page.rs 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731
  1. use alloc::string::ToString;
  2. use core::{
  3. fmt::{self, Debug, Error, Formatter},
  4. marker::PhantomData,
  5. mem,
  6. ops::Add,
  7. sync::atomic::{compiler_fence, Ordering},
  8. };
  9. use system_error::SystemError;
  10. use unified_init::macros::unified_init;
  11. use alloc::sync::Arc;
  12. use hashbrown::{HashMap, HashSet};
  13. use log::{error, info};
  14. use lru::LruCache;
  15. use crate::{
  16. arch::{interrupt::ipi::send_ipi, mm::LockedFrameAllocator, MMArch},
  17. exception::ipi::{IpiKind, IpiTarget},
  18. filesystem::vfs::{file::PageCache, FilePrivateData},
  19. init::initcall::INITCALL_CORE,
  20. ipc::shm::ShmId,
  21. libs::{
  22. rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
  23. spinlock::{SpinLock, SpinLockGuard},
  24. },
  25. process::{ProcessControlBlock, ProcessManager},
  26. time::{sleep::usleep, PosixTimeSpec},
  27. };
  28. use super::{
  29. allocator::page_frame::{FrameAllocator, PageFrameCount},
  30. syscall::ProtFlags,
  31. ucontext::LockedVMA,
  32. MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr,
  33. };
  34. pub const PAGE_4K_SHIFT: usize = 12;
  35. #[allow(dead_code)]
  36. pub const PAGE_2M_SHIFT: usize = 21;
  37. pub const PAGE_1G_SHIFT: usize = 30;
  38. pub const PAGE_4K_SIZE: usize = 1 << PAGE_4K_SHIFT;
  39. pub const PAGE_2M_SIZE: usize = 1 << PAGE_2M_SHIFT;
  40. /// 全局物理页信息管理器
  41. pub static mut PAGE_MANAGER: Option<SpinLock<PageManager>> = None;
  42. /// 初始化PAGE_MANAGER
  43. pub fn page_manager_init() {
  44. info!("page_manager_init");
  45. let page_manager = SpinLock::new(PageManager::new());
  46. compiler_fence(Ordering::SeqCst);
  47. unsafe { PAGE_MANAGER = Some(page_manager) };
  48. compiler_fence(Ordering::SeqCst);
  49. info!("page_manager_init done");
  50. }
  51. pub fn page_manager_lock_irqsave() -> SpinLockGuard<'static, PageManager> {
  52. unsafe { PAGE_MANAGER.as_ref().unwrap().lock_irqsave() }
  53. }
  54. // 物理页管理器
  55. pub struct PageManager {
  56. phys2page: HashMap<PhysAddr, Arc<Page>>,
  57. }
  58. impl PageManager {
  59. pub fn new() -> Self {
  60. Self {
  61. phys2page: HashMap::new(),
  62. }
  63. }
  64. pub fn contains(&self, paddr: &PhysAddr) -> bool {
  65. self.phys2page.contains_key(paddr)
  66. }
  67. pub fn get(&mut self, paddr: &PhysAddr) -> Option<Arc<Page>> {
  68. page_reclaimer_lock_irqsave().get(paddr);
  69. self.phys2page.get(paddr).cloned()
  70. }
  71. pub fn get_unwrap(&mut self, paddr: &PhysAddr) -> Arc<Page> {
  72. page_reclaimer_lock_irqsave().get(paddr);
  73. self.phys2page
  74. .get(paddr)
  75. .unwrap_or_else(|| panic!("Phys Page not found, {:?}", paddr))
  76. .clone()
  77. }
  78. pub fn insert(&mut self, paddr: PhysAddr, page: &Arc<Page>) {
  79. self.phys2page.insert(paddr, page.clone());
  80. }
  81. pub fn remove_page(&mut self, paddr: &PhysAddr) {
  82. self.phys2page.remove(paddr);
  83. }
  84. }
  85. pub static mut PAGE_RECLAIMER: Option<SpinLock<PageReclaimer>> = None;
  86. pub fn page_reclaimer_init() {
  87. info!("page_reclaimer_init");
  88. let page_reclaimer = SpinLock::new(PageReclaimer::new());
  89. compiler_fence(Ordering::SeqCst);
  90. unsafe { PAGE_RECLAIMER = Some(page_reclaimer) };
  91. compiler_fence(Ordering::SeqCst);
  92. info!("page_reclaimer_init done");
  93. }
  94. /// 页面回收线程
  95. static mut PAGE_RECLAIMER_THREAD: Option<Arc<ProcessControlBlock>> = None;
  96. /// 页面回收线程初始化函数
  97. #[unified_init(INITCALL_CORE)]
  98. fn page_reclaimer_thread_init() -> Result<(), SystemError> {
  99. let closure = crate::process::kthread::KernelThreadClosure::StaticEmptyClosure((
  100. &(page_reclaim_thread as fn() -> i32),
  101. (),
  102. ));
  103. let pcb = crate::process::kthread::KernelThreadMechanism::create_and_run(
  104. closure,
  105. "page_reclaim".to_string(),
  106. )
  107. .ok_or("")
  108. .expect("create tty_refresh thread failed");
  109. unsafe {
  110. PAGE_RECLAIMER_THREAD = Some(pcb);
  111. }
  112. Ok(())
  113. }
  114. /// 页面回收线程执行的函数
  115. fn page_reclaim_thread() -> i32 {
  116. loop {
  117. let usage = unsafe { LockedFrameAllocator.usage() };
  118. // log::info!("usage{:?}", usage);
  119. // 保留4096个页面,总计16MB的空闲空间
  120. if usage.free().data() < 4096 {
  121. let page_to_free = 4096;
  122. page_reclaimer_lock_irqsave().shrink_list(PageFrameCount::new(page_to_free));
  123. } else {
  124. //TODO 暂时让页面回收线程负责脏页回写任务,后续需要分离
  125. page_reclaimer_lock_irqsave().flush_dirty_pages();
  126. // 休眠5秒
  127. // log::info!("sleep");
  128. let _ = usleep(PosixTimeSpec::new(5, 0));
  129. }
  130. }
  131. }
  132. /// 获取页面回收器
  133. pub fn page_reclaimer_lock_irqsave() -> SpinLockGuard<'static, PageReclaimer> {
  134. unsafe { PAGE_RECLAIMER.as_ref().unwrap().lock_irqsave() }
  135. }
  136. /// 页面回收器
  137. pub struct PageReclaimer {
  138. lru: LruCache<PhysAddr, Arc<Page>>,
  139. }
  140. impl PageReclaimer {
  141. pub fn new() -> Self {
  142. Self {
  143. lru: LruCache::unbounded(),
  144. }
  145. }
  146. pub fn get(&mut self, paddr: &PhysAddr) -> Option<Arc<Page>> {
  147. self.lru.get(paddr).cloned()
  148. }
  149. pub fn insert_page(&mut self, paddr: PhysAddr, page: &Arc<Page>) {
  150. self.lru.put(paddr, page.clone());
  151. }
  152. /// lru链表缩减
  153. /// ## 参数
  154. ///
  155. /// - `count`: 需要缩减的页面数量
  156. pub fn shrink_list(&mut self, count: PageFrameCount) {
  157. for _ in 0..count.data() {
  158. let (paddr, page) = self.lru.pop_lru().expect("pagecache is empty");
  159. let page_cache = page.read_irqsave().page_cache().unwrap();
  160. for vma in page.read_irqsave().anon_vma() {
  161. let address_space = vma.lock_irqsave().address_space().unwrap();
  162. let address_space = address_space.upgrade().unwrap();
  163. let mut guard = address_space.write();
  164. let mapper = &mut guard.user_mapper.utable;
  165. let virt = vma.lock_irqsave().page_address(&page).unwrap();
  166. unsafe {
  167. mapper.unmap(virt, false).unwrap().flush();
  168. }
  169. }
  170. page_cache.remove_page(page.read_irqsave().index().unwrap());
  171. page_manager_lock_irqsave().remove_page(&paddr);
  172. if page.read_irqsave().flags.contains(PageFlags::PG_DIRTY) {
  173. Self::page_writeback(&page, true);
  174. }
  175. }
  176. }
  177. /// 唤醒页面回收线程
  178. pub fn wakeup_claim_thread() {
  179. // log::info!("wakeup_claim_thread");
  180. let _ = ProcessManager::wakeup(unsafe { PAGE_RECLAIMER_THREAD.as_ref().unwrap() });
  181. }
  182. /// 脏页回写函数
  183. /// ## 参数
  184. ///
  185. /// - `page`: 需要回写的脏页
  186. /// - `unmap`: 是否取消映射
  187. ///
  188. /// ## 返回值
  189. /// - VmFaultReason: 页面错误处理信息标志
  190. pub fn page_writeback(page: &Arc<Page>, unmap: bool) {
  191. if !unmap {
  192. page.write_irqsave().remove_flags(PageFlags::PG_DIRTY);
  193. }
  194. for vma in page.read_irqsave().anon_vma() {
  195. let address_space = vma.lock_irqsave().address_space().unwrap();
  196. let address_space = address_space.upgrade().unwrap();
  197. let mut guard = address_space.write();
  198. let mapper = &mut guard.user_mapper.utable;
  199. let virt = vma.lock_irqsave().page_address(page).unwrap();
  200. if unmap {
  201. unsafe {
  202. mapper.unmap(virt, false).unwrap().flush();
  203. }
  204. } else {
  205. unsafe {
  206. // 保护位设为只读
  207. mapper.remap(
  208. virt,
  209. mapper.get_entry(virt, 0).unwrap().flags().set_write(false),
  210. )
  211. };
  212. }
  213. }
  214. let inode = page
  215. .read_irqsave()
  216. .page_cache
  217. .clone()
  218. .unwrap()
  219. .inode()
  220. .clone()
  221. .unwrap()
  222. .upgrade()
  223. .unwrap();
  224. inode
  225. .write_at(
  226. page.read_irqsave().index().unwrap(),
  227. MMArch::PAGE_SIZE,
  228. unsafe {
  229. core::slice::from_raw_parts(
  230. MMArch::phys_2_virt(page.read_irqsave().phys_addr)
  231. .unwrap()
  232. .data() as *mut u8,
  233. MMArch::PAGE_SIZE,
  234. )
  235. },
  236. SpinLock::new(FilePrivateData::Unused).lock(),
  237. )
  238. .unwrap();
  239. }
  240. /// lru脏页刷新
  241. pub fn flush_dirty_pages(&self) {
  242. // log::info!("flush_dirty_pages");
  243. let iter = self.lru.iter();
  244. for (_, page) in iter {
  245. if page.read_irqsave().flags().contains(PageFlags::PG_DIRTY) {
  246. Self::page_writeback(page, false);
  247. }
  248. }
  249. }
  250. }
  251. bitflags! {
  252. pub struct PageFlags: u64 {
  253. const PG_LOCKED = 1 << 0;
  254. const PG_WRITEBACK = 1 << 1;
  255. const PG_REFERENCED = 1 << 2;
  256. const PG_UPTODATE = 1 << 3;
  257. const PG_DIRTY = 1 << 4;
  258. const PG_LRU = 1 << 5;
  259. const PG_HEAD = 1 << 6;
  260. const PG_WAITERS = 1 << 7;
  261. const PG_ACTIVE = 1 << 8;
  262. const PG_WORKINGSET = 1 << 9;
  263. const PG_ERROR = 1 << 10;
  264. const PG_SLAB = 1 << 11;
  265. const PG_RESERVED = 1 << 14;
  266. const PG_PRIVATE = 1 << 15;
  267. const PG_RECLAIM = 1 << 18;
  268. const PG_SWAPBACKED = 1 << 19;
  269. }
  270. }
  271. #[derive(Debug)]
  272. pub struct Page {
  273. inner: RwLock<InnerPage>,
  274. }
  275. impl Page {
  276. pub fn new(shared: bool, phys_addr: PhysAddr) -> Self {
  277. let inner = InnerPage::new(shared, phys_addr);
  278. Self {
  279. inner: RwLock::new(inner),
  280. }
  281. }
  282. pub fn read_irqsave(&self) -> RwLockReadGuard<InnerPage> {
  283. self.inner.read_irqsave()
  284. }
  285. pub fn write_irqsave(&self) -> RwLockWriteGuard<InnerPage> {
  286. self.inner.write_irqsave()
  287. }
  288. }
  289. #[derive(Debug)]
  290. /// 物理页面信息
  291. pub struct InnerPage {
  292. /// 映射计数
  293. map_count: usize,
  294. /// 是否为共享页
  295. shared: bool,
  296. /// 映射计数为0时,是否可回收
  297. free_when_zero: bool,
  298. /// 共享页id(如果是共享页)
  299. shm_id: Option<ShmId>,
  300. /// 映射到当前page的VMA
  301. anon_vma: HashSet<Arc<LockedVMA>>,
  302. /// 标志
  303. flags: PageFlags,
  304. /// 页所在的物理页帧号
  305. phys_addr: PhysAddr,
  306. /// 在pagecache中的偏移
  307. index: Option<usize>,
  308. page_cache: Option<Arc<PageCache>>,
  309. }
  310. impl InnerPage {
  311. pub fn new(shared: bool, phys_addr: PhysAddr) -> Self {
  312. let dealloc_when_zero = !shared;
  313. Self {
  314. map_count: 0,
  315. shared,
  316. free_when_zero: dealloc_when_zero,
  317. shm_id: None,
  318. anon_vma: HashSet::new(),
  319. flags: PageFlags::empty(),
  320. phys_addr,
  321. index: None,
  322. page_cache: None,
  323. }
  324. }
  325. /// 将vma加入anon_vma
  326. pub fn insert_vma(&mut self, vma: Arc<LockedVMA>) {
  327. self.anon_vma.insert(vma);
  328. self.map_count += 1;
  329. }
  330. /// 将vma从anon_vma中删去
  331. pub fn remove_vma(&mut self, vma: &LockedVMA) {
  332. self.anon_vma.remove(vma);
  333. self.map_count -= 1;
  334. }
  335. /// 判断当前物理页是否能被回
  336. pub fn can_deallocate(&self) -> bool {
  337. self.map_count == 0 && self.free_when_zero
  338. }
  339. pub fn shared(&self) -> bool {
  340. self.shared
  341. }
  342. pub fn shm_id(&self) -> Option<ShmId> {
  343. self.shm_id
  344. }
  345. pub fn index(&self) -> Option<usize> {
  346. self.index
  347. }
  348. pub fn page_cache(&self) -> Option<Arc<PageCache>> {
  349. self.page_cache.clone()
  350. }
  351. pub fn set_page_cache(&mut self, page_cache: Option<Arc<PageCache>>) {
  352. self.page_cache = page_cache;
  353. }
  354. pub fn set_index(&mut self, index: Option<usize>) {
  355. self.index = index;
  356. }
  357. pub fn set_page_cache_index(
  358. &mut self,
  359. page_cache: Option<Arc<PageCache>>,
  360. index: Option<usize>,
  361. ) {
  362. self.page_cache = page_cache;
  363. self.index = index;
  364. }
  365. pub fn set_shm_id(&mut self, shm_id: ShmId) {
  366. self.shm_id = Some(shm_id);
  367. }
  368. pub fn set_dealloc_when_zero(&mut self, dealloc_when_zero: bool) {
  369. self.free_when_zero = dealloc_when_zero;
  370. }
  371. #[inline(always)]
  372. pub fn anon_vma(&self) -> &HashSet<Arc<LockedVMA>> {
  373. &self.anon_vma
  374. }
  375. #[inline(always)]
  376. pub fn map_count(&self) -> usize {
  377. self.map_count
  378. }
  379. #[inline(always)]
  380. pub fn flags(&self) -> &PageFlags {
  381. &self.flags
  382. }
  383. #[inline(always)]
  384. pub fn set_flags(&mut self, flags: PageFlags) {
  385. self.flags = flags
  386. }
  387. #[inline(always)]
  388. pub fn add_flags(&mut self, flags: PageFlags) {
  389. self.flags = self.flags.union(flags);
  390. }
  391. #[inline(always)]
  392. pub fn remove_flags(&mut self, flags: PageFlags) {
  393. self.flags = self.flags.difference(flags);
  394. }
  395. #[inline(always)]
  396. pub fn phys_address(&self) -> PhysAddr {
  397. self.phys_addr
  398. }
  399. }
  400. #[derive(Debug)]
  401. pub struct PageTable<Arch> {
  402. /// 当前页表表示的虚拟地址空间的起始地址
  403. base: VirtAddr,
  404. /// 当前页表所在的物理地址
  405. phys: PhysAddr,
  406. /// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
  407. level: usize,
  408. phantom: PhantomData<Arch>,
  409. }
  410. #[allow(dead_code)]
  411. impl<Arch: MemoryManagementArch> PageTable<Arch> {
  412. pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
  413. Self {
  414. base,
  415. phys,
  416. level,
  417. phantom: PhantomData,
  418. }
  419. }
  420. /// 获取顶级页表
  421. ///
  422. /// ## 参数
  423. ///
  424. /// - table_kind 页表类型
  425. ///
  426. /// ## 返回值
  427. ///
  428. /// 返回顶级页表
  429. pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
  430. return Self::new(
  431. VirtAddr::new(0),
  432. Arch::table(table_kind),
  433. Arch::PAGE_LEVELS - 1,
  434. );
  435. }
  436. /// 获取当前页表的物理地址
  437. #[inline(always)]
  438. pub fn phys(&self) -> PhysAddr {
  439. self.phys
  440. }
  441. /// 当前页表表示的虚拟地址空间的起始地址
  442. #[inline(always)]
  443. pub fn base(&self) -> VirtAddr {
  444. self.base
  445. }
  446. /// 获取当前页表的层级
  447. #[inline(always)]
  448. pub fn level(&self) -> usize {
  449. self.level
  450. }
  451. /// 获取当前页表自身所在的虚拟地址
  452. #[inline(always)]
  453. pub unsafe fn virt(&self) -> VirtAddr {
  454. return Arch::phys_2_virt(self.phys).unwrap();
  455. }
  456. /// 获取第i个页表项所表示的虚拟内存空间的起始地址
  457. pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
  458. if i < Arch::PAGE_ENTRY_NUM {
  459. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  460. return Some(self.base.add(i << shift));
  461. } else {
  462. return None;
  463. }
  464. }
  465. /// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
  466. pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
  467. if i < Arch::PAGE_ENTRY_NUM {
  468. return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
  469. } else {
  470. return None;
  471. }
  472. }
  473. /// 获取当前页表的第i个页表项
  474. pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
  475. let entry_virt = self.entry_virt(i)?;
  476. return Some(PageEntry::from_usize(Arch::read::<usize>(entry_virt)));
  477. }
  478. /// 设置当前页表的第i个页表项
  479. pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
  480. let entry_virt = self.entry_virt(i)?;
  481. Arch::write::<usize>(entry_virt, entry.data());
  482. return Some(());
  483. }
  484. /// 判断当前页表的第i个页表项是否已经填写了值
  485. ///
  486. /// ## 参数
  487. /// - Some(true) 如果已经填写了值
  488. /// - Some(false) 如果未填写值
  489. /// - None 如果i超出了页表项的范围
  490. pub fn entry_mapped(&self, i: usize) -> Option<bool> {
  491. let etv = unsafe { self.entry_virt(i) }?;
  492. if unsafe { Arch::read::<usize>(etv) } != 0 {
  493. return Some(true);
  494. } else {
  495. return Some(false);
  496. }
  497. }
  498. /// 根据虚拟地址,获取对应的页表项在页表中的下标
  499. ///
  500. /// ## 参数
  501. ///
  502. /// - addr: 虚拟地址
  503. ///
  504. /// ## 返回值
  505. ///
  506. /// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
  507. pub fn index_of(&self, addr: VirtAddr) -> Option<usize> {
  508. let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
  509. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  510. let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
  511. if addr < self.base || addr >= self.base.add(mask) {
  512. return None;
  513. } else {
  514. return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
  515. }
  516. }
  517. /// 获取第i个页表项指向的下一级页表
  518. pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
  519. if self.level == 0 {
  520. return None;
  521. }
  522. // 返回下一级页表
  523. return Some(PageTable::new(
  524. self.entry_base(index)?,
  525. self.entry(index)?.address().ok()?,
  526. self.level - 1,
  527. ));
  528. }
  529. /// 拷贝页表
  530. /// ## 参数
  531. ///
  532. /// - `allocator`: 物理页框分配器
  533. /// - `copy_on_write`: 是否写时复制
  534. pub unsafe fn clone(
  535. &self,
  536. allocator: &mut impl FrameAllocator,
  537. copy_on_write: bool,
  538. ) -> Option<PageTable<Arch>> {
  539. // 分配新页面作为新的页表
  540. let phys = allocator.allocate_one()?;
  541. let frame = MMArch::phys_2_virt(phys).unwrap();
  542. MMArch::write_bytes(frame, 0, MMArch::PAGE_SIZE);
  543. let new_table = PageTable::new(self.base, phys, self.level);
  544. if self.level == 0 {
  545. for i in 0..Arch::PAGE_ENTRY_NUM {
  546. if let Some(mut entry) = self.entry(i) {
  547. if entry.present() {
  548. if copy_on_write {
  549. let mut new_flags = entry.flags().set_write(false);
  550. entry.set_flags(new_flags);
  551. self.set_entry(i, entry);
  552. new_flags = new_flags.set_dirty(false);
  553. entry.set_flags(new_flags);
  554. new_table.set_entry(i, entry);
  555. } else {
  556. let phys = allocator.allocate_one()?;
  557. let mut page_manager_guard = page_manager_lock_irqsave();
  558. let old_phys = entry.address().unwrap();
  559. let old_page = page_manager_guard.get_unwrap(&old_phys);
  560. let new_page =
  561. Arc::new(Page::new(old_page.read_irqsave().shared(), phys));
  562. if let Some(ref page_cache) = old_page.read_irqsave().page_cache() {
  563. new_page.write_irqsave().set_page_cache_index(
  564. Some(page_cache.clone()),
  565. old_page.read_irqsave().index(),
  566. );
  567. }
  568. page_manager_guard.insert(phys, &new_page);
  569. let old_phys = entry.address().unwrap();
  570. let frame = MMArch::phys_2_virt(phys).unwrap().data() as *mut u8;
  571. frame.copy_from_nonoverlapping(
  572. MMArch::phys_2_virt(old_phys).unwrap().data() as *mut u8,
  573. MMArch::PAGE_SIZE,
  574. );
  575. new_table.set_entry(i, PageEntry::new(phys, entry.flags()));
  576. }
  577. }
  578. }
  579. }
  580. } else {
  581. // 非一级页表拷贝时,对每个页表项对应的页表都进行拷贝
  582. for i in 0..MMArch::PAGE_ENTRY_NUM {
  583. if let Some(next_table) = self.next_level_table(i) {
  584. let table = next_table.clone(allocator, copy_on_write)?;
  585. let old_entry = self.entry(i).unwrap();
  586. let entry = PageEntry::new(table.phys(), old_entry.flags());
  587. new_table.set_entry(i, entry);
  588. }
  589. }
  590. }
  591. Some(new_table)
  592. }
  593. }
  594. /// 页表项
  595. #[derive(Copy, Clone)]
  596. pub struct PageEntry<Arch> {
  597. data: usize,
  598. phantom: PhantomData<Arch>,
  599. }
  600. impl<Arch> Debug for PageEntry<Arch> {
  601. fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
  602. f.write_fmt(format_args!("PageEntry({:#x})", self.data))
  603. }
  604. }
  605. impl<Arch: MemoryManagementArch> PageEntry<Arch> {
  606. #[inline(always)]
  607. pub fn new(paddr: PhysAddr, flags: EntryFlags<Arch>) -> Self {
  608. Self {
  609. data: MMArch::make_entry(paddr, flags.data()),
  610. phantom: PhantomData,
  611. }
  612. }
  613. #[inline(always)]
  614. pub fn from_usize(data: usize) -> Self {
  615. Self {
  616. data,
  617. phantom: PhantomData,
  618. }
  619. }
  620. #[inline(always)]
  621. pub fn data(&self) -> usize {
  622. self.data
  623. }
  624. /// 获取当前页表项指向的物理地址
  625. ///
  626. /// ## 返回值
  627. ///
  628. /// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
  629. /// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
  630. #[inline(always)]
  631. pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
  632. let paddr: PhysAddr = {
  633. #[cfg(target_arch = "x86_64")]
  634. {
  635. PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK)
  636. }
  637. #[cfg(target_arch = "riscv64")]
  638. {
  639. let ppn = ((self.data & (!((1 << 10) - 1))) >> 10) & ((1 << 54) - 1);
  640. super::allocator::page_frame::PhysPageFrame::from_ppn(ppn).phys_address()
  641. }
  642. };
  643. if self.present() {
  644. Ok(paddr)
  645. } else {
  646. Err(paddr)
  647. }
  648. }
  649. #[inline(always)]
  650. pub fn flags(&self) -> EntryFlags<Arch> {
  651. unsafe { EntryFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
  652. }
  653. #[inline(always)]
  654. pub fn set_flags(&mut self, flags: EntryFlags<Arch>) {
  655. self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
  656. }
  657. #[inline(always)]
  658. pub fn present(&self) -> bool {
  659. return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
  660. }
  661. #[inline(always)]
  662. pub fn empty(&self) -> bool {
  663. self.data & !(Arch::ENTRY_FLAG_DIRTY & Arch::ENTRY_FLAG_ACCESSED) == 0
  664. }
  665. #[inline(always)]
  666. pub fn protnone(&self) -> bool {
  667. return self.data & (Arch::ENTRY_FLAG_PRESENT | Arch::ENTRY_FLAG_GLOBAL)
  668. == Arch::ENTRY_FLAG_GLOBAL;
  669. }
  670. #[inline(always)]
  671. pub fn write(&self) -> bool {
  672. return self.data & Arch::ENTRY_FLAG_READWRITE != 0;
  673. }
  674. }
  675. /// 页表项的标志位
  676. #[derive(Copy, Clone, Hash)]
  677. pub struct EntryFlags<Arch> {
  678. data: usize,
  679. phantom: PhantomData<Arch>,
  680. }
  681. impl<Arch: MemoryManagementArch> Default for EntryFlags<Arch> {
  682. fn default() -> Self {
  683. Self::new()
  684. }
  685. }
  686. #[allow(dead_code)]
  687. impl<Arch: MemoryManagementArch> EntryFlags<Arch> {
  688. #[inline(always)]
  689. pub fn new() -> Self {
  690. let mut r = unsafe {
  691. Self::from_data(
  692. Arch::ENTRY_FLAG_DEFAULT_PAGE
  693. | Arch::ENTRY_FLAG_READONLY
  694. | Arch::ENTRY_FLAG_NO_EXEC,
  695. )
  696. };
  697. #[cfg(target_arch = "x86_64")]
  698. {
  699. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  700. r = r.set_execute(true);
  701. }
  702. }
  703. return r;
  704. }
  705. /// 根据ProtFlags生成EntryFlags
  706. ///
  707. /// ## 参数
  708. ///
  709. /// - prot_flags: 页的保护标志
  710. /// - user: 用户空间是否可访问
  711. pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> Self {
  712. let vm_flags = super::VmFlags::from(prot_flags);
  713. // let flags: EntryFlags<Arch> = EntryFlags::new()
  714. // .set_user(user)
  715. // .set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
  716. // .set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
  717. let flags = Arch::vm_get_page_prot(vm_flags).set_user(user);
  718. return flags;
  719. }
  720. #[inline(always)]
  721. pub fn data(&self) -> usize {
  722. self.data
  723. }
  724. #[inline(always)]
  725. pub const unsafe fn from_data(data: usize) -> Self {
  726. return Self {
  727. data,
  728. phantom: PhantomData,
  729. };
  730. }
  731. /// 为新页表的页表项设置默认值
  732. ///
  733. /// 默认值为:
  734. /// - present
  735. /// - read only
  736. /// - kernel space
  737. /// - no exec
  738. #[inline(always)]
  739. pub fn new_page_table(user: bool) -> Self {
  740. return unsafe {
  741. let r = {
  742. #[cfg(target_arch = "x86_64")]
  743. {
  744. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE)
  745. }
  746. #[cfg(target_arch = "riscv64")]
  747. {
  748. // riscv64指向下一级页表的页表项,不应设置R/W/X权限位
  749. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE)
  750. }
  751. };
  752. #[cfg(target_arch = "x86_64")]
  753. {
  754. if user {
  755. r.set_user(true)
  756. } else {
  757. r
  758. }
  759. }
  760. #[cfg(target_arch = "riscv64")]
  761. {
  762. r
  763. }
  764. };
  765. }
  766. /// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
  767. ///
  768. /// ## 参数
  769. /// - flag 要更新的标志位的值
  770. /// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
  771. ///
  772. /// ## 返回值
  773. ///
  774. /// 更新后的页表项
  775. #[inline(always)]
  776. #[must_use]
  777. pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
  778. if value {
  779. self.data |= flag;
  780. } else {
  781. self.data &= !flag;
  782. }
  783. return self;
  784. }
  785. /// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
  786. #[inline(always)]
  787. pub fn has_flag(&self, flag: usize) -> bool {
  788. return self.data & flag == flag;
  789. }
  790. #[inline(always)]
  791. pub fn present(&self) -> bool {
  792. return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
  793. }
  794. /// 设置当前页表项的权限
  795. ///
  796. /// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
  797. #[must_use]
  798. #[inline(always)]
  799. pub fn set_user(self, value: bool) -> Self {
  800. return self.update_flags(Arch::ENTRY_FLAG_USER, value);
  801. }
  802. /// 用户态是否可以访问当前页表项
  803. #[inline(always)]
  804. pub fn has_user(&self) -> bool {
  805. return self.has_flag(Arch::ENTRY_FLAG_USER);
  806. }
  807. /// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
  808. ///
  809. /// ## 返回值
  810. ///
  811. /// 更新后的页表项.
  812. ///
  813. /// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
  814. #[must_use]
  815. #[inline(always)]
  816. pub fn set_write(self, value: bool) -> Self {
  817. #[cfg(target_arch = "x86_64")]
  818. {
  819. // 有的架构同时具有可写和不可写的标志位,因此需要同时更新
  820. return self
  821. .update_flags(Arch::ENTRY_FLAG_READONLY, !value)
  822. .update_flags(Arch::ENTRY_FLAG_READWRITE, value);
  823. }
  824. #[cfg(target_arch = "riscv64")]
  825. {
  826. if value {
  827. return self.update_flags(Arch::ENTRY_FLAG_READWRITE, true);
  828. } else {
  829. return self
  830. .update_flags(Arch::ENTRY_FLAG_READONLY, true)
  831. .update_flags(Arch::ENTRY_FLAG_WRITEABLE, false);
  832. }
  833. }
  834. }
  835. /// 当前页表项是否可写
  836. #[inline(always)]
  837. pub fn has_write(&self) -> bool {
  838. // 有的架构同时具有可写和不可写的标志位,因此需要同时判断
  839. return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
  840. == Arch::ENTRY_FLAG_READWRITE;
  841. }
  842. /// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
  843. #[must_use]
  844. #[inline(always)]
  845. pub fn set_execute(self, mut value: bool) -> Self {
  846. #[cfg(target_arch = "x86_64")]
  847. {
  848. // 如果xd位被保留,那么将可执行性设置为true
  849. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  850. value = true;
  851. }
  852. }
  853. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
  854. return self
  855. .update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
  856. .update_flags(Arch::ENTRY_FLAG_EXEC, value);
  857. }
  858. /// 当前页表项是否可执行
  859. #[inline(always)]
  860. pub fn has_execute(&self) -> bool {
  861. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
  862. return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
  863. == Arch::ENTRY_FLAG_EXEC;
  864. }
  865. /// 设置当前页表项的缓存策略
  866. ///
  867. /// ## 参数
  868. ///
  869. /// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
  870. #[inline(always)]
  871. pub fn set_page_cache_disable(self, value: bool) -> Self {
  872. return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
  873. }
  874. /// 获取当前页表项的缓存策略
  875. ///
  876. /// ## 返回值
  877. ///
  878. /// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
  879. #[inline(always)]
  880. pub fn has_page_cache_disable(&self) -> bool {
  881. return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
  882. }
  883. /// 设置当前页表项的写穿策略
  884. ///
  885. /// ## 参数
  886. ///
  887. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  888. #[inline(always)]
  889. pub fn set_page_write_through(self, value: bool) -> Self {
  890. return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
  891. }
  892. #[inline(always)]
  893. pub fn set_page_global(self, value: bool) -> Self {
  894. return self.update_flags(MMArch::ENTRY_FLAG_GLOBAL, value);
  895. }
  896. /// 获取当前页表项的写穿策略
  897. ///
  898. /// ## 返回值
  899. ///
  900. /// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
  901. #[inline(always)]
  902. pub fn has_page_write_through(&self) -> bool {
  903. return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
  904. }
  905. /// 设置当前页表是否为脏页
  906. ///
  907. /// ## 参数
  908. ///
  909. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  910. #[inline(always)]
  911. pub fn set_dirty(self, value: bool) -> Self {
  912. return self.update_flags(Arch::ENTRY_FLAG_DIRTY, value);
  913. }
  914. /// 设置当前页表被访问
  915. ///
  916. /// ## 参数
  917. ///
  918. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  919. #[inline(always)]
  920. pub fn set_access(self, value: bool) -> Self {
  921. return self.update_flags(Arch::ENTRY_FLAG_ACCESSED, value);
  922. }
  923. /// 设置指向的页是否为大页
  924. ///
  925. /// ## 参数
  926. ///
  927. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  928. #[inline(always)]
  929. pub fn set_huge_page(self, value: bool) -> Self {
  930. return self.update_flags(Arch::ENTRY_FLAG_HUGE_PAGE, value);
  931. }
  932. /// MMIO内存的页表项标志
  933. #[inline(always)]
  934. pub fn mmio_flags() -> Self {
  935. #[cfg(target_arch = "x86_64")]
  936. {
  937. Self::new()
  938. .set_user(false)
  939. .set_write(true)
  940. .set_execute(true)
  941. .set_page_cache_disable(true)
  942. .set_page_write_through(true)
  943. .set_page_global(true)
  944. }
  945. #[cfg(target_arch = "riscv64")]
  946. {
  947. Self::new()
  948. .set_user(false)
  949. .set_write(true)
  950. .set_execute(true)
  951. .set_page_global(true)
  952. }
  953. }
  954. }
  955. impl<Arch: MemoryManagementArch> fmt::Debug for EntryFlags<Arch> {
  956. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  957. f.debug_struct("EntryFlags")
  958. .field("bits", &format_args!("{:#0x}", self.data))
  959. .field("present", &self.present())
  960. .field("has_write", &self.has_write())
  961. .field("has_execute", &self.has_execute())
  962. .field("has_user", &self.has_user())
  963. .finish()
  964. }
  965. }
  966. /// 页表映射器
  967. #[derive(Hash)]
  968. pub struct PageMapper<Arch, F> {
  969. /// 页表类型
  970. table_kind: PageTableKind,
  971. /// 根页表物理地址
  972. table_paddr: PhysAddr,
  973. /// 页分配器
  974. frame_allocator: F,
  975. phantom: PhantomData<fn() -> Arch>,
  976. }
  977. impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
  978. /// 创建新的页面映射器
  979. ///
  980. /// ## 参数
  981. /// - table_kind 页表类型
  982. /// - table_paddr 根页表物理地址
  983. /// - allocator 页分配器
  984. ///
  985. /// ## 返回值
  986. ///
  987. /// 页面映射器
  988. pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
  989. return Self {
  990. table_kind,
  991. table_paddr,
  992. frame_allocator: allocator,
  993. phantom: PhantomData,
  994. };
  995. }
  996. /// 创建页表,并为这个页表创建页面映射器
  997. pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
  998. let table_paddr = allocator.allocate_one()?;
  999. // 清空页表
  1000. let table_vaddr = Arch::phys_2_virt(table_paddr)?;
  1001. Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
  1002. return Some(Self::new(table_kind, table_paddr, allocator));
  1003. }
  1004. /// 获取当前页表的页面映射器
  1005. #[inline(always)]
  1006. pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
  1007. let table_paddr = Arch::table(table_kind);
  1008. return Self::new(table_kind, table_paddr, allocator);
  1009. }
  1010. /// 判断当前页表分配器所属的页表是否是当前页表
  1011. #[inline(always)]
  1012. pub fn is_current(&self) -> bool {
  1013. return unsafe { self.table().phys() == Arch::table(self.table_kind) };
  1014. }
  1015. /// 将当前页表分配器所属的页表设置为当前页表
  1016. #[inline(always)]
  1017. pub unsafe fn make_current(&self) {
  1018. Arch::set_table(self.table_kind, self.table_paddr);
  1019. }
  1020. /// 获取当前页表分配器所属的根页表的结构体
  1021. #[inline(always)]
  1022. pub fn table(&self) -> PageTable<Arch> {
  1023. // 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
  1024. return unsafe {
  1025. PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
  1026. };
  1027. }
  1028. /// 获取当前PageMapper所对应的页分配器实例的引用
  1029. #[inline(always)]
  1030. #[allow(dead_code)]
  1031. pub fn allocator_ref(&self) -> &F {
  1032. return &self.frame_allocator;
  1033. }
  1034. /// 获取当前PageMapper所对应的页分配器实例的可变引用
  1035. #[inline(always)]
  1036. pub fn allocator_mut(&mut self) -> &mut F {
  1037. return &mut self.frame_allocator;
  1038. }
  1039. /// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
  1040. pub unsafe fn map(
  1041. &mut self,
  1042. virt: VirtAddr,
  1043. flags: EntryFlags<Arch>,
  1044. ) -> Option<PageFlush<Arch>> {
  1045. compiler_fence(Ordering::SeqCst);
  1046. let phys: PhysAddr = self.frame_allocator.allocate_one()?;
  1047. compiler_fence(Ordering::SeqCst);
  1048. unsafe {
  1049. let vaddr = MMArch::phys_2_virt(phys).unwrap();
  1050. MMArch::write_bytes(vaddr, 0, MMArch::PAGE_SIZE);
  1051. }
  1052. let mut page_manager_guard: SpinLockGuard<'static, PageManager> =
  1053. page_manager_lock_irqsave();
  1054. if !page_manager_guard.contains(&phys) {
  1055. page_manager_guard.insert(phys, &Arc::new(Page::new(false, phys)))
  1056. }
  1057. drop(page_manager_guard);
  1058. return self.map_phys(virt, phys, flags);
  1059. }
  1060. /// 映射一个物理页到指定的虚拟地址
  1061. pub unsafe fn map_phys(
  1062. &mut self,
  1063. virt: VirtAddr,
  1064. phys: PhysAddr,
  1065. flags: EntryFlags<Arch>,
  1066. ) -> Option<PageFlush<Arch>> {
  1067. // 验证虚拟地址和物理地址是否对齐
  1068. if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
  1069. error!(
  1070. "Try to map unaligned page: virt={:?}, phys={:?}",
  1071. virt, phys
  1072. );
  1073. return None;
  1074. }
  1075. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  1076. // TODO: 验证flags是否合法
  1077. // 创建页表项
  1078. let entry = PageEntry::new(phys, flags);
  1079. let mut table = self.table();
  1080. loop {
  1081. let i = table.index_of(virt)?;
  1082. assert!(i < Arch::PAGE_ENTRY_NUM);
  1083. if table.level() == 0 {
  1084. compiler_fence(Ordering::SeqCst);
  1085. table.set_entry(i, entry);
  1086. compiler_fence(Ordering::SeqCst);
  1087. return Some(PageFlush::new(virt));
  1088. } else {
  1089. let next_table = table.next_level_table(i);
  1090. if let Some(next_table) = next_table {
  1091. table = next_table;
  1092. // debug!("Mapping {:?} to next level table...", virt);
  1093. } else {
  1094. // 分配下一级页表
  1095. let frame = self.frame_allocator.allocate_one()?;
  1096. // 清空这个页帧
  1097. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  1098. // 设置页表项的flags
  1099. let flags: EntryFlags<Arch> =
  1100. EntryFlags::new_page_table(virt.kind() == PageTableKind::User);
  1101. // 把新分配的页表映射到当前页表
  1102. table.set_entry(i, PageEntry::new(frame, flags));
  1103. // 获取新分配的页表
  1104. table = table.next_level_table(i)?;
  1105. }
  1106. }
  1107. }
  1108. }
  1109. /// 进行大页映射
  1110. pub unsafe fn map_huge_page(
  1111. &mut self,
  1112. virt: VirtAddr,
  1113. flags: EntryFlags<Arch>,
  1114. ) -> Option<PageFlush<Arch>> {
  1115. // 验证虚拟地址是否对齐
  1116. if !(virt.check_aligned(Arch::PAGE_SIZE)) {
  1117. error!("Try to map unaligned page: virt={:?}", virt);
  1118. return None;
  1119. }
  1120. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  1121. let mut table = self.table();
  1122. loop {
  1123. let i = table.index_of(virt)?;
  1124. assert!(i < Arch::PAGE_ENTRY_NUM);
  1125. let next_table = table.next_level_table(i);
  1126. if let Some(next_table) = next_table {
  1127. table = next_table;
  1128. } else {
  1129. break;
  1130. }
  1131. }
  1132. // 支持2M、1G大页,即页表层级为1、2级的页表可以映射大页
  1133. if table.level == 0 || table.level > 2 {
  1134. return None;
  1135. }
  1136. let (phys, count) = self.frame_allocator.allocate(PageFrameCount::new(
  1137. Arch::PAGE_ENTRY_NUM.pow(table.level as u32),
  1138. ))?;
  1139. MMArch::write_bytes(
  1140. MMArch::phys_2_virt(phys).unwrap(),
  1141. 0,
  1142. MMArch::PAGE_SIZE * count.data(),
  1143. );
  1144. table.set_entry(
  1145. table.index_of(virt)?,
  1146. PageEntry::new(phys, flags.set_huge_page(true)),
  1147. )?;
  1148. Some(PageFlush::new(virt))
  1149. }
  1150. /// 为虚拟地址分配指定层级的页表
  1151. /// ## 参数
  1152. ///
  1153. /// - `virt`: 虚拟地址
  1154. /// - `level`: 指定页表层级
  1155. ///
  1156. /// ## 返回值
  1157. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  1158. /// - None: 对应页表不存在
  1159. pub unsafe fn allocate_table(
  1160. &mut self,
  1161. virt: VirtAddr,
  1162. level: usize,
  1163. ) -> Option<PageTable<Arch>> {
  1164. let table = self.get_table(virt, level + 1)?;
  1165. let i = table.index_of(virt)?;
  1166. let frame = self.frame_allocator.allocate_one()?;
  1167. // 清空这个页帧
  1168. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  1169. // 设置页表项的flags
  1170. let flags: EntryFlags<Arch> =
  1171. EntryFlags::new_page_table(virt.kind() == PageTableKind::User);
  1172. table.set_entry(i, PageEntry::new(frame, flags));
  1173. table.next_level_table(i)
  1174. }
  1175. /// 获取虚拟地址的指定层级页表
  1176. /// ## 参数
  1177. ///
  1178. /// - `virt`: 虚拟地址
  1179. /// - `level`: 指定页表层级
  1180. ///
  1181. /// ## 返回值
  1182. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  1183. /// - None: 对应页表不存在
  1184. pub fn get_table(&self, virt: VirtAddr, level: usize) -> Option<PageTable<Arch>> {
  1185. let mut table = self.table();
  1186. if level > Arch::PAGE_LEVELS - 1 {
  1187. return None;
  1188. }
  1189. unsafe {
  1190. loop {
  1191. if table.level == level {
  1192. return Some(table);
  1193. }
  1194. let i = table.index_of(virt)?;
  1195. assert!(i < Arch::PAGE_ENTRY_NUM);
  1196. table = table.next_level_table(i)?;
  1197. }
  1198. }
  1199. }
  1200. /// 获取虚拟地址在指定层级页表的PageEntry
  1201. /// ## 参数
  1202. ///
  1203. /// - `virt`: 虚拟地址
  1204. /// - `level`: 指定页表层级
  1205. ///
  1206. /// ## 返回值
  1207. /// - Some(PageEntry<Arch>): 虚拟地址在指定层级的页表的有效PageEntry
  1208. /// - None: 无对应的有效PageEntry
  1209. pub fn get_entry(&self, virt: VirtAddr, level: usize) -> Option<PageEntry<Arch>> {
  1210. let table = self.get_table(virt, level)?;
  1211. let i = table.index_of(virt)?;
  1212. let entry = unsafe { table.entry(i) }?;
  1213. if !entry.empty() {
  1214. Some(entry)
  1215. } else {
  1216. None
  1217. }
  1218. // let mut table = self.table();
  1219. // if level > Arch::PAGE_LEVELS - 1 {
  1220. // return None;
  1221. // }
  1222. // unsafe {
  1223. // loop {
  1224. // let i = table.index_of(virt)?;
  1225. // assert!(i < Arch::PAGE_ENTRY_NUM);
  1226. // if table.level == level {
  1227. // let entry = table.entry(i)?;
  1228. // if !entry.empty() {
  1229. // return Some(entry);
  1230. // } else {
  1231. // return None;
  1232. // }
  1233. // }
  1234. // table = table.next_level_table(i)?;
  1235. // }
  1236. // }
  1237. }
  1238. /// 拷贝用户空间映射
  1239. /// ## 参数
  1240. ///
  1241. /// - `umapper`: 要拷贝的用户空间
  1242. /// - `copy_on_write`: 是否写时复制
  1243. pub unsafe fn clone_user_mapping(&mut self, umapper: &mut Self, copy_on_write: bool) {
  1244. let old_table = umapper.table();
  1245. let new_table = self.table();
  1246. let allocator = self.allocator_mut();
  1247. // 顶级页表的[0, PAGE_KERNEL_INDEX)项为用户空间映射
  1248. for entry_index in 0..Arch::PAGE_KERNEL_INDEX {
  1249. if let Some(next_table) = old_table.next_level_table(entry_index) {
  1250. let table = next_table.clone(allocator, copy_on_write).unwrap();
  1251. let old_entry = old_table.entry(entry_index).unwrap();
  1252. let entry = PageEntry::new(table.phys(), old_entry.flags());
  1253. new_table.set_entry(entry_index, entry);
  1254. }
  1255. }
  1256. }
  1257. /// 将物理地址映射到具有线性偏移量的虚拟地址
  1258. #[allow(dead_code)]
  1259. pub unsafe fn map_linearly(
  1260. &mut self,
  1261. phys: PhysAddr,
  1262. flags: EntryFlags<Arch>,
  1263. ) -> Option<(VirtAddr, PageFlush<Arch>)> {
  1264. let virt: VirtAddr = Arch::phys_2_virt(phys)?;
  1265. return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
  1266. }
  1267. /// 修改虚拟地址的页表项的flags,并返回页表项刷新器
  1268. ///
  1269. /// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
  1270. ///
  1271. /// ## 参数
  1272. /// - virt 虚拟地址
  1273. /// - flags 新的页表项的flags
  1274. ///
  1275. /// ## 返回值
  1276. ///
  1277. /// 如果修改成功,返回刷新器,否则返回None
  1278. pub unsafe fn remap(
  1279. &mut self,
  1280. virt: VirtAddr,
  1281. flags: EntryFlags<Arch>,
  1282. ) -> Option<PageFlush<Arch>> {
  1283. return self
  1284. .visit(virt, |p1, i| {
  1285. let mut entry = p1.entry(i)?;
  1286. entry.set_flags(flags);
  1287. p1.set_entry(i, entry);
  1288. Some(PageFlush::new(virt))
  1289. })
  1290. .flatten();
  1291. }
  1292. /// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
  1293. ///
  1294. /// ## 参数
  1295. ///
  1296. /// - virt 虚拟地址
  1297. ///
  1298. /// ## 返回值
  1299. ///
  1300. /// 如果查找成功,返回物理地址和页表项的flags,否则返回None
  1301. pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, EntryFlags<Arch>)> {
  1302. let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
  1303. let paddr = entry.address().ok()?;
  1304. let flags = entry.flags();
  1305. return Some((paddr, flags));
  1306. }
  1307. /// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
  1308. ///
  1309. /// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
  1310. ///
  1311. /// ## 参数
  1312. ///
  1313. /// - virt 虚拟地址
  1314. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1315. ///
  1316. /// ## 返回值
  1317. /// 如果取消成功,返回刷新器,否则返回None
  1318. #[allow(dead_code)]
  1319. pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
  1320. let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
  1321. self.frame_allocator.free_one(paddr);
  1322. return Some(flusher);
  1323. }
  1324. /// 取消虚拟地址的映射,并返回物理地址和页表项的flags
  1325. ///
  1326. /// ## 参数
  1327. ///
  1328. /// - vaddr 虚拟地址
  1329. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1330. ///
  1331. /// ## 返回值
  1332. ///
  1333. /// 如果取消成功,返回物理地址和页表项的flags,否则返回None
  1334. pub unsafe fn unmap_phys(
  1335. &mut self,
  1336. virt: VirtAddr,
  1337. unmap_parents: bool,
  1338. ) -> Option<(PhysAddr, EntryFlags<Arch>, PageFlush<Arch>)> {
  1339. if !virt.check_aligned(Arch::PAGE_SIZE) {
  1340. error!("Try to unmap unaligned page: virt={:?}", virt);
  1341. return None;
  1342. }
  1343. let table = self.table();
  1344. return unmap_phys_inner(virt, &table, unmap_parents, self.allocator_mut())
  1345. .map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
  1346. }
  1347. /// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
  1348. fn visit<T>(
  1349. &self,
  1350. virt: VirtAddr,
  1351. f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
  1352. ) -> Option<T> {
  1353. let mut table = self.table();
  1354. unsafe {
  1355. loop {
  1356. let i = table.index_of(virt)?;
  1357. if table.level() == 0 {
  1358. return Some(f(&mut table, i));
  1359. } else {
  1360. table = table.next_level_table(i)?;
  1361. }
  1362. }
  1363. }
  1364. }
  1365. }
  1366. /// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
  1367. ///
  1368. /// ## 参数
  1369. ///
  1370. /// - vaddr 虚拟地址
  1371. /// - table 页表
  1372. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1373. /// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
  1374. ///
  1375. /// ## 返回值
  1376. ///
  1377. /// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
  1378. unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
  1379. vaddr: VirtAddr,
  1380. table: &PageTable<Arch>,
  1381. unmap_parents: bool,
  1382. allocator: &mut impl FrameAllocator,
  1383. ) -> Option<(PhysAddr, EntryFlags<Arch>)> {
  1384. // 获取页表项的索引
  1385. let i = table.index_of(vaddr)?;
  1386. // 如果当前是最后一级页表,直接取消页面映射
  1387. if table.level() == 0 {
  1388. let entry = table.entry(i)?;
  1389. table.set_entry(i, PageEntry::from_usize(0));
  1390. return Some((entry.address().ok()?, entry.flags()));
  1391. }
  1392. let subtable = table.next_level_table(i)?;
  1393. // 递归地取消映射
  1394. let result = unmap_phys_inner(vaddr, &subtable, unmap_parents, allocator)?;
  1395. // TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
  1396. // as these mappings may become out of sync
  1397. if unmap_parents {
  1398. // 如果子页表已经没有映射的页面了,就取消子页表的映射
  1399. // 检查子页表中是否还有映射的页面
  1400. let x = (0..Arch::PAGE_ENTRY_NUM)
  1401. .map(|k| subtable.entry(k).expect("invalid page entry"))
  1402. .any(|e| e.present());
  1403. if !x {
  1404. // 如果没有,就取消子页表的映射
  1405. table.set_entry(i, PageEntry::from_usize(0));
  1406. // 释放子页表
  1407. allocator.free_one(subtable.phys());
  1408. }
  1409. }
  1410. return Some(result);
  1411. }
  1412. impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
  1413. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  1414. f.debug_struct("PageMapper")
  1415. .field("table_paddr", &self.table_paddr)
  1416. .field("frame_allocator", &self.frame_allocator)
  1417. .finish()
  1418. }
  1419. }
  1420. /// 页表刷新器的trait
  1421. pub trait Flusher<Arch: MemoryManagementArch> {
  1422. /// 取消对指定的page flusher的刷新
  1423. fn consume(&mut self, flush: PageFlush<Arch>);
  1424. }
  1425. /// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1426. /// 否则会造成对页表的更改被忽略,这是不安全的
  1427. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1428. pub struct PageFlush<Arch: MemoryManagementArch> {
  1429. virt: VirtAddr,
  1430. phantom: PhantomData<Arch>,
  1431. }
  1432. impl<Arch: MemoryManagementArch> PageFlush<Arch> {
  1433. pub fn new(virt: VirtAddr) -> Self {
  1434. return Self {
  1435. virt,
  1436. phantom: PhantomData,
  1437. };
  1438. }
  1439. pub fn flush(self) {
  1440. unsafe { Arch::invalidate_page(self.virt) };
  1441. }
  1442. /// 忽略掉这个刷新器
  1443. pub unsafe fn ignore(self) {
  1444. mem::forget(self);
  1445. }
  1446. }
  1447. impl<Arch: MemoryManagementArch> Drop for PageFlush<Arch> {
  1448. fn drop(&mut self) {
  1449. unsafe {
  1450. MMArch::invalidate_page(self.virt);
  1451. }
  1452. }
  1453. }
  1454. /// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1455. /// 否则会造成对页表的更改被忽略,这是不安全的
  1456. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1457. pub struct PageFlushAll<Arch: MemoryManagementArch> {
  1458. phantom: PhantomData<fn() -> Arch>,
  1459. }
  1460. #[allow(dead_code)]
  1461. impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
  1462. pub fn new() -> Self {
  1463. return Self {
  1464. phantom: PhantomData,
  1465. };
  1466. }
  1467. pub fn flush(self) {
  1468. unsafe { Arch::invalidate_all() };
  1469. }
  1470. /// 忽略掉这个刷新器
  1471. pub unsafe fn ignore(self) {
  1472. mem::forget(self);
  1473. }
  1474. }
  1475. impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
  1476. /// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
  1477. fn consume(&mut self, flush: PageFlush<Arch>) {
  1478. unsafe { flush.ignore() };
  1479. }
  1480. }
  1481. impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
  1482. /// 允许一个flusher consume掉另一个flusher
  1483. fn consume(&mut self, flush: PageFlush<Arch>) {
  1484. <T as Flusher<Arch>>::consume(self, flush);
  1485. }
  1486. }
  1487. impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
  1488. fn consume(&mut self, _flush: PageFlush<Arch>) {}
  1489. }
  1490. impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
  1491. fn drop(&mut self) {
  1492. unsafe {
  1493. Arch::invalidate_all();
  1494. }
  1495. }
  1496. }
  1497. /// 未在当前CPU上激活的页表的刷新器
  1498. ///
  1499. /// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
  1500. ///
  1501. /// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
  1502. #[derive(Debug)]
  1503. pub struct InactiveFlusher;
  1504. impl InactiveFlusher {
  1505. pub fn new() -> Self {
  1506. return Self {};
  1507. }
  1508. }
  1509. impl Flusher<MMArch> for InactiveFlusher {
  1510. fn consume(&mut self, flush: PageFlush<MMArch>) {
  1511. unsafe {
  1512. flush.ignore();
  1513. }
  1514. }
  1515. }
  1516. impl Drop for InactiveFlusher {
  1517. fn drop(&mut self) {
  1518. // 发送刷新页表的IPI
  1519. send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
  1520. }
  1521. }
  1522. /// # 把一个地址向下对齐到页大小
  1523. pub fn round_down_to_page_size(addr: usize) -> usize {
  1524. addr & !(MMArch::PAGE_SIZE - 1)
  1525. }
  1526. /// # 把一个地址向上对齐到页大小
  1527. pub fn round_up_to_page_size(addr: usize) -> usize {
  1528. round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
  1529. }