process.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197
  1. #include "process.h"
  2. #include <common/compiler.h>
  3. #include <common/elf.h>
  4. #include <common/kprint.h>
  5. #include <common/kthread.h>
  6. #include <common/printk.h>
  7. #include <common/spinlock.h>
  8. #include <common/stdio.h>
  9. #include <common/string.h>
  10. #include <common/sys/wait.h>
  11. #include <common/time.h>
  12. #include <common/unistd.h>
  13. #include <debug/bug.h>
  14. #include <debug/traceback/traceback.h>
  15. #include <driver/disk/ahci/ahci.h>
  16. #include <driver/usb/usb.h>
  17. #include <driver/video/video.h>
  18. #include <exception/gate.h>
  19. #include <filesystem/devfs/devfs.h>
  20. #include <filesystem/fat32/fat32.h>
  21. #include <filesystem/rootfs/rootfs.h>
  22. #include <mm/slab.h>
  23. #include <sched/sched.h>
  24. #include <syscall/syscall.h>
  25. #include <syscall/syscall_num.h>
  26. #include <ktest/ktest.h>
  27. #include <mm/mmio.h>
  28. #include <common/lz4.h>
  29. // #pragma GCC push_options
  30. // #pragma GCC optimize("O0")
  31. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  32. long process_global_pid = 1; // 系统中最大的pid
  33. extern void system_call(void);
  34. extern void kernel_thread_func(void);
  35. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  36. extern struct mm_struct initial_mm;
  37. struct thread_struct initial_thread = {
  38. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  39. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  40. .fs = KERNEL_DS,
  41. .gs = KERNEL_DS,
  42. .cr2 = 0,
  43. .trap_num = 0,
  44. .err_code = 0,
  45. };
  46. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  47. union proc_union initial_proc_union
  48. __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  49. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  50. // 为每个核心初始化初始进程的tss
  51. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  52. /**
  53. * @brief 拷贝当前进程的标志位
  54. *
  55. * @param clone_flags 克隆标志位
  56. * @param pcb 新的进程的pcb
  57. * @return uint64_t
  58. */
  59. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  60. /**
  61. * @brief 拷贝当前进程的文件描述符等信息
  62. *
  63. * @param clone_flags 克隆标志位
  64. * @param pcb 新的进程的pcb
  65. * @return uint64_t
  66. */
  67. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  68. /**
  69. * @brief 回收进程的所有文件描述符
  70. *
  71. * @param pcb 要被回收的进程的pcb
  72. * @return uint64_t
  73. */
  74. uint64_t process_exit_files(struct process_control_block *pcb);
  75. /**
  76. * @brief 拷贝当前进程的内存空间分布结构体信息
  77. *
  78. * @param clone_flags 克隆标志位
  79. * @param pcb 新的进程的pcb
  80. * @return uint64_t
  81. */
  82. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  83. /**
  84. * @brief 释放进程的页表
  85. *
  86. * @param pcb 要被释放页表的进程
  87. * @return uint64_t
  88. */
  89. uint64_t process_exit_mm(struct process_control_block *pcb);
  90. /**
  91. * @brief 拷贝当前进程的线程结构体
  92. *
  93. * @param clone_flags 克隆标志位
  94. * @param pcb 新的进程的pcb
  95. * @return uint64_t
  96. */
  97. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
  98. uint64_t stack_size, struct pt_regs *current_regs);
  99. void process_exit_thread(struct process_control_block *pcb);
  100. /**
  101. * @brief 切换进程
  102. *
  103. * @param prev 上一个进程的pcb
  104. * @param next 将要切换到的进程的pcb
  105. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  106. * 这里切换fs和gs寄存器
  107. */
  108. #pragma GCC push_options
  109. #pragma GCC optimize("O0")
  110. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  111. {
  112. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  113. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  114. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2,
  115. // initial_tss[0].ist1,
  116. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5,
  117. // initial_tss[0].ist6, initial_tss[0].ist7);
  118. __asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs));
  119. __asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs));
  120. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  121. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  122. }
  123. #pragma GCC pop_options
  124. /**
  125. * @brief 打开要执行的程序文件
  126. *
  127. * @param path
  128. * @return struct vfs_file_t*
  129. */
  130. struct vfs_file_t *process_open_exec_file(char *path)
  131. {
  132. struct vfs_dir_entry_t *dentry = NULL;
  133. struct vfs_file_t *filp = NULL;
  134. dentry = vfs_path_walk(path, 0);
  135. if (dentry == NULL)
  136. return (void *)-ENOENT;
  137. if (dentry->dir_inode->attribute == VFS_IF_DIR)
  138. return (void *)-ENOTDIR;
  139. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  140. if (filp == NULL)
  141. return (void *)-ENOMEM;
  142. filp->position = 0;
  143. filp->mode = 0;
  144. filp->dEntry = dentry;
  145. filp->mode = ATTR_READ_ONLY;
  146. filp->file_ops = dentry->dir_inode->file_ops;
  147. return filp;
  148. }
  149. /**
  150. * @brief 加载elf格式的程序文件到内存中,并设置regs
  151. *
  152. * @param regs 寄存器
  153. * @param path 文件路径
  154. * @return int
  155. */
  156. static int process_load_elf_file(struct pt_regs *regs, char *path)
  157. {
  158. int retval = 0;
  159. struct vfs_file_t *filp = process_open_exec_file(path);
  160. if ((long)filp <= 0 && (long)filp >= -255)
  161. {
  162. // kdebug("(long)filp=%ld", (long)filp);
  163. return (unsigned long)filp;
  164. }
  165. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  166. memset(buf, 0, PAGE_4K_SIZE);
  167. uint64_t pos = 0;
  168. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  169. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  170. retval = 0;
  171. if (!elf_check(buf))
  172. {
  173. kerror("Not an ELF file: %s", path);
  174. retval = -ENOTSUP;
  175. goto load_elf_failed;
  176. }
  177. #if ARCH(X86_64)
  178. // 暂时只支持64位的文件
  179. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  180. {
  181. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  182. retval = -EUNSUPPORTED;
  183. goto load_elf_failed;
  184. }
  185. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  186. // 暂时只支持AMD64架构
  187. if (ehdr.e_machine != EM_AMD64)
  188. {
  189. kerror("e_machine=%d", ehdr.e_machine);
  190. retval = -EUNSUPPORTED;
  191. goto load_elf_failed;
  192. }
  193. #else
  194. #error Unsupported architecture!
  195. #endif
  196. if (ehdr.e_type != ET_EXEC)
  197. {
  198. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  199. retval = -EUNSUPPORTED;
  200. goto load_elf_failed;
  201. }
  202. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  203. regs->rip = ehdr.e_entry;
  204. current_pcb->mm->code_addr_start = ehdr.e_entry;
  205. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize,
  206. // ehdr.e_phnum); 将指针移动到program header处
  207. pos = ehdr.e_phoff;
  208. // 读取所有的phdr
  209. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  210. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  211. if ((unsigned long)filp <= 0)
  212. {
  213. kdebug("(unsigned long)filp=%d", (long)filp);
  214. retval = -ENOEXEC;
  215. goto load_elf_failed;
  216. }
  217. Elf64_Phdr *phdr = buf;
  218. // 将程序加载到内存中
  219. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  220. {
  221. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld
  222. // phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  223. // 不是可加载的段
  224. if (phdr->p_type != PT_LOAD)
  225. continue;
  226. int64_t remain_mem_size = phdr->p_memsz;
  227. int64_t remain_file_size = phdr->p_filesz;
  228. pos = phdr->p_offset;
  229. uint64_t virt_base = 0;
  230. uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
  231. if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
  232. virt_base = phdr->p_vaddr & PAGE_2M_MASK;
  233. else // 接下来只有4K页的映射
  234. virt_base = phdr->p_vaddr & PAGE_4K_MASK;
  235. beginning_offset = phdr->p_vaddr - virt_base;
  236. remain_mem_size += beginning_offset;
  237. while (remain_mem_size > 0)
  238. {
  239. // kdebug("loading...");
  240. int64_t map_size = 0;
  241. if (remain_mem_size >= PAGE_2M_SIZE)
  242. {
  243. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  244. struct vm_area_struct *vma = NULL;
  245. int ret =
  246. mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  247. // 防止内存泄露
  248. if (ret == -EEXIST)
  249. free_pages(Phy_to_2M_Page(pa), 1);
  250. else
  251. mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
  252. // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  253. io_mfence();
  254. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  255. map_size = PAGE_2M_SIZE;
  256. }
  257. else
  258. {
  259. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  260. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  261. // 循环分配4K大小内存块
  262. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  263. {
  264. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  265. struct vm_area_struct *vma = NULL;
  266. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS,
  267. NULL, &vma);
  268. // kdebug("virt_base=%#018lx", virt_base + off);
  269. if (val == -EEXIST)
  270. kfree(phys_2_virt(paddr));
  271. else
  272. mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
  273. // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
  274. io_mfence();
  275. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  276. }
  277. }
  278. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  279. int64_t val = 0;
  280. if (remain_file_size > 0)
  281. {
  282. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  283. val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos);
  284. }
  285. if (val < 0)
  286. goto load_elf_failed;
  287. remain_mem_size -= map_size;
  288. remain_file_size -= val;
  289. virt_base += map_size;
  290. }
  291. }
  292. // 分配2MB的栈内存空间
  293. regs->rsp = current_pcb->mm->stack_start;
  294. regs->rbp = current_pcb->mm->stack_start;
  295. {
  296. struct vm_area_struct *vma = NULL;
  297. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  298. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE,
  299. VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  300. if (val == -EEXIST)
  301. free_pages(Phy_to_2M_Page(pa), 1);
  302. else
  303. mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  304. }
  305. // 清空栈空间
  306. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  307. load_elf_failed:;
  308. if (buf != NULL)
  309. kfree(buf);
  310. return retval;
  311. }
  312. /**
  313. * @brief 使当前进程去执行新的代码
  314. *
  315. * @param regs 当前进程的寄存器
  316. * @param path 可执行程序的路径
  317. * @param argv 参数列表
  318. * @param envp 环境变量
  319. * @return ul 错误码
  320. */
  321. #pragma GCC push_options
  322. #pragma GCC optimize("O0")
  323. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  324. {
  325. // kdebug("do_execve is running...");
  326. // 当前进程正在与父进程共享地址空间,需要创建
  327. // 独立的地址空间才能使新程序正常运行
  328. if (current_pcb->flags & PF_VFORK)
  329. {
  330. // kdebug("proc:%d creating new mem space", current_pcb->pid);
  331. // 分配新的内存空间分布结构体
  332. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  333. memset(new_mms, 0, sizeof(struct mm_struct));
  334. current_pcb->mm = new_mms;
  335. // 分配顶层页表, 并设置顶层页表的物理地址
  336. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  337. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  338. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  339. // 拷贝内核空间的页表指针
  340. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  341. }
  342. // 设置用户栈和用户堆的基地址
  343. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  344. const uint64_t brk_start_addr = 0x700000000000UL;
  345. process_switch_mm(current_pcb);
  346. // 为用户态程序设置地址边界
  347. if (!(current_pcb->flags & PF_KTHREAD))
  348. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  349. current_pcb->mm->code_addr_end = 0;
  350. current_pcb->mm->data_addr_start = 0;
  351. current_pcb->mm->data_addr_end = 0;
  352. current_pcb->mm->rodata_addr_start = 0;
  353. current_pcb->mm->rodata_addr_end = 0;
  354. current_pcb->mm->bss_start = 0;
  355. current_pcb->mm->bss_end = 0;
  356. current_pcb->mm->brk_start = brk_start_addr;
  357. current_pcb->mm->brk_end = brk_start_addr;
  358. current_pcb->mm->stack_start = stack_start_addr;
  359. // 关闭之前的文件描述符
  360. process_exit_files(current_pcb);
  361. // 清除进程的vfork标志位
  362. current_pcb->flags &= ~PF_VFORK;
  363. // 加载elf格式的可执行文件
  364. int tmp = process_load_elf_file(regs, path);
  365. if (tmp < 0)
  366. goto exec_failed;
  367. // 拷贝参数列表
  368. if (argv != NULL)
  369. {
  370. int argc = 0;
  371. // 目标程序的argv基地址指针,最大8个参数
  372. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  373. uint64_t str_addr = (uint64_t)dst_argv;
  374. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  375. {
  376. if (*argv[argc] == NULL)
  377. break;
  378. // 测量参数的长度(最大1023)
  379. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  380. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  381. str_addr -= argv_len;
  382. dst_argv[argc] = (char *)str_addr;
  383. // 字符串加上结尾字符
  384. ((char *)str_addr)[argv_len] = '\0';
  385. }
  386. // 重新设定栈基址,并预留空间防止越界
  387. stack_start_addr = str_addr - 8;
  388. current_pcb->mm->stack_start = stack_start_addr;
  389. regs->rsp = regs->rbp = stack_start_addr;
  390. // 传递参数
  391. regs->rdi = argc;
  392. regs->rsi = (uint64_t)dst_argv;
  393. }
  394. // kdebug("execve ok");
  395. regs->cs = USER_CS | 3;
  396. regs->ds = USER_DS | 3;
  397. regs->ss = USER_DS | 0x3;
  398. regs->rflags = 0x200246;
  399. regs->rax = 1;
  400. regs->es = 0;
  401. return 0;
  402. exec_failed:;
  403. process_do_exit(tmp);
  404. }
  405. #pragma GCC pop_options
  406. /**
  407. * @brief 内核init进程
  408. *
  409. * @param arg
  410. * @return ul 参数
  411. */
  412. #pragma GCC push_options
  413. #pragma GCC optimize("O0")
  414. ul initial_kernel_thread(ul arg)
  415. {
  416. kinfo("initial proc running...\targ:%#018lx", arg);
  417. scm_enable_double_buffer();
  418. ahci_init();
  419. fat32_init();
  420. rootfs_umount();
  421. // 使用单独的内核线程来初始化usb驱动程序
  422. // 注释:由于目前usb驱动程序不完善,因此先将其注释掉
  423. // int usb_pid = kernel_thread(usb_init, 0, 0);
  424. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  425. // 对一些组件进行单元测试
  426. uint64_t tpid[] = {
  427. ktest_start(ktest_test_bitree, 0), ktest_start(ktest_test_kfifo, 0), ktest_start(ktest_test_mutex, 0),
  428. ktest_start(ktest_test_idr, 0),
  429. // usb_pid,
  430. };
  431. kinfo("Waiting test thread exit...");
  432. // 等待测试进程退出
  433. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  434. waitpid(tpid[i], NULL, NULL);
  435. kinfo("All test done.");
  436. // 准备切换到用户态
  437. struct pt_regs *regs;
  438. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  439. cli();
  440. current_pcb->thread->rip = (ul)ret_from_system_call;
  441. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  442. current_pcb->thread->fs = USER_DS | 0x3;
  443. barrier();
  444. current_pcb->thread->gs = USER_DS | 0x3;
  445. // 主动放弃内核线程身份
  446. current_pcb->flags &= (~PF_KTHREAD);
  447. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  448. regs = (struct pt_regs *)current_pcb->thread->rsp;
  449. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  450. current_pcb->flags = 0;
  451. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数
  452. // 这里的设计思路和switch_proc类似 加载用户态程序:shell.elf
  453. char init_path[] = "/shell.elf";
  454. uint64_t addr = (uint64_t)&init_path;
  455. __asm__ __volatile__("movq %1, %%rsp \n\t"
  456. "pushq %2 \n\t"
  457. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  458. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL),
  459. "d"(NULL)
  460. : "memory");
  461. return 1;
  462. }
  463. #pragma GCC pop_options
  464. /**
  465. * @brief 当子进程退出后向父进程发送通知
  466. *
  467. */
  468. void process_exit_notify()
  469. {
  470. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  471. }
  472. /**
  473. * @brief 进程退出时执行的函数
  474. *
  475. * @param code 返回码
  476. * @return ul
  477. */
  478. ul process_do_exit(ul code)
  479. {
  480. // kinfo("process exiting..., code is %ld.", (long)code);
  481. cli();
  482. struct process_control_block *pcb = current_pcb;
  483. // 进程退出时释放资源
  484. process_exit_files(pcb);
  485. process_exit_thread(pcb);
  486. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  487. pcb->state = PROC_ZOMBIE;
  488. pcb->exit_code = code;
  489. sti();
  490. process_exit_notify();
  491. sched();
  492. while (1)
  493. pause();
  494. }
  495. /**
  496. * @brief 初始化内核进程
  497. *
  498. * @param fn 目标程序的地址
  499. * @param arg 向目标程序传入的参数
  500. * @param flags
  501. * @return int
  502. */
  503. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  504. {
  505. struct pt_regs regs;
  506. barrier();
  507. memset(&regs, 0, sizeof(regs));
  508. barrier();
  509. // 在rbx寄存器中保存进程的入口地址
  510. regs.rbx = (ul)fn;
  511. // 在rdx寄存器中保存传入的参数
  512. regs.rdx = (ul)arg;
  513. barrier();
  514. regs.ds = KERNEL_DS;
  515. barrier();
  516. regs.es = KERNEL_DS;
  517. barrier();
  518. regs.cs = KERNEL_CS;
  519. barrier();
  520. regs.ss = KERNEL_DS;
  521. barrier();
  522. // 置位中断使能标志位
  523. regs.rflags = (1 << 9);
  524. barrier();
  525. // rip寄存器指向内核线程的引导程序
  526. regs.rip = (ul)kernel_thread_func;
  527. barrier();
  528. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  529. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  530. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  531. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  532. }
  533. /**
  534. * @brief 初始化进程模块
  535. * ☆前置条件:已完成系统调用模块的初始化
  536. */
  537. void process_init()
  538. {
  539. kinfo("Initializing process...");
  540. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  541. /*
  542. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  543. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  544. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  545. */
  546. // 初始化pid的写锁
  547. spin_init(&process_global_pid_write_lock);
  548. // 初始化进程的循环链表
  549. list_init(&initial_proc_union.pcb.list);
  550. // 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
  551. current_pcb->virtual_runtime = 0;
  552. barrier();
  553. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  554. barrier();
  555. kthread_mechanism_init(); // 初始化kthread机制
  556. initial_proc_union.pcb.state = PROC_RUNNING;
  557. initial_proc_union.pcb.preempt_count = 0;
  558. initial_proc_union.pcb.cpu_id = 0;
  559. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  560. // 将IDLE进程的虚拟运行时间设置为一个很大的数值
  561. current_pcb->virtual_runtime = (1UL << 60);
  562. }
  563. /**
  564. * @brief fork当前进程
  565. *
  566. * @param regs 新的寄存器值
  567. * @param clone_flags 克隆标志
  568. * @param stack_start 堆栈开始地址
  569. * @param stack_size 堆栈大小
  570. * @return unsigned long
  571. */
  572. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start,
  573. unsigned long stack_size)
  574. {
  575. int retval = 0;
  576. struct process_control_block *tsk = NULL;
  577. // 为新的进程分配栈空间,并将pcb放置在底部
  578. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  579. barrier();
  580. if (tsk == NULL)
  581. {
  582. retval = -ENOMEM;
  583. return retval;
  584. }
  585. barrier();
  586. memset(tsk, 0, sizeof(struct process_control_block));
  587. io_mfence();
  588. // 将当前进程的pcb复制到新的pcb内
  589. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  590. tsk->worker_private = NULL;
  591. io_mfence();
  592. // 初始化进程的循环链表结点
  593. list_init(&tsk->list);
  594. io_mfence();
  595. // 判断是否为内核态调用fork
  596. if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
  597. tsk->flags |= PF_KFORK;
  598. if (tsk->flags & PF_KTHREAD)
  599. {
  600. // 对于内核线程,设置其worker私有信息
  601. retval = kthread_set_worker_private(tsk);
  602. if (IS_ERR_VALUE(retval))
  603. goto copy_flags_failed;
  604. tsk->virtual_runtime = 0;
  605. }
  606. tsk->priority = 2;
  607. tsk->preempt_count = 0;
  608. // 增加全局的pid并赋值给新进程的pid
  609. spin_lock(&process_global_pid_write_lock);
  610. tsk->pid = process_global_pid++;
  611. barrier();
  612. // 加入到进程链表中
  613. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  614. barrier();
  615. initial_proc_union.pcb.next_pcb = tsk;
  616. barrier();
  617. tsk->parent_pcb = current_pcb;
  618. barrier();
  619. spin_unlock(&process_global_pid_write_lock);
  620. tsk->cpu_id = proc_current_cpu_id;
  621. tsk->state = PROC_UNINTERRUPTIBLE;
  622. tsk->parent_pcb = current_pcb;
  623. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  624. barrier();
  625. list_init(&tsk->list);
  626. retval = -ENOMEM;
  627. // 拷贝标志位
  628. if (process_copy_flags(clone_flags, tsk))
  629. goto copy_flags_failed;
  630. // 拷贝内存空间分布结构体
  631. if (process_copy_mm(clone_flags, tsk))
  632. goto copy_mm_failed;
  633. // 拷贝文件
  634. if (process_copy_files(clone_flags, tsk))
  635. goto copy_files_failed;
  636. // 拷贝线程结构体
  637. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  638. goto copy_thread_failed;
  639. // 拷贝成功
  640. retval = tsk->pid;
  641. tsk->flags &= ~PF_KFORK;
  642. // 唤醒进程
  643. process_wakeup(tsk);
  644. return retval;
  645. copy_thread_failed:;
  646. // 回收线程
  647. process_exit_thread(tsk);
  648. copy_files_failed:;
  649. // 回收文件
  650. process_exit_files(tsk);
  651. copy_mm_failed:;
  652. // 回收内存空间分布结构体
  653. process_exit_mm(tsk);
  654. copy_flags_failed:;
  655. kfree(tsk);
  656. return retval;
  657. return 0;
  658. }
  659. /**
  660. * @brief 根据pid获取进程的pcb
  661. *
  662. * @param pid
  663. * @return struct process_control_block*
  664. */
  665. struct process_control_block *process_get_pcb(long pid)
  666. {
  667. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  668. // 使用蛮力法搜索指定pid的pcb
  669. // todo: 使用哈希表来管理pcb
  670. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  671. {
  672. if (pcb->pid == pid)
  673. return pcb;
  674. }
  675. return NULL;
  676. }
  677. /**
  678. * @brief 将进程加入到调度器的就绪队列中
  679. *
  680. * @param pcb 进程的pcb
  681. */
  682. int process_wakeup(struct process_control_block *pcb)
  683. {
  684. // kdebug("pcb pid = %#018lx", pcb->pid);
  685. BUG_ON(pcb == NULL);
  686. if (pcb == current_pcb || pcb == NULL)
  687. return -EINVAL;
  688. // 如果pcb正在调度队列中,则不重复加入调度队列
  689. if (pcb->state & PROC_RUNNING)
  690. return 0;
  691. pcb->state |= PROC_RUNNING;
  692. sched_enqueue(pcb);
  693. return 0;
  694. }
  695. /**
  696. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  697. *
  698. * @param pcb 进程的pcb
  699. */
  700. int process_wakeup_immediately(struct process_control_block *pcb)
  701. {
  702. if (pcb->state & PROC_RUNNING)
  703. return 0;
  704. int retval = process_wakeup(pcb);
  705. if (retval != 0)
  706. return retval;
  707. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  708. current_pcb->flags |= PF_NEED_SCHED;
  709. }
  710. /**
  711. * @brief 拷贝当前进程的标志位
  712. *
  713. * @param clone_flags 克隆标志位
  714. * @param pcb 新的进程的pcb
  715. * @return uint64_t
  716. */
  717. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  718. {
  719. if (clone_flags & CLONE_VM)
  720. pcb->flags |= PF_VFORK;
  721. return 0;
  722. }
  723. /**
  724. * @brief 拷贝当前进程的文件描述符等信息
  725. *
  726. * @param clone_flags 克隆标志位
  727. * @param pcb 新的进程的pcb
  728. * @return uint64_t
  729. */
  730. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  731. {
  732. int retval = 0;
  733. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  734. // 文件描述符已经在复制pcb时被拷贝
  735. if (clone_flags & CLONE_FS)
  736. return retval;
  737. // 为新进程拷贝新的文件描述符
  738. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  739. {
  740. if (current_pcb->fds[i] == NULL)
  741. continue;
  742. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  743. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  744. }
  745. return retval;
  746. }
  747. /**
  748. * @brief 回收进程的所有文件描述符
  749. *
  750. * @param pcb 要被回收的进程的pcb
  751. * @return uint64_t
  752. */
  753. uint64_t process_exit_files(struct process_control_block *pcb)
  754. {
  755. // 不与父进程共享文件描述符
  756. if (!(pcb->flags & PF_VFORK))
  757. {
  758. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  759. {
  760. if (pcb->fds[i] == NULL)
  761. continue;
  762. kfree(pcb->fds[i]);
  763. }
  764. }
  765. // 清空当前进程的文件描述符列表
  766. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  767. }
  768. /**
  769. * @brief 拷贝当前进程的内存空间分布结构体信息
  770. *
  771. * @param clone_flags 克隆标志位
  772. * @param pcb 新的进程的pcb
  773. * @return uint64_t
  774. */
  775. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  776. {
  777. int retval = 0;
  778. // 与父进程共享内存空间
  779. if (clone_flags & CLONE_VM)
  780. {
  781. pcb->mm = current_pcb->mm;
  782. return retval;
  783. }
  784. // 分配新的内存空间分布结构体
  785. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  786. memset(new_mms, 0, sizeof(struct mm_struct));
  787. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  788. new_mms->vmas = NULL;
  789. pcb->mm = new_mms;
  790. // 分配顶层页表, 并设置顶层页表的物理地址
  791. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  792. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  793. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  794. // 拷贝内核空间的页表指针
  795. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256,
  796. PAGE_4K_SIZE / 2);
  797. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  798. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  799. // 拷贝用户空间的vma
  800. struct vm_area_struct *vma = current_pcb->mm->vmas;
  801. while (vma != NULL)
  802. {
  803. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  804. {
  805. vma = vma->vm_next;
  806. continue;
  807. }
  808. int64_t vma_size = vma->vm_end - vma->vm_start;
  809. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  810. if (vma_size > PAGE_2M_SIZE / 2)
  811. {
  812. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  813. for (int i = 0; i < page_to_alloc; ++i)
  814. {
  815. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  816. struct vm_area_struct *new_vma = NULL;
  817. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags,
  818. vma->vm_ops, &new_vma);
  819. // 防止内存泄露
  820. if (unlikely(ret == -EEXIST))
  821. free_pages(Phy_to_2M_Page(pa), 1);
  822. else
  823. mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
  824. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE),
  825. (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  826. vma_size -= PAGE_2M_SIZE;
  827. }
  828. }
  829. else
  830. {
  831. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  832. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  833. struct vm_area_struct *new_vma = NULL;
  834. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  835. // 防止内存泄露
  836. if (unlikely(ret == -EEXIST))
  837. kfree((void *)va);
  838. else
  839. mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
  840. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  841. }
  842. vma = vma->vm_next;
  843. }
  844. return retval;
  845. }
  846. /**
  847. * @brief 释放进程的页表
  848. *
  849. * @param pcb 要被释放页表的进程
  850. * @return uint64_t
  851. */
  852. uint64_t process_exit_mm(struct process_control_block *pcb)
  853. {
  854. if (pcb->flags & CLONE_VM)
  855. return 0;
  856. if (pcb->mm == NULL)
  857. {
  858. kdebug("pcb->mm==NULL");
  859. return 0;
  860. }
  861. if (pcb->mm->pgd == NULL)
  862. {
  863. kdebug("pcb->mm->pgd==NULL");
  864. return 0;
  865. }
  866. // // 获取顶层页表
  867. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  868. // 循环释放VMA中的内存
  869. struct vm_area_struct *vma = pcb->mm->vmas;
  870. while (vma != NULL)
  871. {
  872. struct vm_area_struct *cur_vma = vma;
  873. vma = cur_vma->vm_next;
  874. uint64_t pa;
  875. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  876. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  877. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  878. // 释放内存
  879. switch (size)
  880. {
  881. case PAGE_4K_SIZE:
  882. kfree(phys_2_virt(pa));
  883. break;
  884. default:
  885. break;
  886. }
  887. vm_area_del(cur_vma);
  888. vm_area_free(cur_vma);
  889. }
  890. // 释放顶层页表
  891. kfree(current_pgd);
  892. if (unlikely(pcb->mm->vmas != NULL))
  893. {
  894. kwarn("pcb.mm.vmas!=NULL");
  895. }
  896. // 释放内存空间分布结构体
  897. kfree(pcb->mm);
  898. return 0;
  899. }
  900. /**
  901. * @brief 重写内核栈中的rbp地址
  902. *
  903. * @param new_regs 子进程的reg
  904. * @param new_pcb 子进程的pcb
  905. * @return int
  906. */
  907. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  908. {
  909. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  910. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  911. uint64_t *rbp = &new_regs->rbp;
  912. uint64_t *tmp = rbp;
  913. // 超出内核栈范围
  914. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  915. return 0;
  916. while (1)
  917. {
  918. // 计算delta
  919. uint64_t delta = old_top - *rbp;
  920. // 计算新的rbp值
  921. uint64_t newVal = new_top - delta;
  922. // 新的值不合法
  923. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  924. break;
  925. // 将新的值写入对应位置
  926. *rbp = newVal;
  927. // 跳转栈帧
  928. rbp = (uint64_t *)*rbp;
  929. }
  930. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  931. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  932. return 0;
  933. }
  934. /**
  935. * @brief 拷贝当前进程的线程结构体
  936. *
  937. * @param clone_flags 克隆标志位
  938. * @param pcb 新的进程的pcb
  939. * @return uint64_t
  940. */
  941. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
  942. uint64_t stack_size, struct pt_regs *current_regs)
  943. {
  944. // 将线程结构体放置在pcb后方
  945. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  946. memset(thd, 0, sizeof(struct thread_struct));
  947. pcb->thread = thd;
  948. struct pt_regs *child_regs = NULL;
  949. // 拷贝栈空间
  950. if (pcb->flags & PF_KFORK) // 内核态下的fork
  951. {
  952. // 内核态下则拷贝整个内核栈
  953. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  954. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  955. memcpy(child_regs, (void *)current_regs, size);
  956. barrier();
  957. // 然后重写新的栈中,每个栈帧的rbp值
  958. process_rewrite_rbp(child_regs, pcb);
  959. }
  960. else
  961. {
  962. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  963. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  964. barrier();
  965. child_regs->rsp = stack_start;
  966. }
  967. // 设置子进程的返回值为0
  968. child_regs->rax = 0;
  969. if (pcb->flags & PF_KFORK)
  970. thd->rbp =
  971. (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  972. else
  973. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  974. // 设置新的内核线程开始执行的时候的rsp
  975. thd->rsp = (uint64_t)child_regs;
  976. thd->fs = current_pcb->thread->fs;
  977. thd->gs = current_pcb->thread->gs;
  978. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  979. if (pcb->flags & PF_KFORK)
  980. thd->rip = (uint64_t)ret_from_system_call;
  981. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  982. thd->rip = (uint64_t)kernel_thread_func;
  983. else
  984. thd->rip = (uint64_t)ret_from_system_call;
  985. return 0;
  986. }
  987. /**
  988. * @brief todo: 回收线程结构体
  989. *
  990. * @param pcb
  991. */
  992. void process_exit_thread(struct process_control_block *pcb)
  993. {
  994. }
  995. /**
  996. * @brief 释放pcb
  997. *
  998. * @param pcb
  999. * @return int
  1000. */
  1001. int process_release_pcb(struct process_control_block *pcb)
  1002. {
  1003. kfree(pcb);
  1004. return 0;
  1005. }
  1006. /**
  1007. * @brief 申请可用的文件句柄
  1008. *
  1009. * @return int
  1010. */
  1011. int process_fd_alloc(struct vfs_file_t *file)
  1012. {
  1013. int fd_num = -1;
  1014. struct vfs_file_t **f = current_pcb->fds;
  1015. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  1016. {
  1017. /* 找到指针数组中的空位 */
  1018. if (f[i] == NULL)
  1019. {
  1020. fd_num = i;
  1021. f[i] = file;
  1022. break;
  1023. }
  1024. }
  1025. return fd_num;
  1026. }