mm.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. #include <process/process.h>
  7. ul Total_Memory = 0;
  8. ul total_2M_pages = 0;
  9. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  10. /**
  11. * @brief 虚拟地址长度所需要的entry数量
  12. *
  13. */
  14. typedef struct
  15. {
  16. int64_t num_PML4E;
  17. int64_t num_PDPTE;
  18. int64_t num_PDE;
  19. int64_t num_PTE;
  20. } mm_pgt_entry_num_t;
  21. /**
  22. * @brief 计算虚拟地址长度对应的页表entry数量
  23. *
  24. * @param length 长度
  25. * @param ent 返回的entry数量结构体
  26. */
  27. static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
  28. {
  29. if (ent == NULL)
  30. return;
  31. ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
  32. ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
  33. ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
  34. ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
  35. }
  36. /**
  37. * @brief 从页表中获取pdt页表项的内容
  38. *
  39. * @param proc_page_table_addr 页表的地址
  40. * @param is_phys 页表地址是否为物理地址
  41. * @param virt_addr_start 要清除的虚拟地址的起始地址
  42. * @param length 要清除的区域的长度
  43. * @param clear 是否清除标志位
  44. */
  45. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  46. void mm_init()
  47. {
  48. kinfo("Initializing memory management unit...");
  49. // 设置内核程序不同部分的起止地址
  50. memory_management_struct.kernel_code_start = (ul)&_text;
  51. memory_management_struct.kernel_code_end = (ul)&_etext;
  52. memory_management_struct.kernel_data_end = (ul)&_edata;
  53. memory_management_struct.rodata_end = (ul)&_erodata;
  54. memory_management_struct.start_brk = (ul)&_end;
  55. struct multiboot_mmap_entry_t mb2_mem_info[512];
  56. int count;
  57. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  58. for (int i = 0; i < count; ++i)
  59. {
  60. //可用的内存
  61. if (mb2_mem_info->type == 1)
  62. Total_Memory += mb2_mem_info->len;
  63. // 保存信息到mms
  64. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  65. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  66. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  67. memory_management_struct.len_e820 = i;
  68. // 脏数据
  69. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  70. break;
  71. }
  72. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  73. // 计算有效内存页数
  74. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  75. {
  76. if (memory_management_struct.e820[i].type != 1)
  77. continue;
  78. // 将内存段的起始物理地址按照2M进行对齐
  79. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  80. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  81. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  82. // 内存段不可用
  83. if (addr_end <= addr_start)
  84. continue;
  85. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  86. }
  87. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  88. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  89. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  90. // 初始化mms的bitmap
  91. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  92. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  93. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  94. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  95. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  96. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  97. // 初始化内存页结构
  98. // 将页结构映射于bmp之后
  99. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  100. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  101. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  102. // 将pages_struct全部清空,以备后续初始化
  103. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  104. // 初始化内存区域
  105. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  106. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  107. memory_management_struct.count_zones = 0;
  108. // zones-struct 成员变量暂时按照5个来计算
  109. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  110. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  111. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  112. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  113. {
  114. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  115. continue;
  116. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  117. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  118. if (addr_end <= addr_start)
  119. continue;
  120. // zone init
  121. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  122. ++memory_management_struct.count_zones;
  123. z->zone_addr_start = addr_start;
  124. z->zone_addr_end = addr_end;
  125. z->zone_length = addr_end - addr_start;
  126. z->count_pages_using = 0;
  127. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  128. z->total_pages_link = 0;
  129. z->attr = 0;
  130. z->gmd_struct = &memory_management_struct;
  131. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  132. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  133. // 初始化页
  134. struct Page *p = z->pages_group;
  135. for (int j = 0; j < z->count_pages; ++j, ++p)
  136. {
  137. p->zone = z;
  138. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  139. p->attr = 0;
  140. p->ref_counts = 0;
  141. p->age = 0;
  142. // 将bmp中对应的位 复位
  143. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  144. }
  145. }
  146. // 初始化0~2MB的物理页
  147. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  148. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  149. memory_management_struct.pages_struct->addr_phys = 0UL;
  150. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  151. memory_management_struct.pages_struct->ref_counts = 1;
  152. memory_management_struct.pages_struct->age = 0;
  153. // 将第0页的标志位给置上
  154. //*(memory_management_struct.bmp) |= 1UL;
  155. // 计算zone结构体的总长度(按照64位对齐)
  156. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  157. ZONE_DMA_INDEX = 0;
  158. ZONE_NORMAL_INDEX = 0;
  159. ZONE_UNMAPPED_INDEX = 0;
  160. /*
  161. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  162. {
  163. struct Zone *z = memory_management_struct.zones_struct + i;
  164. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  165. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  166. // 1GB以上的内存空间不做映射
  167. // if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  168. // ZONE_UNMAPPED_INDEX = i;
  169. }
  170. */
  171. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  172. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  173. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  174. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  175. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  176. // 初始化内存管理单元结构所占的物理页的结构体
  177. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  178. // kdebug("mms_max_page=%ld", mms_max_page);
  179. struct Page *tmp_page = NULL;
  180. ul page_num;
  181. // 第0个page已经在上方配置
  182. for (ul j = 1; j <= mms_max_page; ++j)
  183. {
  184. tmp_page = memory_management_struct.pages_struct + j;
  185. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  186. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  187. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  188. ++tmp_page->zone->count_pages_using;
  189. --tmp_page->zone->count_pages_free;
  190. }
  191. kinfo("Memory management unit initialize complete!");
  192. flush_tlb();
  193. // 初始化slab内存池
  194. slab_init();
  195. page_table_init();
  196. // init_frame_buffer();
  197. }
  198. /**
  199. * @brief 初始化内存页
  200. *
  201. * @param page 内存页结构体
  202. * @param flags 标志位
  203. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  204. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  205. * @return unsigned long
  206. */
  207. unsigned long page_init(struct Page *page, ul flags)
  208. {
  209. page->attr |= flags;
  210. // 若页面的引用计数为0或是共享页,增加引用计数
  211. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  212. {
  213. ++page->ref_counts;
  214. ++page->zone->total_pages_link;
  215. }
  216. return 0;
  217. }
  218. /**
  219. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  220. *
  221. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  222. * @param num 需要申请的连续内存页的数量 num<64
  223. * @param flags 将页面属性设置成flag
  224. * @return struct Page*
  225. */
  226. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  227. {
  228. ul zone_start = 0, zone_end = 0;
  229. if (num >= 64 && num <= 0)
  230. {
  231. kerror("alloc_pages(): num is invalid.");
  232. return NULL;
  233. }
  234. ul attr = flags;
  235. switch (zone_select)
  236. {
  237. case ZONE_DMA:
  238. // DMA区域
  239. zone_start = 0;
  240. zone_end = ZONE_DMA_INDEX;
  241. attr |= PAGE_PGT_MAPPED;
  242. break;
  243. case ZONE_NORMAL:
  244. zone_start = ZONE_DMA_INDEX;
  245. zone_end = ZONE_NORMAL_INDEX;
  246. attr |= PAGE_PGT_MAPPED;
  247. break;
  248. case ZONE_UNMAPPED_IN_PGT:
  249. zone_start = ZONE_NORMAL_INDEX;
  250. zone_end = ZONE_UNMAPPED_INDEX;
  251. attr = 0;
  252. break;
  253. default:
  254. kerror("In alloc_pages: param: zone_select incorrect.");
  255. // 返回空
  256. return NULL;
  257. break;
  258. }
  259. for (int i = zone_start; i <= zone_end; ++i)
  260. {
  261. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  262. continue;
  263. struct Zone *z = memory_management_struct.zones_struct + i;
  264. // 区域对应的起止页号
  265. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  266. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  267. ul tmp = 64 - page_start % 64;
  268. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  269. {
  270. // 按照bmp中的每一个元素进行查找
  271. // 先将p定位到bmp的起始元素
  272. ul *p = memory_management_struct.bmp + (j >> 6);
  273. ul shift = j % 64;
  274. ul tmp_num = ((1UL << num) - 1);
  275. for (ul k = shift; k < 64; ++k)
  276. {
  277. // 寻找连续num个空页
  278. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  279. {
  280. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  281. for (ul l = 0; l < num; ++l)
  282. {
  283. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  284. // 分配页面,手动配置属性及计数器
  285. // 置位bmp
  286. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  287. ++(z->count_pages_using);
  288. --(z->count_pages_free);
  289. x->attr = attr;
  290. }
  291. // 成功分配了页面,返回第一个页面的指针
  292. kwarn("start page num=%d\n", start_page_num);
  293. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  294. }
  295. }
  296. }
  297. }
  298. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, total_2M_pages=%d", zone_select, num, total_2M_pages);
  299. while (1)
  300. ;
  301. return NULL;
  302. }
  303. /**
  304. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  305. *
  306. * @param p 物理页结构体
  307. * @return unsigned long
  308. */
  309. unsigned long page_clean(struct Page *p)
  310. {
  311. --p->ref_counts;
  312. --p->zone->total_pages_link;
  313. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  314. if (!p->ref_counts)
  315. {
  316. p->attr &= PAGE_PGT_MAPPED;
  317. }
  318. return 0;
  319. }
  320. /**
  321. * @brief Get the page's attr
  322. *
  323. * @param page 内存页结构体
  324. * @return ul 属性
  325. */
  326. ul get_page_attr(struct Page *page)
  327. {
  328. if (page == NULL)
  329. {
  330. kBUG("get_page_attr(): page == NULL");
  331. return EPAGE_NULL;
  332. }
  333. else
  334. return page->attr;
  335. }
  336. /**
  337. * @brief Set the page's attr
  338. *
  339. * @param page 内存页结构体
  340. * @param flags 属性
  341. * @return ul 错误码
  342. */
  343. ul set_page_attr(struct Page *page, ul flags)
  344. {
  345. if (page == NULL)
  346. {
  347. kBUG("get_page_attr(): page == NULL");
  348. return EPAGE_NULL;
  349. }
  350. else
  351. {
  352. page->attr = flags;
  353. return 0;
  354. }
  355. }
  356. /**
  357. * @brief 释放连续number个内存页
  358. *
  359. * @param page 第一个要被释放的页面的结构体
  360. * @param number 要释放的内存页数量 number<64
  361. */
  362. void free_pages(struct Page *page, int number)
  363. {
  364. if (page == NULL)
  365. {
  366. kerror("free_pages() page is invalid.");
  367. return;
  368. }
  369. if (number >= 64 || number <= 0)
  370. {
  371. kerror("free_pages(): number %d is invalid.", number);
  372. return;
  373. }
  374. ul page_num;
  375. for (int i = 0; i < number; ++i, ++page)
  376. {
  377. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  378. // 复位bmp
  379. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  380. // 更新计数器
  381. --page->zone->count_pages_using;
  382. ++page->zone->count_pages_free;
  383. page->attr = 0;
  384. }
  385. return;
  386. }
  387. /**
  388. * @brief 重新初始化页表的函数
  389. * 将0~4GB的物理页映射到线性地址空间
  390. */
  391. void page_table_init()
  392. {
  393. kinfo("Re-Initializing page table...");
  394. ul *global_CR3 = get_CR3();
  395. /*
  396. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  397. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  398. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  399. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  400. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  401. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  402. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  403. */
  404. int js = 0;
  405. ul *tmp_addr;
  406. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  407. {
  408. struct Zone *z = memory_management_struct.zones_struct + i;
  409. struct Page *p = z->pages_group;
  410. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  411. break;
  412. for (int j = 0; j < z->count_pages; ++j)
  413. {
  414. if (j == 0)
  415. kdebug("(ul)phys_2_virt(p->addr_phys)=%#018lx",(ul)phys_2_virt(p->addr_phys));
  416. //mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
  417. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true);
  418. ++js;
  419. }
  420. }
  421. flush_tlb();
  422. kinfo("Page table Initialized. Affects:%d", js);
  423. // for(int i=0;i<100;++i)
  424. // {
  425. // struct Page * p=alloc_pages(ZONE_NORMAL, 1, 0);
  426. // kdebug("Testing [%d]: addr_phys=%#018lx", i,p->addr_phys);
  427. // memset((void*)(phys_2_virt(p->addr_phys)), 0, PAGE_2M_SIZE);
  428. // }
  429. // while(1)
  430. // pause();
  431. }
  432. /**
  433. * @brief 将物理地址映射到页表的函数
  434. *
  435. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  436. * @param phys_addr_start 物理地址的起始位置
  437. * @param length 要映射的区域的长度(字节)
  438. */
  439. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  440. {
  441. uint64_t global_CR3 = (uint64_t)get_CR3();
  442. mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true);
  443. }
  444. void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  445. {
  446. uint64_t global_CR3 = (uint64_t)get_CR3();
  447. mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true);
  448. }
  449. /**
  450. * @brief 将将物理地址填写到进程的页表的函数
  451. *
  452. * @param proc_page_table_addr 页表的基地址
  453. * @param is_phys 页表的基地址是否为物理地址
  454. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  455. * @param phys_addr_start 物理地址的起始位置
  456. * @param length 要映射的区域的长度(字节)
  457. * @param user 用户态是否可访问
  458. * @param flush 是否刷新tlb
  459. */
  460. void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush)
  461. {
  462. // 计算线性地址对应的pml4页表项的地址
  463. mm_pgt_entry_num_t pgt_num;
  464. mm_calculate_entry_num(length, &pgt_num);
  465. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  466. // 已映射的内存大小
  467. uint64_t length_mapped = 0;
  468. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  469. uint64_t *pml4_ptr;
  470. if (is_phys)
  471. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  472. else
  473. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  474. // 循环填写顶层页表
  475. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  476. {
  477. // 剩余需要处理的pml4E -1
  478. --(pgt_num.num_PML4E);
  479. ul *pml4e_ptr = pml4_ptr + pml4e_id;
  480. // 创建新的二级页表
  481. if (*pml4e_ptr == 0)
  482. {
  483. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  484. memset(virt_addr, 0, PAGE_4K_SIZE);
  485. set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  486. }
  487. uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
  488. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  489. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  490. // 循环填写二级页表
  491. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  492. {
  493. --pgt_num.num_PDPTE;
  494. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  495. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  496. // 创建新的三级页表
  497. if (*pdpte_ptr == 0)
  498. {
  499. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  500. memset(virt_addr, 0, PAGE_4K_SIZE);
  501. set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  502. // kdebug("created new pdt, *pdpte_ptr=%#018lx, virt_addr=%#018lx", *pdpte_ptr, virt_addr);
  503. }
  504. uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
  505. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  506. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  507. // 循环填写三级页表,初始化2M物理页
  508. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  509. {
  510. --pgt_num.num_PDE;
  511. // 计算当前2M物理页对应的pdt的页表项的物理地址
  512. ul *pde_ptr = pd_ptr + pde_id;
  513. if (*pde_ptr != 0 && user)
  514. {
  515. kwarn("page already mapped!");
  516. continue;
  517. }
  518. // 页面写穿,禁止缓存
  519. set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  520. length_mapped += PAGE_2M_SIZE;
  521. }
  522. }
  523. }
  524. if (flush)
  525. flush_tlb();
  526. }
  527. /**
  528. * @brief 从页表中获取pdt页表项的内容
  529. *
  530. * @param proc_page_table_addr 页表的地址
  531. * @param is_phys 页表地址是否为物理地址
  532. * @param virt_addr_start 要清除的虚拟地址的起始地址
  533. * @param length 要清除的区域的长度
  534. * @param clear 是否清除标志位
  535. */
  536. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  537. {
  538. ul *tmp;
  539. if (is_phys)
  540. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  541. else
  542. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  543. // pml4页表项为0
  544. if (*tmp == 0)
  545. return 0;
  546. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  547. // pdpt页表项为0
  548. if (*tmp == 0)
  549. return 0;
  550. // 读取pdt页表项
  551. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  552. if (clear) // 清除页表项的标志位
  553. return *tmp & (~0x1fff);
  554. else
  555. return *tmp;
  556. }
  557. /**
  558. * @brief 从页表中清除虚拟地址的映射
  559. *
  560. * @param proc_page_table_addr 页表的地址
  561. * @param is_phys 页表地址是否为物理地址
  562. * @param virt_addr_start 要清除的虚拟地址的起始地址
  563. * @param length 要清除的区域的长度
  564. */
  565. void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
  566. {
  567. // 计算线性地址对应的pml4页表项的地址
  568. mm_pgt_entry_num_t pgt_num;
  569. mm_calculate_entry_num(length, &pgt_num);
  570. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  571. // 已取消映射的内存大小
  572. uint64_t length_unmapped = 0;
  573. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  574. uint64_t *pml4_ptr;
  575. if (is_phys)
  576. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  577. else
  578. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  579. // 循环填写顶层页表
  580. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  581. {
  582. // 剩余需要处理的pml4E -1
  583. --(pgt_num.num_PML4E);
  584. ul *pml4e_ptr = NULL;
  585. pml4e_ptr = pml4_ptr + pml4e_id;
  586. // 二级页表不存在
  587. if (*pml4e_ptr == 0)
  588. {
  589. continue;
  590. }
  591. uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
  592. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  593. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  594. // 循环处理二级页表
  595. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  596. {
  597. --pgt_num.num_PDPTE;
  598. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  599. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  600. // 三级页表为空
  601. if (*pdpte_ptr == 0)
  602. {
  603. continue;
  604. }
  605. uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
  606. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  607. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  608. // 循环处理三级页表
  609. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  610. {
  611. --pgt_num.num_PDE;
  612. // 计算当前2M物理页对应的pdt的页表项的物理地址
  613. ul *pde_ptr = pd_ptr + pde_id;
  614. *pde_ptr = 0;
  615. length_unmapped += PAGE_2M_SIZE;
  616. }
  617. }
  618. }
  619. flush_tlb();
  620. }
  621. /**
  622. * @brief 从mms中寻找Page结构体
  623. *
  624. * @param phys_addr
  625. * @return struct Page*
  626. */
  627. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  628. {
  629. uint32_t zone_start, zone_end;
  630. switch (zone_select)
  631. {
  632. case ZONE_DMA:
  633. // DMA区域
  634. zone_start = 0;
  635. zone_end = ZONE_DMA_INDEX;
  636. break;
  637. case ZONE_NORMAL:
  638. zone_start = ZONE_DMA_INDEX;
  639. zone_end = ZONE_NORMAL_INDEX;
  640. break;
  641. case ZONE_UNMAPPED_IN_PGT:
  642. zone_start = ZONE_NORMAL_INDEX;
  643. zone_end = ZONE_UNMAPPED_INDEX;
  644. break;
  645. default:
  646. kerror("In mm_find_page: param: zone_select incorrect.");
  647. // 返回空
  648. return NULL;
  649. break;
  650. }
  651. for (int i = zone_start; i <= zone_end; ++i)
  652. {
  653. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  654. continue;
  655. struct Zone *z = memory_management_struct.zones_struct + i;
  656. // 区域对应的起止页号
  657. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  658. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  659. ul tmp = 64 - page_start % 64;
  660. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  661. {
  662. // 按照bmp中的每一个元素进行查找
  663. // 先将p定位到bmp的起始元素
  664. ul *p = memory_management_struct.bmp + (j >> 6);
  665. ul shift = j % 64;
  666. for (ul k = shift; k < 64; ++k)
  667. {
  668. if ((*p >> k) & 1) // 若当前页已分配
  669. {
  670. uint64_t page_num = j + k - shift;
  671. struct Page *x = memory_management_struct.pages_struct + page_num;
  672. if (x->addr_phys == phys_addr) // 找到对应的页
  673. return x;
  674. }
  675. }
  676. }
  677. }
  678. return NULL;
  679. }
  680. /**
  681. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  682. *
  683. * @todo 缩小堆区域
  684. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  685. * @param offset 新的地址相对于原地址的偏移量
  686. * @return uint64_t
  687. */
  688. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  689. {
  690. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  691. if (offset >= 0)
  692. {
  693. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  694. {
  695. kdebug("map [%#018lx]", i);
  696. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  697. }
  698. current_pcb->mm->brk_end = end_addr;
  699. }
  700. else
  701. {
  702. // 释放堆内存
  703. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  704. {
  705. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  706. // 找到对应的页
  707. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  708. if (p == NULL)
  709. {
  710. kerror("cannot find page addr=%#018lx", phys);
  711. return end_addr;
  712. }
  713. free_pages(p, 1);
  714. }
  715. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  716. // 在页表中取消映射
  717. }
  718. return end_addr;
  719. }
  720. /**
  721. * @brief 检测指定地址是否已经被映射
  722. *
  723. * @param page_table_phys_addr 页表的物理地址
  724. * @param virt_addr 要检测的地址
  725. * @return true 已经被映射
  726. * @return false
  727. */
  728. bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
  729. {
  730. ul *tmp;
  731. tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  732. // pml4页表项为0
  733. if (*tmp == 0)
  734. return 0;
  735. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  736. // pdpt页表项为0
  737. if (*tmp == 0)
  738. return 0;
  739. // 读取pdt页表项
  740. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  741. // todo: 增加对使用了4K页的页表的检测
  742. if (*tmp != 0)
  743. return true;
  744. else
  745. return false;
  746. }