mm.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. #include "mm.h"
  2. #include "../common/printk.h"
  3. #include "../common/kprint.h"
  4. ul Total_Memory = 0;
  5. ul total_2M_pages = 0;
  6. void mm_init()
  7. {
  8. kinfo("Initializing memory management unit...");
  9. // 设置内核程序不同部分的起止地址
  10. memory_management_struct.kernel_code_start = (ul)&_text;
  11. memory_management_struct.kernel_code_end = (ul)&_etext;
  12. memory_management_struct.kernel_data_end = (ul)&_edata;
  13. memory_management_struct.kernel_end = (ul)&_end;
  14. // 实模式下获取到的信息的起始地址,转换为ARDS指针
  15. struct ARDS *ards_ptr = (struct ARDS *)0xffff800000007e00;
  16. for (int i = 0; i < 32; ++i)
  17. {
  18. //可用的内存
  19. if (ards_ptr->type == 1)
  20. Total_Memory += ards_ptr->Length;
  21. // 保存信息到mms
  22. memory_management_struct.e820[i].BaseAddr = ards_ptr->BaseAddr;
  23. memory_management_struct.e820[i].Length = ards_ptr->Length;
  24. memory_management_struct.e820[i].type = ards_ptr->type;
  25. memory_management_struct.len_e820 = i;
  26. ++ards_ptr;
  27. // 脏数据
  28. if (ards_ptr->type > 4 || ards_ptr->Length == 0 || ards_ptr->type < 1)
  29. break;
  30. }
  31. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  32. // 计算有效内存页数
  33. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  34. {
  35. if (memory_management_struct.e820[i].type != 1)
  36. continue;
  37. // 将内存段的起始物理地址按照2M进行对齐
  38. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  39. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  40. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  41. // 内存段不可用
  42. if (addr_end <= addr_start)
  43. continue;
  44. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  45. }
  46. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  47. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  48. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  49. // 初始化mms的bitmap
  50. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  51. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  52. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  53. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  54. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  55. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  56. // 初始化内存页结构
  57. // 将页结构映射于bmp之后
  58. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  59. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  60. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  61. // 将pages_struct全部清空,以备后续初始化
  62. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); //init pages memory
  63. // 初始化内存区域
  64. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  65. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  66. memory_management_struct.count_zones = 0;
  67. // zones-struct 成员变量暂时按照5个来计算
  68. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  69. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  70. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  71. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  72. {
  73. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  74. continue;
  75. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  76. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  77. if (addr_end <= addr_start)
  78. continue;
  79. // zone init
  80. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  81. ++memory_management_struct.count_zones;
  82. z->zone_addr_start = addr_start;
  83. z->zone_addr_end = addr_end;
  84. z->zone_length = addr_end - addr_start;
  85. z->count_pages_using = 0;
  86. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  87. z->total_pages_link = 0;
  88. z->attr = 0;
  89. z->gmd_struct = &memory_management_struct;
  90. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  91. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  92. // 初始化页
  93. struct Page *p = z->pages_group;
  94. for (int j = 0; j < z->count_pages; ++j, ++p)
  95. {
  96. p->zone = z;
  97. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  98. p->attr = 0;
  99. p->ref_counts = 0;
  100. p->age = 0;
  101. // 将bmp中对应的位 复位
  102. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  103. }
  104. }
  105. // 初始化0~2MB的物理页
  106. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  107. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  108. memory_management_struct.pages_struct->addr_phys = 0UL;
  109. memory_management_struct.pages_struct->attr = 0;
  110. memory_management_struct.pages_struct->ref_counts = 0;
  111. memory_management_struct.pages_struct->age = 0;
  112. // 计算zone结构体的总长度(按照64位对齐)
  113. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  114. /*
  115. printk_color(ORANGE, BLACK, "bmp:%#18lx, bmp_len:%#18lx, bits_size:%#18lx\n", memory_management_struct.bmp, memory_management_struct.bmp_len, memory_management_struct.bits_size);
  116. printk_color(ORANGE, BLACK, "pages_struct:%#18lx, count_pages:%#18lx, pages_struct_len:%#18lx\n", memory_management_struct.pages_struct, memory_management_struct.count_pages, memory_management_struct.pages_struct_len);
  117. printk_color(ORANGE, BLACK, "zones_struct:%#18lx, count_zones:%#18lx, zones_struct_len:%#18lx\n", memory_management_struct.zones_struct, memory_management_struct.count_zones, memory_management_struct.zones_struct_len);
  118. */
  119. ZONE_DMA_INDEX = 0; //need rewrite in the future
  120. ZONE_NORMAL_INDEX = 0; //need rewrite in the future
  121. for (int i = 0; i < memory_management_struct.count_zones; ++i) //need rewrite in the future
  122. {
  123. struct Zone *z = memory_management_struct.zones_struct + i;
  124. //printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  125. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  126. // 1GB以上的内存空间不做映射
  127. if (z->zone_addr_start == 0x100000000)
  128. ZONE_UNMAPED_INDEX = i;
  129. }
  130. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  131. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  132. //printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  133. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  134. // 初始化内存管理单元结构所占的物理页的结构体
  135. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  136. for (ul j = 0; j <= mms_max_page; ++j)
  137. {
  138. page_init(memory_management_struct.pages_struct + j, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT | PAGE_ACTIVE);
  139. }
  140. global_CR3 = get_CR3();
  141. /*
  142. printk_color(INDIGO, BLACK, "cr3:\t%#018lx\n", cr3);
  143. printk_color(INDIGO, BLACK, "*cr3:\t%#018lx\n", *(phys_2_virt(cr3)) & (~0xff));
  144. printk_color(INDIGO, BLACK, "**cr3:\t%#018lx\n", *phys_2_virt(*(phys_2_virt(cr3)) & (~0xff)) & (~0xff));
  145. */
  146. // 消除一致性页表映射,将页目录(PML4E)的前10项清空
  147. for (int i = 0; i < 10; ++i)
  148. *(phys_2_virt(global_CR3) + i) = 0UL;
  149. flush_tlb();
  150. kinfo("Memory management unit initialize complete!");
  151. }
  152. /**
  153. * @brief 初始化内存页
  154. *
  155. * @param page 内存页结构体
  156. * @param flags 标志位
  157. * 对于新页面: 初始化struct page
  158. * 对于当前页面属性/flags中含有引用属性或共享属性时,则只增加struct page和struct zone的被引用计数。否则就只是添加页表属性,并置位bmp的相应位。
  159. * @return unsigned long
  160. */
  161. unsigned long page_init(struct Page *page, ul flags)
  162. {
  163. // 全新的页面
  164. if (!page->attr)
  165. {
  166. // 将bmp对应的标志位置位
  167. *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64;
  168. page->attr = flags;
  169. ++(page->ref_counts);
  170. ++(page->zone->count_pages_using);
  171. --(page->zone->count_pages_free);
  172. ++(page->zone->total_pages_link);
  173. }
  174. // 不是全新的页面,而是含有引用属性/共享属性
  175. else if ((page->attr & PAGE_REFERENCED) || (page->attr & PAGE_K_SHARE_TO_U) || (flags & PAGE_REFERENCED) || (flags & PAGE_K_SHARE_TO_U))
  176. {
  177. page->attr |= flags;
  178. ++(page->ref_counts);
  179. ++(page->zone->total_pages_link);
  180. }
  181. else
  182. {
  183. // 将bmp对应的标志位置位
  184. //*(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << ((page->addr_phys >> PAGE_2M_SHIFT) % 64));
  185. *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64;
  186. page->attr |= flags;
  187. }
  188. return 0;
  189. }
  190. /**
  191. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  192. *
  193. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  194. * @param num 需要申请的连续内存页的数量 num<=64
  195. * @param flags 将页面属性设置成flag
  196. * @return struct Page*
  197. */
  198. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  199. {
  200. ul zone_start = 0, zone_end = 0;
  201. switch (zone_select)
  202. {
  203. case ZONE_DMA:
  204. // DMA区域
  205. zone_start = 0;
  206. zone_end = ZONE_DMA_INDEX;
  207. break;
  208. case ZONE_NORMAL:
  209. zone_start = ZONE_DMA_INDEX;
  210. zone_end = ZONE_NORMAL_INDEX;
  211. break;
  212. case ZONE_UNMAPPED_IN_PGT:
  213. zone_start = ZONE_NORMAL_INDEX;
  214. zone_end = ZONE_UNMAPED_INDEX;
  215. break;
  216. default:
  217. kwarn("In alloc_pages: param: zone_select incorrect.");
  218. // 返回空
  219. return NULL;
  220. break;
  221. }
  222. for (int i = zone_start; i <= zone_end; ++i)
  223. {
  224. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  225. continue;
  226. struct Zone *z = memory_management_struct.zones_struct + i;
  227. // 区域对应的起止页号以及区域拥有的页面数
  228. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  229. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  230. ul page_num = (z->zone_length >> PAGE_2M_SHIFT);
  231. ul tmp = 64 - page_start % 64;
  232. for (ul j = page_start; j <= page_end; j += ((j % 64) ? tmp : 64))
  233. {
  234. // 按照bmp中的每一个元素进行查找
  235. // 先将p定位到bmp的起始元素
  236. ul *p = memory_management_struct.bmp + (j >> 6);
  237. ul shift = j % 64;
  238. for (ul k = shift; k < 64 - shift; ++k)
  239. {
  240. // 寻找连续num个空页
  241. if (!(((*p >> k) | (*(p + 1) << (64 - k))) & (num == 64 ? 0xffffffffffffffffUL : ((1UL << num) - 1))))
  242. {
  243. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号(书上的公式有问题,这个是改过之后的版本)
  244. for (ul l = 0; l < num; ++l)
  245. {
  246. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  247. page_init(x, flags);
  248. }
  249. // 成功分配了页面,返回第一个页面的指针
  250. //printk("start page num=%d\n",start_page_num);
  251. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  252. }
  253. }
  254. }
  255. }
  256. return NULL;
  257. }
  258. unsigned long page_clean(struct Page *p)
  259. {
  260. if (!p->attr)
  261. p->attr = 0;
  262. else if ((p->attr & PAGE_REFERENCED) || (p->attr & PAGE_K_SHARE_TO_U))
  263. {
  264. // 被引用的页或内核共享给用户态的页
  265. --p->ref_counts;
  266. --p->zone->total_pages_link;
  267. // 当引用为0时
  268. if (!p->ref_counts)
  269. {
  270. p->attr = 0;
  271. --p->zone->count_pages_using;
  272. ++p->zone->count_pages_free;
  273. }
  274. }
  275. else
  276. {
  277. // 将bmp复位
  278. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) &= ~(1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  279. p->attr = 0;
  280. p->ref_counts = 0;
  281. --p->zone->count_pages_using;
  282. ++p->zone->count_pages_free;
  283. --p->zone->total_pages_link;
  284. }
  285. }