page.rs 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. use core::{
  2. fmt::{self, Debug, Error, Formatter},
  3. marker::PhantomData,
  4. mem,
  5. ops::Add,
  6. sync::atomic::{compiler_fence, Ordering},
  7. };
  8. use alloc::sync::Arc;
  9. use hashbrown::{HashMap, HashSet};
  10. use log::{error, info};
  11. use crate::{
  12. arch::{interrupt::ipi::send_ipi, MMArch},
  13. exception::ipi::{IpiKind, IpiTarget},
  14. ipc::shm::ShmId,
  15. libs::{
  16. rwlock::RwLock,
  17. spinlock::{SpinLock, SpinLockGuard},
  18. },
  19. };
  20. use super::{
  21. allocator::page_frame::{FrameAllocator, PageFrameCount, PhysPageFrame},
  22. syscall::ProtFlags,
  23. ucontext::LockedVMA,
  24. MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr,
  25. };
  26. pub const PAGE_4K_SHIFT: usize = 12;
  27. #[allow(dead_code)]
  28. pub const PAGE_2M_SHIFT: usize = 21;
  29. pub const PAGE_1G_SHIFT: usize = 30;
  30. pub const PAGE_4K_SIZE: usize = 1 << PAGE_4K_SHIFT;
  31. pub const PAGE_2M_SIZE: usize = 1 << PAGE_2M_SHIFT;
  32. /// 全局物理页信息管理器
  33. pub static mut PAGE_MANAGER: Option<SpinLock<PageManager>> = None;
  34. /// 初始化PAGE_MANAGER
  35. pub fn page_manager_init() {
  36. info!("page_manager_init");
  37. let page_manager = SpinLock::new(PageManager::new());
  38. compiler_fence(Ordering::SeqCst);
  39. unsafe { PAGE_MANAGER = Some(page_manager) };
  40. compiler_fence(Ordering::SeqCst);
  41. info!("page_manager_init done");
  42. }
  43. pub fn page_manager_lock_irqsave() -> SpinLockGuard<'static, PageManager> {
  44. unsafe { PAGE_MANAGER.as_ref().unwrap().lock_irqsave() }
  45. }
  46. // 物理页管理器
  47. pub struct PageManager {
  48. phys2page: HashMap<PhysAddr, Arc<Page>>,
  49. }
  50. impl PageManager {
  51. pub fn new() -> Self {
  52. Self {
  53. phys2page: HashMap::new(),
  54. }
  55. }
  56. pub fn contains(&self, paddr: &PhysAddr) -> bool {
  57. self.phys2page.contains_key(paddr)
  58. }
  59. pub fn get(&self, paddr: &PhysAddr) -> Option<Arc<Page>> {
  60. self.phys2page.get(paddr).cloned()
  61. }
  62. pub fn get_unwrap(&self, paddr: &PhysAddr) -> Arc<Page> {
  63. self.phys2page
  64. .get(paddr)
  65. .unwrap_or_else(|| panic!("Phys Page not found, {:?}", paddr))
  66. .clone()
  67. }
  68. // pub fn get_mut(&mut self, paddr: &PhysAddr) -> RwLockWriteGuard<Page> {
  69. // self.phys2page
  70. // .get_mut(paddr)
  71. // .unwrap_or_else(|| panic!("{:?}", paddr))
  72. // .write()
  73. // }
  74. pub fn insert(&mut self, paddr: PhysAddr, page: &Arc<Page>) {
  75. self.phys2page.insert(paddr, page.clone());
  76. }
  77. pub fn remove_page(&mut self, paddr: &PhysAddr) {
  78. self.phys2page.remove(paddr);
  79. }
  80. }
  81. bitflags! {
  82. pub struct PageFlags: u64 {
  83. const PG_LOCKED = 1 << 0;
  84. const PG_WRITEBACK = 1 << 1;
  85. const PG_REFERENCED = 1 << 2;
  86. const PG_UPTODATE = 1 << 3;
  87. const PG_DIRTY = 1 << 4;
  88. const PG_LRU = 1 << 5;
  89. const PG_HEAD = 1 << 6;
  90. const PG_WAITERS = 1 << 7;
  91. const PG_ACTIVE = 1 << 8;
  92. const PG_WORKINGSET = 1 << 9;
  93. const PG_ERROR = 1 << 10;
  94. const PG_SLAB = 1 << 11;
  95. const PG_RESERVED = 1 << 14;
  96. const PG_PRIVATE = 1 << 15;
  97. const PG_RECLAIM = 1 << 18;
  98. const PG_SWAPBACKED = 1 << 19;
  99. }
  100. }
  101. #[derive(Debug)]
  102. pub struct Page {
  103. inner: RwLock<InnerPage>,
  104. }
  105. impl core::ops::Deref for Page {
  106. type Target = RwLock<InnerPage>;
  107. fn deref(&self) -> &Self::Target {
  108. &self.inner
  109. }
  110. }
  111. impl core::ops::DerefMut for Page {
  112. fn deref_mut(&mut self) -> &mut Self::Target {
  113. &mut self.inner
  114. }
  115. }
  116. impl Page {
  117. pub fn new(shared: bool, phys_frame: PhysPageFrame) -> Self {
  118. let inner = InnerPage::new(shared, phys_frame);
  119. Self {
  120. inner: RwLock::new(inner),
  121. }
  122. }
  123. }
  124. #[derive(Debug)]
  125. /// 物理页面信息
  126. pub struct InnerPage {
  127. /// 映射计数
  128. map_count: usize,
  129. /// 是否为共享页
  130. shared: bool,
  131. /// 映射计数为0时,是否可回收
  132. free_when_zero: bool,
  133. /// 共享页id(如果是共享页)
  134. shm_id: Option<ShmId>,
  135. /// 映射到当前page的VMA
  136. anon_vma: HashSet<Arc<LockedVMA>>,
  137. /// 标志
  138. flags: PageFlags,
  139. /// 页所在的物理页帧号
  140. phys_frame: PhysPageFrame,
  141. }
  142. impl InnerPage {
  143. pub fn new(shared: bool, phys_frame: PhysPageFrame) -> Self {
  144. let dealloc_when_zero = !shared;
  145. Self {
  146. map_count: 0,
  147. shared,
  148. free_when_zero: dealloc_when_zero,
  149. shm_id: None,
  150. anon_vma: HashSet::new(),
  151. flags: PageFlags::empty(),
  152. phys_frame,
  153. }
  154. }
  155. /// 将vma加入anon_vma
  156. pub fn insert_vma(&mut self, vma: Arc<LockedVMA>) {
  157. self.anon_vma.insert(vma);
  158. self.map_count += 1;
  159. }
  160. /// 将vma从anon_vma中删去
  161. pub fn remove_vma(&mut self, vma: &LockedVMA) {
  162. self.anon_vma.remove(vma);
  163. self.map_count -= 1;
  164. }
  165. /// 判断当前物理页是否能被回
  166. pub fn can_deallocate(&self) -> bool {
  167. self.map_count == 0 && self.free_when_zero
  168. }
  169. pub fn shared(&self) -> bool {
  170. self.shared
  171. }
  172. pub fn shm_id(&self) -> Option<ShmId> {
  173. self.shm_id
  174. }
  175. pub fn set_shm_id(&mut self, shm_id: ShmId) {
  176. self.shm_id = Some(shm_id);
  177. }
  178. pub fn set_dealloc_when_zero(&mut self, dealloc_when_zero: bool) {
  179. self.free_when_zero = dealloc_when_zero;
  180. }
  181. #[inline(always)]
  182. pub fn anon_vma(&self) -> &HashSet<Arc<LockedVMA>> {
  183. &self.anon_vma
  184. }
  185. #[inline(always)]
  186. pub fn map_count(&self) -> usize {
  187. self.map_count
  188. }
  189. #[inline(always)]
  190. pub fn flags(&self) -> &PageFlags {
  191. &self.flags
  192. }
  193. #[inline(always)]
  194. pub fn phys_frame(&self) -> &PhysPageFrame {
  195. &self.phys_frame
  196. }
  197. #[inline(always)]
  198. pub fn phys_address(&self) -> PhysAddr {
  199. self.phys_frame.phys_address()
  200. }
  201. }
  202. #[derive(Debug)]
  203. pub struct PageTable<Arch> {
  204. /// 当前页表表示的虚拟地址空间的起始地址
  205. base: VirtAddr,
  206. /// 当前页表所在的物理地址
  207. phys: PhysAddr,
  208. /// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
  209. level: usize,
  210. phantom: PhantomData<Arch>,
  211. }
  212. #[allow(dead_code)]
  213. impl<Arch: MemoryManagementArch> PageTable<Arch> {
  214. pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
  215. Self {
  216. base,
  217. phys,
  218. level,
  219. phantom: PhantomData,
  220. }
  221. }
  222. /// 获取顶级页表
  223. ///
  224. /// ## 参数
  225. ///
  226. /// - table_kind 页表类型
  227. ///
  228. /// ## 返回值
  229. ///
  230. /// 返回顶级页表
  231. pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
  232. return Self::new(
  233. VirtAddr::new(0),
  234. Arch::table(table_kind),
  235. Arch::PAGE_LEVELS - 1,
  236. );
  237. }
  238. /// 获取当前页表的物理地址
  239. #[inline(always)]
  240. pub fn phys(&self) -> PhysAddr {
  241. self.phys
  242. }
  243. /// 当前页表表示的虚拟地址空间的起始地址
  244. #[inline(always)]
  245. pub fn base(&self) -> VirtAddr {
  246. self.base
  247. }
  248. /// 获取当前页表的层级
  249. #[inline(always)]
  250. pub fn level(&self) -> usize {
  251. self.level
  252. }
  253. /// 获取当前页表自身所在的虚拟地址
  254. #[inline(always)]
  255. pub unsafe fn virt(&self) -> VirtAddr {
  256. return Arch::phys_2_virt(self.phys).unwrap();
  257. }
  258. /// 获取第i个页表项所表示的虚拟内存空间的起始地址
  259. pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
  260. if i < Arch::PAGE_ENTRY_NUM {
  261. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  262. return Some(self.base.add(i << shift));
  263. } else {
  264. return None;
  265. }
  266. }
  267. /// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
  268. pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
  269. if i < Arch::PAGE_ENTRY_NUM {
  270. return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
  271. } else {
  272. return None;
  273. }
  274. }
  275. /// 获取当前页表的第i个页表项
  276. pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
  277. let entry_virt = self.entry_virt(i)?;
  278. return Some(PageEntry::from_usize(Arch::read::<usize>(entry_virt)));
  279. }
  280. /// 设置当前页表的第i个页表项
  281. pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
  282. let entry_virt = self.entry_virt(i)?;
  283. Arch::write::<usize>(entry_virt, entry.data());
  284. return Some(());
  285. }
  286. /// 判断当前页表的第i个页表项是否已经填写了值
  287. ///
  288. /// ## 参数
  289. /// - Some(true) 如果已经填写了值
  290. /// - Some(false) 如果未填写值
  291. /// - None 如果i超出了页表项的范围
  292. pub fn entry_mapped(&self, i: usize) -> Option<bool> {
  293. let etv = unsafe { self.entry_virt(i) }?;
  294. if unsafe { Arch::read::<usize>(etv) } != 0 {
  295. return Some(true);
  296. } else {
  297. return Some(false);
  298. }
  299. }
  300. /// 根据虚拟地址,获取对应的页表项在页表中的下标
  301. ///
  302. /// ## 参数
  303. ///
  304. /// - addr: 虚拟地址
  305. ///
  306. /// ## 返回值
  307. ///
  308. /// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
  309. pub fn index_of(&self, addr: VirtAddr) -> Option<usize> {
  310. let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
  311. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  312. let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
  313. if addr < self.base || addr >= self.base.add(mask) {
  314. return None;
  315. } else {
  316. return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
  317. }
  318. }
  319. /// 获取第i个页表项指向的下一级页表
  320. pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
  321. if self.level == 0 {
  322. return None;
  323. }
  324. // 返回下一级页表
  325. return Some(PageTable::new(
  326. self.entry_base(index)?,
  327. self.entry(index)?.address().ok()?,
  328. self.level - 1,
  329. ));
  330. }
  331. /// 拷贝页表
  332. /// ## 参数
  333. ///
  334. /// - `allocator`: 物理页框分配器
  335. /// - `copy_on_write`: 是否写时复制
  336. pub unsafe fn clone(
  337. &self,
  338. allocator: &mut impl FrameAllocator,
  339. copy_on_write: bool,
  340. ) -> Option<PageTable<Arch>> {
  341. // 分配新页面作为新的页表
  342. let phys = allocator.allocate_one()?;
  343. let frame = MMArch::phys_2_virt(phys).unwrap();
  344. MMArch::write_bytes(frame, 0, MMArch::PAGE_SIZE);
  345. let new_table = PageTable::new(self.base, phys, self.level);
  346. if self.level == 0 {
  347. for i in 0..Arch::PAGE_ENTRY_NUM {
  348. if let Some(mut entry) = self.entry(i) {
  349. if entry.present() {
  350. if copy_on_write {
  351. let mut new_flags = entry.flags().set_write(false);
  352. entry.set_flags(new_flags);
  353. self.set_entry(i, entry);
  354. new_flags = new_flags.set_dirty(false);
  355. entry.set_flags(new_flags);
  356. new_table.set_entry(i, entry);
  357. } else {
  358. let phys = allocator.allocate_one()?;
  359. let mut anon_vma_guard = page_manager_lock_irqsave();
  360. anon_vma_guard.insert(
  361. phys,
  362. &Arc::new(Page::new(false, PhysPageFrame::new(phys))),
  363. );
  364. let old_phys = entry.address().unwrap();
  365. let frame = MMArch::phys_2_virt(phys).unwrap().data() as *mut u8;
  366. frame.copy_from_nonoverlapping(
  367. MMArch::phys_2_virt(old_phys).unwrap().data() as *mut u8,
  368. MMArch::PAGE_SIZE,
  369. );
  370. new_table.set_entry(i, PageEntry::new(phys, entry.flags()));
  371. }
  372. }
  373. }
  374. }
  375. } else {
  376. // 非一级页表拷贝时,对每个页表项对应的页表都进行拷贝
  377. for i in 0..MMArch::PAGE_ENTRY_NUM {
  378. if let Some(next_table) = self.next_level_table(i) {
  379. let table = next_table.clone(allocator, copy_on_write)?;
  380. let old_entry = self.entry(i).unwrap();
  381. let entry = PageEntry::new(table.phys(), old_entry.flags());
  382. new_table.set_entry(i, entry);
  383. }
  384. }
  385. }
  386. Some(new_table)
  387. }
  388. }
  389. /// 页表项
  390. #[derive(Copy, Clone)]
  391. pub struct PageEntry<Arch> {
  392. data: usize,
  393. phantom: PhantomData<Arch>,
  394. }
  395. impl<Arch> Debug for PageEntry<Arch> {
  396. fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
  397. f.write_fmt(format_args!("PageEntry({:#x})", self.data))
  398. }
  399. }
  400. impl<Arch: MemoryManagementArch> PageEntry<Arch> {
  401. #[inline(always)]
  402. pub fn new(paddr: PhysAddr, flags: EntryFlags<Arch>) -> Self {
  403. Self {
  404. data: MMArch::make_entry(paddr, flags.data()),
  405. phantom: PhantomData,
  406. }
  407. }
  408. #[inline(always)]
  409. pub fn from_usize(data: usize) -> Self {
  410. Self {
  411. data,
  412. phantom: PhantomData,
  413. }
  414. }
  415. #[inline(always)]
  416. pub fn data(&self) -> usize {
  417. self.data
  418. }
  419. /// 获取当前页表项指向的物理地址
  420. ///
  421. /// ## 返回值
  422. ///
  423. /// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
  424. /// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
  425. #[inline(always)]
  426. pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
  427. let paddr: PhysAddr = {
  428. #[cfg(target_arch = "x86_64")]
  429. {
  430. PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK)
  431. }
  432. #[cfg(target_arch = "riscv64")]
  433. {
  434. let ppn = ((self.data & (!((1 << 10) - 1))) >> 10) & ((1 << 54) - 1);
  435. super::allocator::page_frame::PhysPageFrame::from_ppn(ppn).phys_address()
  436. }
  437. };
  438. if self.present() {
  439. Ok(paddr)
  440. } else {
  441. Err(paddr)
  442. }
  443. }
  444. #[inline(always)]
  445. pub fn flags(&self) -> EntryFlags<Arch> {
  446. unsafe { EntryFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
  447. }
  448. #[inline(always)]
  449. pub fn set_flags(&mut self, flags: EntryFlags<Arch>) {
  450. self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
  451. }
  452. #[inline(always)]
  453. pub fn present(&self) -> bool {
  454. return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
  455. }
  456. #[inline(always)]
  457. pub fn empty(&self) -> bool {
  458. self.data & !(Arch::ENTRY_FLAG_DIRTY & Arch::ENTRY_FLAG_ACCESSED) == 0
  459. }
  460. #[inline(always)]
  461. pub fn protnone(&self) -> bool {
  462. return self.data & (Arch::ENTRY_FLAG_PRESENT | Arch::ENTRY_FLAG_GLOBAL)
  463. == Arch::ENTRY_FLAG_GLOBAL;
  464. }
  465. #[inline(always)]
  466. pub fn write(&self) -> bool {
  467. return self.data & Arch::ENTRY_FLAG_READWRITE != 0;
  468. }
  469. }
  470. /// 页表项的标志位
  471. #[derive(Copy, Clone, Hash)]
  472. pub struct EntryFlags<Arch> {
  473. data: usize,
  474. phantom: PhantomData<Arch>,
  475. }
  476. impl<Arch: MemoryManagementArch> Default for EntryFlags<Arch> {
  477. fn default() -> Self {
  478. Self::new()
  479. }
  480. }
  481. #[allow(dead_code)]
  482. impl<Arch: MemoryManagementArch> EntryFlags<Arch> {
  483. #[inline(always)]
  484. pub fn new() -> Self {
  485. let mut r = unsafe {
  486. Self::from_data(
  487. Arch::ENTRY_FLAG_DEFAULT_PAGE
  488. | Arch::ENTRY_FLAG_READONLY
  489. | Arch::ENTRY_FLAG_NO_EXEC,
  490. )
  491. };
  492. #[cfg(target_arch = "x86_64")]
  493. {
  494. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  495. r = r.set_execute(true);
  496. }
  497. }
  498. return r;
  499. }
  500. /// 根据ProtFlags生成EntryFlags
  501. ///
  502. /// ## 参数
  503. ///
  504. /// - prot_flags: 页的保护标志
  505. /// - user: 用户空间是否可访问
  506. pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> EntryFlags<Arch> {
  507. let vm_flags = super::VmFlags::from(prot_flags);
  508. // let flags: EntryFlags<Arch> = EntryFlags::new()
  509. // .set_user(user)
  510. // .set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
  511. // .set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
  512. let flags = Arch::vm_get_page_prot(vm_flags).set_user(user);
  513. return flags;
  514. }
  515. #[inline(always)]
  516. pub fn data(&self) -> usize {
  517. self.data
  518. }
  519. #[inline(always)]
  520. pub const unsafe fn from_data(data: usize) -> Self {
  521. return Self {
  522. data,
  523. phantom: PhantomData,
  524. };
  525. }
  526. /// 为新页表的页表项设置默认值
  527. ///
  528. /// 默认值为:
  529. /// - present
  530. /// - read only
  531. /// - kernel space
  532. /// - no exec
  533. #[inline(always)]
  534. pub fn new_page_table(user: bool) -> Self {
  535. return unsafe {
  536. let r = {
  537. #[cfg(target_arch = "x86_64")]
  538. {
  539. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE)
  540. }
  541. #[cfg(target_arch = "riscv64")]
  542. {
  543. // riscv64指向下一级页表的页表项,不应设置R/W/X权限位
  544. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE)
  545. }
  546. };
  547. #[cfg(target_arch = "x86_64")]
  548. {
  549. if user {
  550. r.set_user(true)
  551. } else {
  552. r
  553. }
  554. }
  555. #[cfg(target_arch = "riscv64")]
  556. {
  557. r
  558. }
  559. };
  560. }
  561. /// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
  562. ///
  563. /// ## 参数
  564. /// - flag 要更新的标志位的值
  565. /// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
  566. ///
  567. /// ## 返回值
  568. ///
  569. /// 更新后的页表项
  570. #[inline(always)]
  571. #[must_use]
  572. pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
  573. if value {
  574. self.data |= flag;
  575. } else {
  576. self.data &= !flag;
  577. }
  578. return self;
  579. }
  580. /// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
  581. #[inline(always)]
  582. pub fn has_flag(&self, flag: usize) -> bool {
  583. return self.data & flag == flag;
  584. }
  585. #[inline(always)]
  586. pub fn present(&self) -> bool {
  587. return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
  588. }
  589. /// 设置当前页表项的权限
  590. ///
  591. /// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
  592. #[must_use]
  593. #[inline(always)]
  594. pub fn set_user(self, value: bool) -> Self {
  595. return self.update_flags(Arch::ENTRY_FLAG_USER, value);
  596. }
  597. /// 用户态是否可以访问当前页表项
  598. #[inline(always)]
  599. pub fn has_user(&self) -> bool {
  600. return self.has_flag(Arch::ENTRY_FLAG_USER);
  601. }
  602. /// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
  603. ///
  604. /// ## 返回值
  605. ///
  606. /// 更新后的页表项.
  607. ///
  608. /// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
  609. #[must_use]
  610. #[inline(always)]
  611. pub fn set_write(self, value: bool) -> Self {
  612. #[cfg(target_arch = "x86_64")]
  613. {
  614. // 有的架构同时具有可写和不可写的标志位,因此需要同时更新
  615. return self
  616. .update_flags(Arch::ENTRY_FLAG_READONLY, !value)
  617. .update_flags(Arch::ENTRY_FLAG_READWRITE, value);
  618. }
  619. #[cfg(target_arch = "riscv64")]
  620. {
  621. if value {
  622. return self.update_flags(Arch::ENTRY_FLAG_READWRITE, true);
  623. } else {
  624. return self
  625. .update_flags(Arch::ENTRY_FLAG_READONLY, true)
  626. .update_flags(Arch::ENTRY_FLAG_WRITEABLE, false);
  627. }
  628. }
  629. }
  630. /// 当前页表项是否可写
  631. #[inline(always)]
  632. pub fn has_write(&self) -> bool {
  633. // 有的架构同时具有可写和不可写的标志位,因此需要同时判断
  634. return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
  635. == Arch::ENTRY_FLAG_READWRITE;
  636. }
  637. /// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
  638. #[must_use]
  639. #[inline(always)]
  640. pub fn set_execute(self, mut value: bool) -> Self {
  641. #[cfg(target_arch = "x86_64")]
  642. {
  643. // 如果xd位被保留,那么将可执行性设置为true
  644. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  645. value = true;
  646. }
  647. }
  648. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
  649. return self
  650. .update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
  651. .update_flags(Arch::ENTRY_FLAG_EXEC, value);
  652. }
  653. /// 当前页表项是否可执行
  654. #[inline(always)]
  655. pub fn has_execute(&self) -> bool {
  656. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
  657. return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
  658. == Arch::ENTRY_FLAG_EXEC;
  659. }
  660. /// 设置当前页表项的缓存策略
  661. ///
  662. /// ## 参数
  663. ///
  664. /// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
  665. #[inline(always)]
  666. pub fn set_page_cache_disable(self, value: bool) -> Self {
  667. return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
  668. }
  669. /// 获取当前页表项的缓存策略
  670. ///
  671. /// ## 返回值
  672. ///
  673. /// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
  674. #[inline(always)]
  675. pub fn has_page_cache_disable(&self) -> bool {
  676. return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
  677. }
  678. /// 设置当前页表项的写穿策略
  679. ///
  680. /// ## 参数
  681. ///
  682. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  683. #[inline(always)]
  684. pub fn set_page_write_through(self, value: bool) -> Self {
  685. return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
  686. }
  687. #[inline(always)]
  688. pub fn set_page_global(self, value: bool) -> Self {
  689. return self.update_flags(MMArch::ENTRY_FLAG_GLOBAL, value);
  690. }
  691. /// 获取当前页表项的写穿策略
  692. ///
  693. /// ## 返回值
  694. ///
  695. /// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
  696. #[inline(always)]
  697. pub fn has_page_write_through(&self) -> bool {
  698. return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
  699. }
  700. /// 设置当前页表是否为脏页
  701. ///
  702. /// ## 参数
  703. ///
  704. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  705. #[inline(always)]
  706. pub fn set_dirty(self, value: bool) -> Self {
  707. return self.update_flags(Arch::ENTRY_FLAG_DIRTY, value);
  708. }
  709. /// 设置当前页表被访问
  710. ///
  711. /// ## 参数
  712. ///
  713. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  714. #[inline(always)]
  715. pub fn set_access(self, value: bool) -> Self {
  716. return self.update_flags(Arch::ENTRY_FLAG_ACCESSED, value);
  717. }
  718. /// 设置指向的页是否为大页
  719. ///
  720. /// ## 参数
  721. ///
  722. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  723. #[inline(always)]
  724. pub fn set_huge_page(self, value: bool) -> Self {
  725. return self.update_flags(Arch::ENTRY_FLAG_HUGE_PAGE, value);
  726. }
  727. /// MMIO内存的页表项标志
  728. #[inline(always)]
  729. pub fn mmio_flags() -> Self {
  730. #[cfg(target_arch = "x86_64")]
  731. {
  732. Self::new()
  733. .set_user(false)
  734. .set_write(true)
  735. .set_execute(true)
  736. .set_page_cache_disable(true)
  737. .set_page_write_through(true)
  738. .set_page_global(true)
  739. }
  740. #[cfg(target_arch = "riscv64")]
  741. {
  742. Self::new()
  743. .set_user(false)
  744. .set_write(true)
  745. .set_execute(true)
  746. .set_page_global(true)
  747. }
  748. }
  749. }
  750. impl<Arch: MemoryManagementArch> fmt::Debug for EntryFlags<Arch> {
  751. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  752. f.debug_struct("EntryFlags")
  753. .field("bits", &format_args!("{:#0x}", self.data))
  754. .field("present", &self.present())
  755. .field("has_write", &self.has_write())
  756. .field("has_execute", &self.has_execute())
  757. .field("has_user", &self.has_user())
  758. .finish()
  759. }
  760. }
  761. /// 页表映射器
  762. #[derive(Hash)]
  763. pub struct PageMapper<Arch, F> {
  764. /// 页表类型
  765. table_kind: PageTableKind,
  766. /// 根页表物理地址
  767. table_paddr: PhysAddr,
  768. /// 页分配器
  769. frame_allocator: F,
  770. phantom: PhantomData<fn() -> Arch>,
  771. }
  772. impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
  773. /// 创建新的页面映射器
  774. ///
  775. /// ## 参数
  776. /// - table_kind 页表类型
  777. /// - table_paddr 根页表物理地址
  778. /// - allocator 页分配器
  779. ///
  780. /// ## 返回值
  781. ///
  782. /// 页面映射器
  783. pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
  784. return Self {
  785. table_kind,
  786. table_paddr,
  787. frame_allocator: allocator,
  788. phantom: PhantomData,
  789. };
  790. }
  791. /// 创建页表,并为这个页表创建页面映射器
  792. pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
  793. let table_paddr = allocator.allocate_one()?;
  794. // 清空页表
  795. let table_vaddr = Arch::phys_2_virt(table_paddr)?;
  796. Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
  797. return Some(Self::new(table_kind, table_paddr, allocator));
  798. }
  799. /// 获取当前页表的页面映射器
  800. #[inline(always)]
  801. pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
  802. let table_paddr = Arch::table(table_kind);
  803. return Self::new(table_kind, table_paddr, allocator);
  804. }
  805. /// 判断当前页表分配器所属的页表是否是当前页表
  806. #[inline(always)]
  807. pub fn is_current(&self) -> bool {
  808. return unsafe { self.table().phys() == Arch::table(self.table_kind) };
  809. }
  810. /// 将当前页表分配器所属的页表设置为当前页表
  811. #[inline(always)]
  812. pub unsafe fn make_current(&self) {
  813. Arch::set_table(self.table_kind, self.table_paddr);
  814. }
  815. /// 获取当前页表分配器所属的根页表的结构体
  816. #[inline(always)]
  817. pub fn table(&self) -> PageTable<Arch> {
  818. // 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
  819. return unsafe {
  820. PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
  821. };
  822. }
  823. /// 获取当前PageMapper所对应的页分配器实例的引用
  824. #[inline(always)]
  825. #[allow(dead_code)]
  826. pub fn allocator_ref(&self) -> &F {
  827. return &self.frame_allocator;
  828. }
  829. /// 获取当前PageMapper所对应的页分配器实例的可变引用
  830. #[inline(always)]
  831. pub fn allocator_mut(&mut self) -> &mut F {
  832. return &mut self.frame_allocator;
  833. }
  834. /// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
  835. pub unsafe fn map(
  836. &mut self,
  837. virt: VirtAddr,
  838. flags: EntryFlags<Arch>,
  839. ) -> Option<PageFlush<Arch>> {
  840. compiler_fence(Ordering::SeqCst);
  841. let phys: PhysAddr = self.frame_allocator.allocate_one()?;
  842. compiler_fence(Ordering::SeqCst);
  843. unsafe {
  844. let vaddr = MMArch::phys_2_virt(phys).unwrap();
  845. MMArch::write_bytes(vaddr, 0, MMArch::PAGE_SIZE);
  846. }
  847. let mut page_manager_guard: SpinLockGuard<'static, PageManager> =
  848. page_manager_lock_irqsave();
  849. if !page_manager_guard.contains(&phys) {
  850. page_manager_guard.insert(phys, &Arc::new(Page::new(false, PhysPageFrame::new(phys))))
  851. }
  852. return self.map_phys(virt, phys, flags);
  853. }
  854. /// 映射一个物理页到指定的虚拟地址
  855. pub unsafe fn map_phys(
  856. &mut self,
  857. virt: VirtAddr,
  858. phys: PhysAddr,
  859. flags: EntryFlags<Arch>,
  860. ) -> Option<PageFlush<Arch>> {
  861. // 验证虚拟地址和物理地址是否对齐
  862. if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
  863. error!(
  864. "Try to map unaligned page: virt={:?}, phys={:?}",
  865. virt, phys
  866. );
  867. return None;
  868. }
  869. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  870. // TODO: 验证flags是否合法
  871. // 创建页表项
  872. let entry = PageEntry::new(phys, flags);
  873. let mut table = self.table();
  874. loop {
  875. let i = table.index_of(virt)?;
  876. assert!(i < Arch::PAGE_ENTRY_NUM);
  877. if table.level() == 0 {
  878. compiler_fence(Ordering::SeqCst);
  879. table.set_entry(i, entry);
  880. compiler_fence(Ordering::SeqCst);
  881. return Some(PageFlush::new(virt));
  882. } else {
  883. let next_table = table.next_level_table(i);
  884. if let Some(next_table) = next_table {
  885. table = next_table;
  886. // debug!("Mapping {:?} to next level table...", virt);
  887. } else {
  888. // 分配下一级页表
  889. let frame = self.frame_allocator.allocate_one()?;
  890. // 清空这个页帧
  891. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  892. // 设置页表项的flags
  893. let flags: EntryFlags<Arch> =
  894. EntryFlags::new_page_table(virt.kind() == PageTableKind::User);
  895. // 把新分配的页表映射到当前页表
  896. table.set_entry(i, PageEntry::new(frame, flags));
  897. // 获取新分配的页表
  898. table = table.next_level_table(i)?;
  899. }
  900. }
  901. }
  902. }
  903. /// 进行大页映射
  904. pub unsafe fn map_huge_page(
  905. &mut self,
  906. virt: VirtAddr,
  907. flags: EntryFlags<Arch>,
  908. ) -> Option<PageFlush<Arch>> {
  909. // 验证虚拟地址是否对齐
  910. if !(virt.check_aligned(Arch::PAGE_SIZE)) {
  911. error!("Try to map unaligned page: virt={:?}", virt);
  912. return None;
  913. }
  914. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  915. let mut table = self.table();
  916. loop {
  917. let i = table.index_of(virt)?;
  918. assert!(i < Arch::PAGE_ENTRY_NUM);
  919. let next_table = table.next_level_table(i);
  920. if let Some(next_table) = next_table {
  921. table = next_table;
  922. } else {
  923. break;
  924. }
  925. }
  926. // 支持2M、1G大页,即页表层级为1、2级的页表可以映射大页
  927. if table.level == 0 || table.level > 2 {
  928. return None;
  929. }
  930. let (phys, count) = self.frame_allocator.allocate(PageFrameCount::new(
  931. Arch::PAGE_ENTRY_NUM.pow(table.level as u32),
  932. ))?;
  933. MMArch::write_bytes(
  934. MMArch::phys_2_virt(phys).unwrap(),
  935. 0,
  936. MMArch::PAGE_SIZE * count.data(),
  937. );
  938. table.set_entry(
  939. table.index_of(virt)?,
  940. PageEntry::new(phys, flags.set_huge_page(true)),
  941. )?;
  942. Some(PageFlush::new(virt))
  943. }
  944. /// 为虚拟地址分配指定层级的页表
  945. /// ## 参数
  946. ///
  947. /// - `virt`: 虚拟地址
  948. /// - `level`: 指定页表层级
  949. ///
  950. /// ## 返回值
  951. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  952. /// - None: 对应页表不存在
  953. pub unsafe fn allocate_table(
  954. &mut self,
  955. virt: VirtAddr,
  956. level: usize,
  957. ) -> Option<PageTable<Arch>> {
  958. let table = self.get_table(virt, level + 1)?;
  959. let i = table.index_of(virt)?;
  960. let frame = self.frame_allocator.allocate_one()?;
  961. // 清空这个页帧
  962. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  963. // 设置页表项的flags
  964. let flags: EntryFlags<Arch> =
  965. EntryFlags::new_page_table(virt.kind() == PageTableKind::User);
  966. table.set_entry(i, PageEntry::new(frame, flags));
  967. table.next_level_table(i)
  968. }
  969. /// 获取虚拟地址的指定层级页表
  970. /// ## 参数
  971. ///
  972. /// - `virt`: 虚拟地址
  973. /// - `level`: 指定页表层级
  974. ///
  975. /// ## 返回值
  976. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  977. /// - None: 对应页表不存在
  978. pub fn get_table(&self, virt: VirtAddr, level: usize) -> Option<PageTable<Arch>> {
  979. let mut table = self.table();
  980. if level > Arch::PAGE_LEVELS - 1 {
  981. return None;
  982. }
  983. unsafe {
  984. loop {
  985. if table.level == level {
  986. return Some(table);
  987. }
  988. let i = table.index_of(virt)?;
  989. assert!(i < Arch::PAGE_ENTRY_NUM);
  990. table = table.next_level_table(i)?;
  991. }
  992. }
  993. }
  994. /// 获取虚拟地址在指定层级页表的PageEntry
  995. /// ## 参数
  996. ///
  997. /// - `virt`: 虚拟地址
  998. /// - `level`: 指定页表层级
  999. ///
  1000. /// ## 返回值
  1001. /// - Some(PageEntry<Arch>): 虚拟地址在指定层级的页表的有效PageEntry
  1002. /// - None: 无对应的有效PageEntry
  1003. pub fn get_entry(&self, virt: VirtAddr, level: usize) -> Option<PageEntry<Arch>> {
  1004. let table = self.get_table(virt, level)?;
  1005. let i = table.index_of(virt)?;
  1006. let entry = unsafe { table.entry(i) }?;
  1007. if !entry.empty() {
  1008. Some(entry)
  1009. } else {
  1010. None
  1011. }
  1012. // let mut table = self.table();
  1013. // if level > Arch::PAGE_LEVELS - 1 {
  1014. // return None;
  1015. // }
  1016. // unsafe {
  1017. // loop {
  1018. // let i = table.index_of(virt)?;
  1019. // assert!(i < Arch::PAGE_ENTRY_NUM);
  1020. // if table.level == level {
  1021. // let entry = table.entry(i)?;
  1022. // if !entry.empty() {
  1023. // return Some(entry);
  1024. // } else {
  1025. // return None;
  1026. // }
  1027. // }
  1028. // table = table.next_level_table(i)?;
  1029. // }
  1030. // }
  1031. }
  1032. /// 拷贝用户空间映射
  1033. /// ## 参数
  1034. ///
  1035. /// - `umapper`: 要拷贝的用户空间
  1036. /// - `copy_on_write`: 是否写时复制
  1037. pub unsafe fn clone_user_mapping(&mut self, umapper: &mut Self, copy_on_write: bool) {
  1038. let old_table = umapper.table();
  1039. let new_table = self.table();
  1040. let allocator = self.allocator_mut();
  1041. // 顶级页表的[0, PAGE_KERNEL_INDEX)项为用户空间映射
  1042. for entry_index in 0..Arch::PAGE_KERNEL_INDEX {
  1043. if let Some(next_table) = old_table.next_level_table(entry_index) {
  1044. let table = next_table.clone(allocator, copy_on_write).unwrap();
  1045. let old_entry = old_table.entry(entry_index).unwrap();
  1046. let entry = PageEntry::new(table.phys(), old_entry.flags());
  1047. new_table.set_entry(entry_index, entry);
  1048. }
  1049. }
  1050. }
  1051. /// 将物理地址映射到具有线性偏移量的虚拟地址
  1052. #[allow(dead_code)]
  1053. pub unsafe fn map_linearly(
  1054. &mut self,
  1055. phys: PhysAddr,
  1056. flags: EntryFlags<Arch>,
  1057. ) -> Option<(VirtAddr, PageFlush<Arch>)> {
  1058. let virt: VirtAddr = Arch::phys_2_virt(phys)?;
  1059. return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
  1060. }
  1061. /// 修改虚拟地址的页表项的flags,并返回页表项刷新器
  1062. ///
  1063. /// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
  1064. ///
  1065. /// ## 参数
  1066. /// - virt 虚拟地址
  1067. /// - flags 新的页表项的flags
  1068. ///
  1069. /// ## 返回值
  1070. ///
  1071. /// 如果修改成功,返回刷新器,否则返回None
  1072. pub unsafe fn remap(
  1073. &mut self,
  1074. virt: VirtAddr,
  1075. flags: EntryFlags<Arch>,
  1076. ) -> Option<PageFlush<Arch>> {
  1077. return self
  1078. .visit(virt, |p1, i| {
  1079. let mut entry = p1.entry(i)?;
  1080. entry.set_flags(flags);
  1081. p1.set_entry(i, entry);
  1082. Some(PageFlush::new(virt))
  1083. })
  1084. .flatten();
  1085. }
  1086. /// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
  1087. ///
  1088. /// ## 参数
  1089. ///
  1090. /// - virt 虚拟地址
  1091. ///
  1092. /// ## 返回值
  1093. ///
  1094. /// 如果查找成功,返回物理地址和页表项的flags,否则返回None
  1095. pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, EntryFlags<Arch>)> {
  1096. let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
  1097. let paddr = entry.address().ok()?;
  1098. let flags = entry.flags();
  1099. return Some((paddr, flags));
  1100. }
  1101. /// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
  1102. ///
  1103. /// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
  1104. ///
  1105. /// ## 参数
  1106. ///
  1107. /// - virt 虚拟地址
  1108. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1109. ///
  1110. /// ## 返回值
  1111. /// 如果取消成功,返回刷新器,否则返回None
  1112. #[allow(dead_code)]
  1113. pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
  1114. let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
  1115. self.frame_allocator.free_one(paddr);
  1116. return Some(flusher);
  1117. }
  1118. /// 取消虚拟地址的映射,并返回物理地址和页表项的flags
  1119. ///
  1120. /// ## 参数
  1121. ///
  1122. /// - vaddr 虚拟地址
  1123. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1124. ///
  1125. /// ## 返回值
  1126. ///
  1127. /// 如果取消成功,返回物理地址和页表项的flags,否则返回None
  1128. pub unsafe fn unmap_phys(
  1129. &mut self,
  1130. virt: VirtAddr,
  1131. unmap_parents: bool,
  1132. ) -> Option<(PhysAddr, EntryFlags<Arch>, PageFlush<Arch>)> {
  1133. if !virt.check_aligned(Arch::PAGE_SIZE) {
  1134. error!("Try to unmap unaligned page: virt={:?}", virt);
  1135. return None;
  1136. }
  1137. let table = self.table();
  1138. return unmap_phys_inner(virt, &table, unmap_parents, self.allocator_mut())
  1139. .map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
  1140. }
  1141. /// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
  1142. fn visit<T>(
  1143. &self,
  1144. virt: VirtAddr,
  1145. f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
  1146. ) -> Option<T> {
  1147. let mut table = self.table();
  1148. unsafe {
  1149. loop {
  1150. let i = table.index_of(virt)?;
  1151. if table.level() == 0 {
  1152. return Some(f(&mut table, i));
  1153. } else {
  1154. table = table.next_level_table(i)?;
  1155. }
  1156. }
  1157. }
  1158. }
  1159. }
  1160. /// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
  1161. ///
  1162. /// ## 参数
  1163. ///
  1164. /// - vaddr 虚拟地址
  1165. /// - table 页表
  1166. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1167. /// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
  1168. ///
  1169. /// ## 返回值
  1170. ///
  1171. /// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
  1172. unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
  1173. vaddr: VirtAddr,
  1174. table: &PageTable<Arch>,
  1175. unmap_parents: bool,
  1176. allocator: &mut impl FrameAllocator,
  1177. ) -> Option<(PhysAddr, EntryFlags<Arch>)> {
  1178. // 获取页表项的索引
  1179. let i = table.index_of(vaddr)?;
  1180. // 如果当前是最后一级页表,直接取消页面映射
  1181. if table.level() == 0 {
  1182. let entry = table.entry(i)?;
  1183. table.set_entry(i, PageEntry::from_usize(0));
  1184. return Some((entry.address().ok()?, entry.flags()));
  1185. }
  1186. let subtable = table.next_level_table(i)?;
  1187. // 递归地取消映射
  1188. let result = unmap_phys_inner(vaddr, &subtable, unmap_parents, allocator)?;
  1189. // TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
  1190. // as these mappings may become out of sync
  1191. if unmap_parents {
  1192. // 如果子页表已经没有映射的页面了,就取消子页表的映射
  1193. // 检查子页表中是否还有映射的页面
  1194. let x = (0..Arch::PAGE_ENTRY_NUM)
  1195. .map(|k| subtable.entry(k).expect("invalid page entry"))
  1196. .any(|e| e.present());
  1197. if !x {
  1198. // 如果没有,就取消子页表的映射
  1199. table.set_entry(i, PageEntry::from_usize(0));
  1200. // 释放子页表
  1201. allocator.free_one(subtable.phys());
  1202. }
  1203. }
  1204. return Some(result);
  1205. }
  1206. impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
  1207. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  1208. f.debug_struct("PageMapper")
  1209. .field("table_paddr", &self.table_paddr)
  1210. .field("frame_allocator", &self.frame_allocator)
  1211. .finish()
  1212. }
  1213. }
  1214. /// 页表刷新器的trait
  1215. pub trait Flusher<Arch: MemoryManagementArch> {
  1216. /// 取消对指定的page flusher的刷新
  1217. fn consume(&mut self, flush: PageFlush<Arch>);
  1218. }
  1219. /// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1220. /// 否则会造成对页表的更改被忽略,这是不安全的
  1221. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1222. pub struct PageFlush<Arch: MemoryManagementArch> {
  1223. virt: VirtAddr,
  1224. phantom: PhantomData<Arch>,
  1225. }
  1226. impl<Arch: MemoryManagementArch> PageFlush<Arch> {
  1227. pub fn new(virt: VirtAddr) -> Self {
  1228. return Self {
  1229. virt,
  1230. phantom: PhantomData,
  1231. };
  1232. }
  1233. pub fn flush(self) {
  1234. unsafe { Arch::invalidate_page(self.virt) };
  1235. }
  1236. /// 忽略掉这个刷新器
  1237. pub unsafe fn ignore(self) {
  1238. mem::forget(self);
  1239. }
  1240. }
  1241. impl<Arch: MemoryManagementArch> Drop for PageFlush<Arch> {
  1242. fn drop(&mut self) {
  1243. unsafe {
  1244. MMArch::invalidate_page(self.virt);
  1245. }
  1246. }
  1247. }
  1248. /// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1249. /// 否则会造成对页表的更改被忽略,这是不安全的
  1250. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1251. pub struct PageFlushAll<Arch: MemoryManagementArch> {
  1252. phantom: PhantomData<fn() -> Arch>,
  1253. }
  1254. #[allow(dead_code)]
  1255. impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
  1256. pub fn new() -> Self {
  1257. return Self {
  1258. phantom: PhantomData,
  1259. };
  1260. }
  1261. pub fn flush(self) {
  1262. unsafe { Arch::invalidate_all() };
  1263. }
  1264. /// 忽略掉这个刷新器
  1265. pub unsafe fn ignore(self) {
  1266. mem::forget(self);
  1267. }
  1268. }
  1269. impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
  1270. /// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
  1271. fn consume(&mut self, flush: PageFlush<Arch>) {
  1272. unsafe { flush.ignore() };
  1273. }
  1274. }
  1275. impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
  1276. /// 允许一个flusher consume掉另一个flusher
  1277. fn consume(&mut self, flush: PageFlush<Arch>) {
  1278. <T as Flusher<Arch>>::consume(self, flush);
  1279. }
  1280. }
  1281. impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
  1282. fn consume(&mut self, _flush: PageFlush<Arch>) {}
  1283. }
  1284. impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
  1285. fn drop(&mut self) {
  1286. unsafe {
  1287. Arch::invalidate_all();
  1288. }
  1289. }
  1290. }
  1291. /// 未在当前CPU上激活的页表的刷新器
  1292. ///
  1293. /// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
  1294. ///
  1295. /// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
  1296. #[derive(Debug)]
  1297. pub struct InactiveFlusher;
  1298. impl InactiveFlusher {
  1299. pub fn new() -> Self {
  1300. return Self {};
  1301. }
  1302. }
  1303. impl Flusher<MMArch> for InactiveFlusher {
  1304. fn consume(&mut self, flush: PageFlush<MMArch>) {
  1305. unsafe {
  1306. flush.ignore();
  1307. }
  1308. }
  1309. }
  1310. impl Drop for InactiveFlusher {
  1311. fn drop(&mut self) {
  1312. // 发送刷新页表的IPI
  1313. send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
  1314. }
  1315. }
  1316. /// # 把一个地址向下对齐到页大小
  1317. pub fn round_down_to_page_size(addr: usize) -> usize {
  1318. addr & !(MMArch::PAGE_SIZE - 1)
  1319. }
  1320. /// # 把一个地址向上对齐到页大小
  1321. pub fn round_up_to_page_size(addr: usize) -> usize {
  1322. round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
  1323. }