"
  189. " popq %rbx \n\t"
  190. " popq %rcx \n\t"
  191. " popq %rdx \n\t"
  192. " popq %rsi \n\t"
  193. " popq %rdi \n\t"
  194. " popq %rbp \n\t"
  195. " popq %rax \n\t"
  196. " movq %rax, %ds \n\t"
  197. " popq %rax \n\t"
  198. " movq %rax, %es \n\t"
  199. " popq %rax \n\t"
  200. " addq $0x38, %rsp \n\t"
  201. /////////////////////////////////
  202. " movq %rdx, %rdi \n\t"
  203. " callq *%rbx \n\t"
  204. " movq %rax, %rdi \n\t"
  205. " callq process_thread_do_exit \n\t");
  206. /**
  207. * @brief 初始化内核进程
  208. *
  209. * @param fn 目标程序的地址
  210. * @param arg 向目标程序传入的参数
  211. * @param flags
  212. * @return int
  213. */
  214. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  215. {
  216. struct pt_regs regs;
  217. memset(&regs, 0, sizeof(regs));
  218. // 在rbx寄存器中保存进程的入口地址
  219. regs.rbx = (ul)fn;
  220. // 在rdx寄存器中保存传入的参数
  221. regs.rdx = (ul)arg;
  222. regs.ds = KERNEL_DS;
  223. regs.es = KERNEL_DS;
  224. regs.cs = KERNEL_CS;
  225. regs.ss = KERNEL_DS;
  226. // 置位中断使能标志位
  227. regs.rflags = (1 << 9);
  228. // rip寄存器指向内核线程的引导程序
  229. regs.rip = (ul)kernel_thread_func;
  230. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  231. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  232. return do_fork(&regs, flags, 0, 0);
  233. }
  234. /**
  235. * @brief 初始化进程模块
  236. * ☆前置条件:已完成系统调用模块的初始化
  237. */
  238. void process_init()
  239. {
  240. kinfo("Initializing process...");
  241. initial_mm.pgd = (pml4t_t *)global_CR3;
  242. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  243. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  244. initial_mm.data_addr_start = (ul)&_data;
  245. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  246. initial_mm.rodata_addr_start = (ul)&_rodata;
  247. initial_mm.rodata_addr_end = (ul)&_erodata;
  248. initial_mm.brk_start = 0;
  249. initial_mm.brk_end = memory_management_struct.kernel_end;
  250. initial_mm.stack_start = _stack_start;
  251. /*
  252. // 向MSR寄存器组中的 IA32_SYSENTER_CS寄存器写入内核的代码段的地址
  253. wrmsr(0x174, KERNEL_CS);
  254. // 向MSR寄存器组中的 IA32_SYSENTER_ESP寄存器写入内核进程的rbp(在syscall入口中会将rsp减去相应的数值)
  255. wrmsr(0x175, current_pcb->thread->rbp);
  256. // 向MSR寄存器组中的 IA32_SYSENTER_EIP寄存器写入系统调用入口的地址。
  257. wrmsr(0x176, (ul)system_call);
  258. */
  259. // 初始化进程和tss
  260. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  261. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  262. /*
  263. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  264. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  265. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  266. */
  267. // 初始化进程的循环链表
  268. list_init(&initial_proc_union.pcb.list);
  269. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  270. initial_proc_union.pcb.state = PROC_RUNNING;
  271. initial_proc_union.pcb.preempt_count = 0;
  272. // 获取新的进程的pcb
  273. // struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  274. // kdebug("Ready to switch...");
  275. // 切换到新的内核线程
  276. // switch_proc(current_pcb, p);
  277. }
  278. /**
  279. * @brief fork当前进程
  280. *
  281. * @param regs 新的寄存器值
  282. * @param clone_flags 克隆标志
  283. * @param stack_start 堆栈开始地址
  284. * @param stack_size 堆栈大小
  285. * @return unsigned long
  286. */
  287. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  288. {
  289. struct process_control_block *tsk = NULL;
  290. // 获取一个物理页并在这个物理页内初始化pcb
  291. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  292. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  293. memset(tsk, 0, sizeof(struct process_control_block));
  294. // 将当前进程的pcb复制到新的pcb内
  295. *tsk = *current_pcb;
  296. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  297. // 将进程加入循环链表
  298. list_init(&tsk->list);
  299. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  300. tsk->priority = 2;
  301. tsk->preempt_count = 0;
  302. ++(tsk->pid);
  303. tsk->cpu_id = proc_current_cpu_id;
  304. tsk->state = PROC_UNINTERRUPTIBLE;
  305. list_init(&tsk->list);
  306. list_add(&initial_proc_union.pcb.list, &tsk->list);
  307. // 将线程结构体放置在pcb的后面
  308. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  309. memset(thd, 0, sizeof(struct thread_struct));
  310. tsk->thread = thd;
  311. // 将寄存器信息存储到进程的内核栈空间的顶部
  312. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  313. // 设置进程的内核栈
  314. thd->rbp = (ul)tsk + STACK_SIZE;
  315. thd->rip = regs->rip;
  316. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  317. thd->fs = KERNEL_DS;
  318. thd->gs = KERNEL_DS;
  319. // kdebug("do_fork() thd->rsp=%#018lx", thd->rsp);
  320. // 若进程不是内核层的进程,则跳转到ret from system call
  321. if (!(tsk->flags & PF_KTHREAD))
  322. thd->rip = regs->rip = (ul)ret_from_system_call;
  323. else
  324. kdebug("is kernel proc.");
  325. tsk->state = PROC_RUNNING;
  326. sched_cfs_enqueue(tsk);
  327. return 0;
  328. }