process.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. extern void system_call(void);
  10. /**
  11. * @brief 切换进程
  12. *
  13. * @param prev 上一个进程的pcb
  14. * @param next 将要切换到的进程的pcb
  15. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  16. * 这里切换fs和gs寄存器
  17. */
  18. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  19. {
  20. initial_tss[0].rsp0 = next->thread->rbp;
  21. set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  22. initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  23. __asm__ __volatile__("movq %%fs, %0 \n\t"
  24. : "=a"(prev->thread->fs)::"memory");
  25. __asm__ __volatile__("movq %%gs, %0 \n\t"
  26. : "=a"(prev->thread->gs)::"memory");
  27. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs)
  28. : "memory");
  29. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs)
  30. : "memory");
  31. wrmsr(0x175, next->thread->rbp);
  32. kdebug("prev->thread->rsp0:%#018lx\n", prev->thread->rbp);
  33. kdebug("next->thread->rsp0:%#018lx\n", next->thread->rbp);
  34. }
  35. /**
  36. * @brief 这是一个用户态的程序
  37. *
  38. */
  39. void user_level_function()
  40. {
  41. // kinfo("Program (user_level_function) is runing...");
  42. // kinfo("Try to enter syscall id 15...");
  43. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  44. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  45. long ret = 0;
  46. // color_printk(RED,BLACK,"user_level_function task is running\n");
  47. char string[] = "Hello World!\n";
  48. __asm__ __volatile__("leaq sysexit_return_address(%%rip), %%rdx \n\t"
  49. "movq %%rsp, %%rcx \n\t"
  50. "sysenter \n\t"
  51. "sysexit_return_address: \n\t"
  52. : "=a"(ret)
  53. : "0"(1), "D"(string)
  54. : "memory", "rcx", "rdx", "r14");
  55. // kinfo("Return from syscall id 15...");
  56. while (1)
  57. ;
  58. }
  59. /**
  60. * @brief 使当前进程去执行新的代码
  61. *
  62. * @param regs 当前进程的寄存器
  63. * @return ul 错误码
  64. */
  65. ul do_execve(struct pt_regs *regs)
  66. {
  67. // 选择这两个寄存器是对应了sysexit指令的需要
  68. regs->rdx = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  69. regs->rcx = 0xa00000; // rsp 应用层程序的栈顶地址
  70. regs->rax = 1;
  71. regs->ds = 0;
  72. regs->es = 0;
  73. kdebug("do_execve is running...");
  74. // 映射起始页面
  75. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  76. uint64_t addr = 0x800000UL;
  77. unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
  78. unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
  79. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  80. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  81. virtual = kmalloc(PAGE_4K_SIZE, 0);
  82. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  83. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  84. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  85. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  86. flush_tlb();
  87. /*
  88. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  89. */
  90. if (!(current_pcb->flags & PF_KTHREAD))
  91. current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
  92. // 将程序代码拷贝到对应的内存中
  93. memcpy((void *)0x800000, user_level_function, 1024);
  94. kdebug("program copied!");
  95. return 0;
  96. }
  97. /**
  98. * @brief 内核init进程
  99. *
  100. * @param arg
  101. * @return ul 参数
  102. */
  103. ul initial_kernel_thread(ul arg)
  104. {
  105. kinfo("initial proc running...\targ:%#018lx", arg);
  106. struct pt_regs *regs;
  107. current_pcb->thread->rip = (ul)ret_from_system_call;
  108. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  109. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  110. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  111. regs = (struct pt_regs *)current_pcb->thread->rsp;
  112. current_pcb->flags = 0;
  113. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  114. __asm__ __volatile__("movq %1, %%rsp \n\t"
  115. "pushq %2 \n\t"
  116. "jmp do_execve \n\t" ::"D"(regs),
  117. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  118. : "memory");
  119. return 1;
  120. }
  121. /**
  122. * @brief 进程退出时执行的函数
  123. *
  124. * @param code 返回码
  125. * @return ul
  126. */
  127. ul process_thread_do_exit(ul code)
  128. {
  129. kinfo("thread_exiting..., code is %#018lx.", code);
  130. while (1)
  131. ;
  132. }
  133. /**
  134. * @brief 导出内核线程的执行引导程序
  135. * 目的是还原执行现场(在kernel_thread中伪造的)
  136. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  137. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  138. */
  139. extern void kernel_thread_func(void);
  140. __asm__(
  141. "kernel_thread_func: \n\t"
  142. " popq %r15 \n\t"
  143. " popq %r14 \n\t"
  144. " popq %r13 \n\t"
  145. " popq %r12 \n\t"
  146. " popq %r11 \n\t"
  147. " popq %r10 \n\t"
  148. " popq %r9 \n\t"
  149. " popq %r8 \n\t"
  150. " popq %rbx \n\t"
  151. " popq %rcx \n\t"
  152. " popq %rdx \n\t"
  153. " popq %rsi \n\t"
  154. " popq %rdi \n\t"
  155. " popq %rbp \n\t"
  156. " popq %rax \n\t"
  157. " movq %rax, %ds \n\t"
  158. " popq %rax \n\t"
  159. " movq %rax, %es \n\t"
  160. " popq %rax \n\t"
  161. " addq $0x38, %rsp \n\t"
  162. /////////////////////////////////
  163. " movq %rdx, %rdi \n\t"
  164. " callq *%rbx \n\t"
  165. " movq %rax, %rdi \n\t"
  166. " callq process_thread_do_exit \n\t");
  167. /**
  168. * @brief 初始化内核进程
  169. *
  170. * @param fn 目标程序的地址
  171. * @param arg 向目标程序传入的参数
  172. * @param flags
  173. * @return int
  174. */
  175. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  176. {
  177. struct pt_regs regs;
  178. memset(&regs, 0, sizeof(regs));
  179. // 在rbx寄存器中保存进程的入口地址
  180. regs.rbx = (ul)fn;
  181. // 在rdx寄存器中保存传入的参数
  182. regs.rdx = (ul)arg;
  183. regs.ds = KERNEL_DS;
  184. regs.es = KERNEL_DS;
  185. regs.cs = KERNEL_CS;
  186. regs.ss = KERNEL_DS;
  187. // 置位中断使能标志位
  188. regs.rflags = (1 << 9);
  189. // rip寄存器指向内核线程的引导程序
  190. regs.rip = (ul)kernel_thread_func;
  191. return do_fork(&regs, flags, 0, 0);
  192. }
  193. /**
  194. * @brief 初始化进程模块
  195. * ☆前置条件:已完成系统调用模块的初始化
  196. */
  197. void process_init()
  198. {
  199. kinfo("Initializing process...");
  200. initial_mm.pgd = (pml4t_t *)global_CR3;
  201. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  202. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  203. initial_mm.data_addr_start = (ul)&_data;
  204. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  205. initial_mm.rodata_addr_start = (ul)&_rodata;
  206. initial_mm.rodata_addr_end = (ul)&_erodata;
  207. initial_mm.brk_start = 0;
  208. initial_mm.brk_end = memory_management_struct.kernel_end;
  209. initial_mm.stack_start = *(ul *)phys_2_virt(&_stack_start);
  210. // 向MSR寄存器组中的 IA32_SYSENTER_CS寄存器写入内核的代码段的地址
  211. wrmsr(0x174, KERNEL_CS);
  212. // 向MSR寄存器组中的 IA32_SYSENTER_ESP寄存器写入内核进程的rbp(在syscall入口中会将rsp减去相应的数值)
  213. wrmsr(0x175, current_pcb->thread->rbp);
  214. // 向MSR寄存器组中的 IA32_SYSENTER_EIP寄存器写入系统调用入口的地址。
  215. wrmsr(0x176, (ul)system_call);
  216. // 初始化进程和tss
  217. set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  218. initial_tss[0].rsp0 = initial_thread.rbp;
  219. /*
  220. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  221. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  222. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  223. */
  224. // 初始化进程的循环链表
  225. list_init(&initial_proc_union.pcb.list);
  226. current_pcb->flags=0;
  227. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  228. initial_proc_union.pcb.state = PROC_RUNNING;
  229. // 获取新的进程的pcb
  230. // struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  231. kdebug("Ready to switch...");
  232. // 切换到新的内核线程
  233. // switch_proc(current_pcb, p);
  234. }
  235. /**
  236. * @brief fork当前进程
  237. *
  238. * @param regs 新的寄存器值
  239. * @param clone_flags 克隆标志
  240. * @param stack_start 堆栈开始地址
  241. * @param stack_size 堆栈大小
  242. * @return unsigned long
  243. */
  244. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  245. {
  246. struct process_control_block *tsk = NULL;
  247. // 获取一个物理页并在这个物理页内初始化pcb
  248. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  249. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  250. memset(tsk, 0, sizeof(struct process_control_block));
  251. // 将当前进程的pcb复制到新的pcb内
  252. *tsk = *current_pcb;
  253. kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  254. // 将进程加入循环链表
  255. list_init(&tsk->list);
  256. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  257. tsk->priority = 2;
  258. ++(tsk->pid);
  259. tsk->state = PROC_UNINTERRUPTIBLE;
  260. // 将线程结构体放置在pcb的后面
  261. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  262. memset(thd, 0, sizeof(struct thread_struct));
  263. tsk->thread = thd;
  264. // 将寄存器信息存储到进程的内核栈空间的顶部
  265. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  266. // 设置进程的内核栈
  267. thd->rbp = (ul)tsk + STACK_SIZE;
  268. thd->rip = regs->rip;
  269. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  270. thd->fs = KERNEL_DS;
  271. thd->gs = KERNEL_DS;
  272. // 若进程不是内核层的进程,则跳转到ret from system call
  273. if (!(tsk->flags & PF_KTHREAD))
  274. thd->rip = regs->rip = (ul)ret_from_system_call;
  275. else
  276. kdebug("is kernel proc.");
  277. kdebug("ret_from_system_call=%#018lx", (ul)ret_from_system_call);
  278. tsk->state = PROC_RUNNING;
  279. sched_cfs_enqueue(tsk);
  280. return 0;
  281. }