process.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. extern void system_call(void);
  11. extern void kernel_thread_func(void);
  12. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  13. struct mm_struct initial_mm = {0};
  14. struct thread_struct initial_thread =
  15. {
  16. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  17. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  18. .fs = KERNEL_DS,
  19. .gs = KERNEL_DS,
  20. .cr2 = 0,
  21. .trap_num = 0,
  22. .err_code = 0};
  23. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  24. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  25. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  26. // 为每个核心初始化初始进程的tss
  27. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  28. /**
  29. * @brief 切换进程
  30. *
  31. * @param prev 上一个进程的pcb
  32. * @param next 将要切换到的进程的pcb
  33. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  34. * 这里切换fs和gs寄存器
  35. */
  36. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  37. {
  38. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  39. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  40. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  41. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  42. __asm__ __volatile__("movq %%fs, %0 \n\t"
  43. : "=a"(prev->thread->fs));
  44. __asm__ __volatile__("movq %%gs, %0 \n\t"
  45. : "=a"(prev->thread->gs));
  46. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  47. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  48. // wrmsr(0x175, next->thread->rbp);
  49. }
  50. /**
  51. * @brief 这是一个用户态的程序
  52. *
  53. */
  54. void user_level_function()
  55. {
  56. // kinfo("Program (user_level_function) is runing...");
  57. // kinfo("Try to enter syscall id 15...");
  58. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  59. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  60. // while(1);
  61. long ret = 0;
  62. // printk_color(RED,BLACK,"user_level_function task is running\n");
  63. /*
  64. // 测试sys put string
  65. char string[] = "User level process.\n";
  66. long err_code = 1;
  67. ul addr = (ul)string;
  68. __asm__ __volatile__(
  69. "movq %2, %%r8 \n\t"
  70. "int $0x80 \n\t"
  71. : "=a"(err_code)
  72. : "a"(SYS_PUT_STRING), "m"(addr)
  73. : "memory", "r8");
  74. */
  75. while (1)
  76. {
  77. // 测试sys_open
  78. char string[] = "a.txt";
  79. long err_code = 1;
  80. int zero = 0;
  81. uint64_t addr = (ul)string;
  82. __asm__ __volatile__(
  83. "movq %2, %%r8 \n\t"
  84. "movq %3, %%r9 \n\t"
  85. "movq %4, %%r10 \n\t"
  86. "movq %5, %%r11 \n\t"
  87. "movq %6, %%r12 \n\t"
  88. "movq %7, %%r13 \n\t"
  89. "movq %8, %%r14 \n\t"
  90. "movq %9, %%r15 \n\t"
  91. "int $0x80 \n\t"
  92. : "=a"(err_code)
  93. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  94. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  95. int fd_num = err_code;
  96. int count = 16;
  97. while (count)
  98. {
  99. uchar buf[128] = {0};
  100. // Test sys_read
  101. addr = (uint64_t)&buf;
  102. __asm__ __volatile__(
  103. "movq %2, %%r8 \n\t"
  104. "movq %3, %%r9 \n\t"
  105. "movq %4, %%r10 \n\t"
  106. "movq %5, %%r11 \n\t"
  107. "movq %6, %%r12 \n\t"
  108. "movq %7, %%r13 \n\t"
  109. "movq %8, %%r14 \n\t"
  110. "movq %9, %%r15 \n\t"
  111. "int $0x80 \n\t"
  112. : "=a"(err_code)
  113. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  114. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  115. count = err_code;
  116. // 将读取到的数据打印出来
  117. addr = (ul)buf;
  118. __asm__ __volatile__(
  119. "movq %2, %%r8 \n\t"
  120. "int $0x80 \n\t"
  121. : "=a"(err_code)
  122. : "a"(SYS_PUT_STRING), "m"(addr)
  123. : "memory", "r8");
  124. }
  125. // Test sys_close
  126. __asm__ __volatile__(
  127. "movq %2, %%r8 \n\t"
  128. "movq %3, %%r9 \n\t"
  129. "movq %4, %%r10 \n\t"
  130. "movq %5, %%r11 \n\t"
  131. "movq %6, %%r12 \n\t"
  132. "movq %7, %%r13 \n\t"
  133. "movq %8, %%r14 \n\t"
  134. "movq %9, %%r15 \n\t"
  135. "int $0x80 \n\t"
  136. : "=a"(err_code)
  137. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  138. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  139. }
  140. while (1)
  141. pause();
  142. }
  143. /**
  144. * @brief 使当前进程去执行新的代码
  145. *
  146. * @param regs 当前进程的寄存器
  147. * @return ul 错误码
  148. */
  149. ul do_execve(struct pt_regs *regs)
  150. {
  151. // 选择这两个寄存器是对应了sysexit指令的需要
  152. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  153. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  154. regs->cs = USER_CS | 3;
  155. regs->ds = USER_DS | 3;
  156. regs->ss = USER_DS | 0x3;
  157. regs->rflags = 0x200246;
  158. regs->rax = 1;
  159. regs->es = 0;
  160. // kdebug("do_execve is running...");
  161. // 映射起始页面
  162. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  163. uint64_t addr = 0x800000UL;
  164. /*
  165. unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
  166. unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
  167. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  168. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  169. virtual = kmalloc(PAGE_4K_SIZE, 0);
  170. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  171. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  172. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  173. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  174. flush_tlb();
  175. */
  176. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  177. if (!(current_pcb->flags & PF_KTHREAD))
  178. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  179. // 将程序代码拷贝到对应的内存中
  180. memcpy((void *)0x800000, user_level_function, 1024);
  181. // kdebug("program copied!");
  182. return 0;
  183. }
  184. /**
  185. * @brief 内核init进程
  186. *
  187. * @param arg
  188. * @return ul 参数
  189. */
  190. ul initial_kernel_thread(ul arg)
  191. {
  192. // kinfo("initial proc running...\targ:%#018lx", arg);
  193. fat32_init();
  194. struct pt_regs *regs;
  195. current_pcb->thread->rip = (ul)ret_from_system_call;
  196. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  197. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  198. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  199. regs = (struct pt_regs *)current_pcb->thread->rsp;
  200. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  201. current_pcb->flags = 0;
  202. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  203. __asm__ __volatile__("movq %1, %%rsp \n\t"
  204. "pushq %2 \n\t"
  205. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  206. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  207. : "memory");
  208. return 1;
  209. }
  210. /**
  211. * @brief 进程退出时执行的函数
  212. *
  213. * @param code 返回码
  214. * @return ul
  215. */
  216. ul process_thread_do_exit(ul code)
  217. {
  218. kinfo("thread_exiting..., code is %#018lx.", code);
  219. while (1)
  220. ;
  221. }
  222. /**
  223. * @brief 初始化内核进程
  224. *
  225. * @param fn 目标程序的地址
  226. * @param arg 向目标程序传入的参数
  227. * @param flags
  228. * @return int
  229. */
  230. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  231. {
  232. struct pt_regs regs;
  233. memset(&regs, 0, sizeof(regs));
  234. // 在rbx寄存器中保存进程的入口地址
  235. regs.rbx = (ul)fn;
  236. // 在rdx寄存器中保存传入的参数
  237. regs.rdx = (ul)arg;
  238. regs.ds = KERNEL_DS;
  239. regs.es = KERNEL_DS;
  240. regs.cs = KERNEL_CS;
  241. regs.ss = KERNEL_DS;
  242. // 置位中断使能标志位
  243. regs.rflags = (1 << 9);
  244. // rip寄存器指向内核线程的引导程序
  245. regs.rip = (ul)kernel_thread_func;
  246. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  247. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  248. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  249. return do_fork(&regs, flags, 0, 0);
  250. }
  251. /**
  252. * @brief 初始化进程模块
  253. * ☆前置条件:已完成系统调用模块的初始化
  254. */
  255. void process_init()
  256. {
  257. kinfo("Initializing process...");
  258. initial_mm.pgd = (pml4t_t *)global_CR3;
  259. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  260. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  261. initial_mm.data_addr_start = (ul)&_data;
  262. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  263. initial_mm.rodata_addr_start = (ul)&_rodata;
  264. initial_mm.rodata_addr_end = (ul)&_erodata;
  265. initial_mm.brk_start = 0;
  266. initial_mm.brk_end = memory_management_struct.kernel_end;
  267. initial_mm.stack_start = _stack_start;
  268. // 初始化进程和tss
  269. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  270. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  271. /*
  272. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  273. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  274. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  275. */
  276. // 初始化进程的循环链表
  277. list_init(&initial_proc_union.pcb.list);
  278. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  279. initial_proc_union.pcb.state = PROC_RUNNING;
  280. initial_proc_union.pcb.preempt_count = 0;
  281. // 获取新的进程的pcb
  282. // struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  283. // kdebug("Ready to switch...");
  284. // 切换到新的内核线程
  285. // switch_proc(current_pcb, p);
  286. }
  287. /**
  288. * @brief fork当前进程
  289. *
  290. * @param regs 新的寄存器值
  291. * @param clone_flags 克隆标志
  292. * @param stack_start 堆栈开始地址
  293. * @param stack_size 堆栈大小
  294. * @return unsigned long
  295. */
  296. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  297. {
  298. struct process_control_block *tsk = NULL;
  299. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  300. // 获取一个物理页并在这个物理页内初始化pcb
  301. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  302. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  303. memset(tsk, 0, sizeof(struct process_control_block));
  304. // 将当前进程的pcb复制到新的pcb内
  305. *tsk = *current_pcb;
  306. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  307. // 将进程加入循环链表
  308. list_init(&tsk->list);
  309. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  310. tsk->priority = 2;
  311. tsk->preempt_count = 0;
  312. ++(tsk->pid);
  313. tsk->cpu_id = proc_current_cpu_id;
  314. tsk->state = PROC_UNINTERRUPTIBLE;
  315. list_init(&tsk->list);
  316. list_add(&initial_proc_union.pcb.list, &tsk->list);
  317. // 将线程结构体放置在pcb的后面
  318. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  319. memset(thd, 0, sizeof(struct thread_struct));
  320. tsk->thread = thd;
  321. // kdebug("333\tregs.rip = %#018lx", regs->rip);
  322. // 将寄存器信息存储到进程的内核栈空间的顶部
  323. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  324. // kdebug("regs.rip = %#018lx", regs->rip);
  325. // 设置进程的内核栈
  326. thd->rbp = (ul)tsk + STACK_SIZE;
  327. thd->rip = regs->rip;
  328. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  329. thd->fs = KERNEL_DS;
  330. thd->gs = KERNEL_DS;
  331. // kdebug("do_fork() thd->rsp=%#018lx", thd->rsp);
  332. // 若进程不是内核层的进程,则跳转到ret from system call
  333. if (!(tsk->flags & PF_KTHREAD))
  334. thd->rip = regs->rip = (ul)ret_from_system_call;
  335. else
  336. kdebug("is kernel proc.");
  337. tsk->state = PROC_RUNNING;
  338. sched_cfs_enqueue(tsk);
  339. return 0;
  340. }