process.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <mm/slab.h>
  15. #include <common/spinlock.h>
  16. #include <syscall/syscall.h>
  17. #include <syscall/syscall_num.h>
  18. #include <sched/sched.h>
  19. #include <common/unistd.h>
  20. #include <debug/traceback/traceback.h>
  21. #include <ktest/ktest.h>
  22. #include <mm/mmio.h>
  23. // #pragma GCC push_options
  24. // #pragma GCC optimize("O0")
  25. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  26. long process_global_pid = 1; // 系统中最大的pid
  27. extern void system_call(void);
  28. extern void kernel_thread_func(void);
  29. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  30. extern struct mm_struct initial_mm;
  31. struct thread_struct initial_thread =
  32. {
  33. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  34. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  35. .fs = KERNEL_DS,
  36. .gs = KERNEL_DS,
  37. .cr2 = 0,
  38. .trap_num = 0,
  39. .err_code = 0};
  40. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  41. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  42. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  43. // 为每个核心初始化初始进程的tss
  44. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  45. /**
  46. * @brief 拷贝当前进程的标志位
  47. *
  48. * @param clone_flags 克隆标志位
  49. * @param pcb 新的进程的pcb
  50. * @return uint64_t
  51. */
  52. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  53. /**
  54. * @brief 拷贝当前进程的文件描述符等信息
  55. *
  56. * @param clone_flags 克隆标志位
  57. * @param pcb 新的进程的pcb
  58. * @return uint64_t
  59. */
  60. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  61. /**
  62. * @brief 回收进程的所有文件描述符
  63. *
  64. * @param pcb 要被回收的进程的pcb
  65. * @return uint64_t
  66. */
  67. uint64_t process_exit_files(struct process_control_block *pcb);
  68. /**
  69. * @brief 拷贝当前进程的内存空间分布结构体信息
  70. *
  71. * @param clone_flags 克隆标志位
  72. * @param pcb 新的进程的pcb
  73. * @return uint64_t
  74. */
  75. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  76. /**
  77. * @brief 释放进程的页表
  78. *
  79. * @param pcb 要被释放页表的进程
  80. * @return uint64_t
  81. */
  82. uint64_t process_exit_mm(struct process_control_block *pcb);
  83. /**
  84. * @brief 拷贝当前进程的线程结构体
  85. *
  86. * @param clone_flags 克隆标志位
  87. * @param pcb 新的进程的pcb
  88. * @return uint64_t
  89. */
  90. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  91. void process_exit_thread(struct process_control_block *pcb);
  92. /**
  93. * @brief 切换进程
  94. *
  95. * @param prev 上一个进程的pcb
  96. * @param next 将要切换到的进程的pcb
  97. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  98. * 这里切换fs和gs寄存器
  99. */
  100. #pragma GCC push_options
  101. #pragma GCC optimize("O0")
  102. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  103. {
  104. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  105. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  106. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  107. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  108. __asm__ __volatile__("movq %%fs, %0 \n\t"
  109. : "=a"(prev->thread->fs));
  110. __asm__ __volatile__("movq %%gs, %0 \n\t"
  111. : "=a"(prev->thread->gs));
  112. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  113. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  114. }
  115. #pragma GCC pop_options
  116. /**
  117. * @brief 打开要执行的程序文件
  118. *
  119. * @param path
  120. * @return struct vfs_file_t*
  121. */
  122. struct vfs_file_t *process_open_exec_file(char *path)
  123. {
  124. struct vfs_dir_entry_t *dentry = NULL;
  125. struct vfs_file_t *filp = NULL;
  126. dentry = vfs_path_walk(path, 0);
  127. if (dentry == NULL)
  128. return (void *)-ENOENT;
  129. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  130. return (void *)-ENOTDIR;
  131. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  132. if (filp == NULL)
  133. return (void *)-ENOMEM;
  134. filp->position = 0;
  135. filp->mode = 0;
  136. filp->dEntry = dentry;
  137. filp->mode = ATTR_READ_ONLY;
  138. filp->file_ops = dentry->dir_inode->file_ops;
  139. return filp;
  140. }
  141. /**
  142. * @brief 加载elf格式的程序文件到内存中,并设置regs
  143. *
  144. * @param regs 寄存器
  145. * @param path 文件路径
  146. * @return int
  147. */
  148. static int process_load_elf_file(struct pt_regs *regs, char *path)
  149. {
  150. int retval = 0;
  151. struct vfs_file_t *filp = process_open_exec_file(path);
  152. if ((long)filp <= 0 && (long)filp >= -255)
  153. {
  154. // kdebug("(long)filp=%ld", (long)filp);
  155. return (unsigned long)filp;
  156. }
  157. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  158. memset(buf, 0, PAGE_4K_SIZE);
  159. uint64_t pos = 0;
  160. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  161. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  162. retval = 0;
  163. if (!elf_check(buf))
  164. {
  165. kerror("Not an ELF file: %s", path);
  166. retval = -ENOTSUP;
  167. goto load_elf_failed;
  168. }
  169. #if ARCH(X86_64)
  170. // 暂时只支持64位的文件
  171. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  172. {
  173. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  174. retval = -EUNSUPPORTED;
  175. goto load_elf_failed;
  176. }
  177. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  178. // 暂时只支持AMD64架构
  179. if (ehdr.e_machine != EM_AMD64)
  180. {
  181. kerror("e_machine=%d", ehdr.e_machine);
  182. retval = -EUNSUPPORTED;
  183. goto load_elf_failed;
  184. }
  185. #else
  186. #error Unsupported architecture!
  187. #endif
  188. if (ehdr.e_type != ET_EXEC)
  189. {
  190. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  191. retval = -EUNSUPPORTED;
  192. goto load_elf_failed;
  193. }
  194. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  195. regs->rip = ehdr.e_entry;
  196. current_pcb->mm->code_addr_start = ehdr.e_entry;
  197. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  198. // 将指针移动到program header处
  199. pos = ehdr.e_phoff;
  200. // 读取所有的phdr
  201. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  202. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  203. if ((unsigned long)filp <= 0)
  204. {
  205. kdebug("(unsigned long)filp=%d", (long)filp);
  206. retval = -ENOEXEC;
  207. goto load_elf_failed;
  208. }
  209. Elf64_Phdr *phdr = buf;
  210. // 将程序加载到内存中
  211. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  212. {
  213. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  214. // 不是可加载的段
  215. if (phdr->p_type != PT_LOAD)
  216. continue;
  217. int64_t remain_mem_size = phdr->p_memsz;
  218. int64_t remain_file_size = phdr->p_filesz;
  219. pos = phdr->p_offset;
  220. uint64_t virt_base = phdr->p_vaddr;
  221. while (remain_mem_size > 0)
  222. {
  223. // kdebug("loading...");
  224. int64_t map_size = 0;
  225. if (remain_mem_size > PAGE_2M_SIZE / 2)
  226. {
  227. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  228. struct vm_area_struct *vma = NULL;
  229. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  230. // 防止内存泄露
  231. if (ret == -EEXIST)
  232. free_pages(Phy_to_2M_Page(pa), 1);
  233. else
  234. mm_map_vma(vma, pa);
  235. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  236. map_size = PAGE_2M_SIZE;
  237. }
  238. else
  239. {
  240. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  241. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  242. // 循环分配4K大小内存块
  243. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  244. {
  245. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  246. struct vm_area_struct *vma = NULL;
  247. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  248. if (val == -EEXIST)
  249. kfree(phys_2_virt(paddr));
  250. else
  251. mm_map_vma(vma, paddr);
  252. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  253. }
  254. }
  255. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  256. int64_t val = 0;
  257. if (remain_file_size != 0)
  258. {
  259. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  260. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  261. }
  262. if (val < 0)
  263. goto load_elf_failed;
  264. remain_mem_size -= map_size;
  265. remain_file_size -= val;
  266. virt_base += map_size;
  267. }
  268. }
  269. // 分配2MB的栈内存空间
  270. regs->rsp = current_pcb->mm->stack_start;
  271. regs->rbp = current_pcb->mm->stack_start;
  272. {
  273. struct vm_area_struct *vma = NULL;
  274. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  275. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  276. if (val == -EEXIST)
  277. free_pages(Phy_to_2M_Page(pa), 1);
  278. else
  279. mm_map_vma(vma, pa);
  280. }
  281. // 清空栈空间
  282. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  283. load_elf_failed:;
  284. if (buf != NULL)
  285. kfree(buf);
  286. return retval;
  287. }
  288. /**
  289. * @brief 使当前进程去执行新的代码
  290. *
  291. * @param regs 当前进程的寄存器
  292. * @param path 可执行程序的路径
  293. * @param argv 参数列表
  294. * @param envp 环境变量
  295. * @return ul 错误码
  296. */
  297. #pragma GCC push_options
  298. #pragma GCC optimize("O0")
  299. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  300. {
  301. // kdebug("do_execve is running...");
  302. // 当前进程正在与父进程共享地址空间,需要创建
  303. // 独立的地址空间才能使新程序正常运行
  304. if (current_pcb->flags & PF_VFORK)
  305. {
  306. kdebug("proc:%d creating new mem space", current_pcb->pid);
  307. // 分配新的内存空间分布结构体
  308. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  309. memset(new_mms, 0, sizeof(struct mm_struct));
  310. current_pcb->mm = new_mms;
  311. // 分配顶层页表, 并设置顶层页表的物理地址
  312. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  313. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  314. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  315. // 拷贝内核空间的页表指针
  316. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  317. }
  318. // 设置用户栈和用户堆的基地址
  319. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  320. const uint64_t brk_start_addr = 0x700000000000UL;
  321. process_switch_mm(current_pcb);
  322. // 为用户态程序设置地址边界
  323. if (!(current_pcb->flags & PF_KTHREAD))
  324. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  325. current_pcb->mm->code_addr_end = 0;
  326. current_pcb->mm->data_addr_start = 0;
  327. current_pcb->mm->data_addr_end = 0;
  328. current_pcb->mm->rodata_addr_start = 0;
  329. current_pcb->mm->rodata_addr_end = 0;
  330. current_pcb->mm->bss_start = 0;
  331. current_pcb->mm->bss_end = 0;
  332. current_pcb->mm->brk_start = brk_start_addr;
  333. current_pcb->mm->brk_end = brk_start_addr;
  334. current_pcb->mm->stack_start = stack_start_addr;
  335. // 关闭之前的文件描述符
  336. process_exit_files(current_pcb);
  337. // 清除进程的vfork标志位
  338. current_pcb->flags &= ~PF_VFORK;
  339. // 加载elf格式的可执行文件
  340. int tmp = process_load_elf_file(regs, path);
  341. if (tmp < 0)
  342. goto exec_failed;
  343. // 拷贝参数列表
  344. if (argv != NULL)
  345. {
  346. int argc = 0;
  347. // 目标程序的argv基地址指针,最大8个参数
  348. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  349. uint64_t str_addr = (uint64_t)dst_argv;
  350. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  351. {
  352. if (*argv[argc] == NULL)
  353. break;
  354. // 测量参数的长度(最大1023)
  355. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  356. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  357. str_addr -= argv_len;
  358. dst_argv[argc] = (char *)str_addr;
  359. // 字符串加上结尾字符
  360. ((char *)str_addr)[argv_len] = '\0';
  361. }
  362. // 重新设定栈基址,并预留空间防止越界
  363. stack_start_addr = str_addr - 8;
  364. current_pcb->mm->stack_start = stack_start_addr;
  365. regs->rsp = regs->rbp = stack_start_addr;
  366. // 传递参数
  367. regs->rdi = argc;
  368. regs->rsi = (uint64_t)dst_argv;
  369. }
  370. // kdebug("execve ok");
  371. regs->cs = USER_CS | 3;
  372. regs->ds = USER_DS | 3;
  373. regs->ss = USER_DS | 0x3;
  374. regs->rflags = 0x200246;
  375. regs->rax = 1;
  376. regs->es = 0;
  377. return 0;
  378. exec_failed:;
  379. process_do_exit(tmp);
  380. }
  381. #pragma GCC pop_options
  382. /**
  383. * @brief 内核init进程
  384. *
  385. * @param arg
  386. * @return ul 参数
  387. */
  388. #pragma GCC push_options
  389. #pragma GCC optimize("O0")
  390. ul initial_kernel_thread(ul arg)
  391. {
  392. // kinfo("initial proc running...\targ:%#018lx", arg);
  393. fat32_init();
  394. usb_init();
  395. // 对一些组件进行单元测试
  396. uint64_t tpid[] = {
  397. ktest_start(ktest_test_bitree, 0),
  398. ktest_start(ktest_test_kfifo, 0),
  399. ktest_start(ktest_test_mutex, 0),
  400. };
  401. kinfo("Waiting test thread exit...");
  402. // 等待测试进程退出
  403. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  404. waitpid(tpid[i], NULL, NULL);
  405. kinfo("All test done.");
  406. // pid_t p = fork();
  407. // if (p == 0)
  408. // {
  409. // kdebug("in subproc, rflags=%#018lx", get_rflags());
  410. // while (1)
  411. // usleep(1000);
  412. // }
  413. // kdebug("subprocess pid=%d", p);
  414. // 准备切换到用户态
  415. struct pt_regs *regs;
  416. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  417. cli();
  418. current_pcb->thread->rip = (ul)ret_from_system_call;
  419. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  420. current_pcb->thread->fs = USER_DS | 0x3;
  421. barrier();
  422. current_pcb->thread->gs = USER_DS | 0x3;
  423. // 主动放弃内核线程身份
  424. current_pcb->flags &= (~PF_KTHREAD);
  425. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  426. regs = (struct pt_regs *)current_pcb->thread->rsp;
  427. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  428. current_pcb->flags = 0;
  429. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  430. // 加载用户态程序:shell.elf
  431. char init_path[] = "/shell.elf";
  432. uint64_t addr = (uint64_t)&init_path;
  433. __asm__ __volatile__("movq %1, %%rsp \n\t"
  434. "pushq %2 \n\t"
  435. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  436. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  437. : "memory");
  438. return 1;
  439. }
  440. #pragma GCC pop_options
  441. /**
  442. * @brief 当子进程退出后向父进程发送通知
  443. *
  444. */
  445. void process_exit_notify()
  446. {
  447. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  448. }
  449. /**
  450. * @brief 进程退出时执行的函数
  451. *
  452. * @param code 返回码
  453. * @return ul
  454. */
  455. ul process_do_exit(ul code)
  456. {
  457. // kinfo("process exiting..., code is %ld.", (long)code);
  458. cli();
  459. struct process_control_block *pcb = current_pcb;
  460. // 进程退出时释放资源
  461. process_exit_files(pcb);
  462. process_exit_thread(pcb);
  463. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  464. pcb->state = PROC_ZOMBIE;
  465. pcb->exit_code = code;
  466. sti();
  467. process_exit_notify();
  468. sched();
  469. while (1)
  470. pause();
  471. }
  472. /**
  473. * @brief 初始化内核进程
  474. *
  475. * @param fn 目标程序的地址
  476. * @param arg 向目标程序传入的参数
  477. * @param flags
  478. * @return int
  479. */
  480. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  481. {
  482. struct pt_regs regs;
  483. barrier();
  484. memset(&regs, 0, sizeof(regs));
  485. barrier();
  486. // 在rbx寄存器中保存进程的入口地址
  487. regs.rbx = (ul)fn;
  488. // 在rdx寄存器中保存传入的参数
  489. regs.rdx = (ul)arg;
  490. barrier();
  491. regs.ds = KERNEL_DS;
  492. barrier();
  493. regs.es = KERNEL_DS;
  494. barrier();
  495. regs.cs = KERNEL_CS;
  496. barrier();
  497. regs.ss = KERNEL_DS;
  498. barrier();
  499. // 置位中断使能标志位
  500. regs.rflags = (1 << 9);
  501. barrier();
  502. // rip寄存器指向内核线程的引导程序
  503. regs.rip = (ul)kernel_thread_func;
  504. barrier();
  505. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  506. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  507. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  508. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  509. }
  510. /**
  511. * @brief 初始化进程模块
  512. * ☆前置条件:已完成系统调用模块的初始化
  513. */
  514. void process_init()
  515. {
  516. kinfo("Initializing process...");
  517. initial_mm.pgd = (pml4t_t *)get_CR3();
  518. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  519. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  520. initial_mm.data_addr_start = (ul)&_data;
  521. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  522. initial_mm.rodata_addr_start = (ul)&_rodata;
  523. initial_mm.rodata_addr_end = (ul)&_erodata;
  524. initial_mm.bss_start = (uint64_t)&_bss;
  525. initial_mm.bss_end = (uint64_t)&_ebss;
  526. initial_mm.brk_start = memory_management_struct.start_brk;
  527. initial_mm.brk_end = current_pcb->addr_limit;
  528. initial_mm.stack_start = _stack_start;
  529. initial_mm.vmas = NULL;
  530. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  531. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  532. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  533. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  534. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  535. for (int i = 256; i < 512; ++i)
  536. {
  537. uint64_t *tmp = idle_pml4t_vaddr + i;
  538. barrier();
  539. if (*tmp == 0)
  540. {
  541. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  542. barrier();
  543. memset(pdpt, 0, PAGE_4K_SIZE);
  544. barrier();
  545. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  546. }
  547. }
  548. barrier();
  549. flush_tlb();
  550. /*
  551. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  552. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  553. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  554. */
  555. // 初始化pid的写锁
  556. spin_init(&process_global_pid_write_lock);
  557. // 初始化进程的循环链表
  558. list_init(&initial_proc_union.pcb.list);
  559. barrier();
  560. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  561. barrier();
  562. initial_proc_union.pcb.state = PROC_RUNNING;
  563. initial_proc_union.pcb.preempt_count = 0;
  564. initial_proc_union.pcb.cpu_id = 0;
  565. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  566. current_pcb->virtual_runtime = (1UL << 60);
  567. }
  568. /**
  569. * @brief fork当前进程
  570. *
  571. * @param regs 新的寄存器值
  572. * @param clone_flags 克隆标志
  573. * @param stack_start 堆栈开始地址
  574. * @param stack_size 堆栈大小
  575. * @return unsigned long
  576. */
  577. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  578. {
  579. int retval = 0;
  580. struct process_control_block *tsk = NULL;
  581. // 为新的进程分配栈空间,并将pcb放置在底部
  582. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  583. barrier();
  584. if (tsk == NULL)
  585. {
  586. retval = -ENOMEM;
  587. return retval;
  588. }
  589. barrier();
  590. memset(tsk, 0, sizeof(struct process_control_block));
  591. io_mfence();
  592. // 将当前进程的pcb复制到新的pcb内
  593. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  594. io_mfence();
  595. // 初始化进程的循环链表结点
  596. list_init(&tsk->list);
  597. io_mfence();
  598. // 判断是否为内核态调用fork
  599. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  600. tsk->flags |= PF_KFORK;
  601. tsk->priority = 2;
  602. tsk->preempt_count = 0;
  603. // 增加全局的pid并赋值给新进程的pid
  604. spin_lock(&process_global_pid_write_lock);
  605. tsk->pid = process_global_pid++;
  606. barrier();
  607. // 加入到进程链表中
  608. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  609. barrier();
  610. initial_proc_union.pcb.next_pcb = tsk;
  611. barrier();
  612. tsk->parent_pcb = current_pcb;
  613. barrier();
  614. spin_unlock(&process_global_pid_write_lock);
  615. tsk->cpu_id = proc_current_cpu_id;
  616. tsk->state = PROC_UNINTERRUPTIBLE;
  617. tsk->parent_pcb = current_pcb;
  618. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  619. barrier();
  620. list_init(&tsk->list);
  621. retval = -ENOMEM;
  622. // 拷贝标志位
  623. if (process_copy_flags(clone_flags, tsk))
  624. goto copy_flags_failed;
  625. // 拷贝内存空间分布结构体
  626. if (process_copy_mm(clone_flags, tsk))
  627. goto copy_mm_failed;
  628. // 拷贝文件
  629. if (process_copy_files(clone_flags, tsk))
  630. goto copy_files_failed;
  631. // 拷贝线程结构体
  632. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  633. goto copy_thread_failed;
  634. // 拷贝成功
  635. retval = tsk->pid;
  636. tsk->flags &= ~PF_KFORK;
  637. // 唤醒进程
  638. process_wakeup(tsk);
  639. return retval;
  640. copy_thread_failed:;
  641. // 回收线程
  642. process_exit_thread(tsk);
  643. copy_files_failed:;
  644. // 回收文件
  645. process_exit_files(tsk);
  646. copy_mm_failed:;
  647. // 回收内存空间分布结构体
  648. process_exit_mm(tsk);
  649. copy_flags_failed:;
  650. kfree(tsk);
  651. return retval;
  652. return 0;
  653. }
  654. /**
  655. * @brief 根据pid获取进程的pcb
  656. *
  657. * @param pid
  658. * @return struct process_control_block*
  659. */
  660. struct process_control_block *process_get_pcb(long pid)
  661. {
  662. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  663. // 使用蛮力法搜索指定pid的pcb
  664. // todo: 使用哈希表来管理pcb
  665. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  666. {
  667. if (pcb->pid == pid)
  668. return pcb;
  669. }
  670. return NULL;
  671. }
  672. /**
  673. * @brief 将进程加入到调度器的就绪队列中
  674. *
  675. * @param pcb 进程的pcb
  676. */
  677. void process_wakeup(struct process_control_block *pcb)
  678. {
  679. pcb->state = PROC_RUNNING;
  680. sched_enqueue(pcb);
  681. }
  682. /**
  683. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  684. *
  685. * @param pcb 进程的pcb
  686. */
  687. void process_wakeup_immediately(struct process_control_block *pcb)
  688. {
  689. pcb->state = PROC_RUNNING;
  690. sched_enqueue(pcb);
  691. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  692. current_pcb->flags |= PF_NEED_SCHED;
  693. }
  694. /**
  695. * @brief 拷贝当前进程的标志位
  696. *
  697. * @param clone_flags 克隆标志位
  698. * @param pcb 新的进程的pcb
  699. * @return uint64_t
  700. */
  701. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  702. {
  703. if (clone_flags & CLONE_VM)
  704. pcb->flags |= PF_VFORK;
  705. return 0;
  706. }
  707. /**
  708. * @brief 拷贝当前进程的文件描述符等信息
  709. *
  710. * @param clone_flags 克隆标志位
  711. * @param pcb 新的进程的pcb
  712. * @return uint64_t
  713. */
  714. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  715. {
  716. int retval = 0;
  717. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  718. // 文件描述符已经在复制pcb时被拷贝
  719. if (clone_flags & CLONE_FS)
  720. return retval;
  721. // 为新进程拷贝新的文件描述符
  722. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  723. {
  724. if (current_pcb->fds[i] == NULL)
  725. continue;
  726. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  727. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  728. }
  729. return retval;
  730. }
  731. /**
  732. * @brief 回收进程的所有文件描述符
  733. *
  734. * @param pcb 要被回收的进程的pcb
  735. * @return uint64_t
  736. */
  737. uint64_t process_exit_files(struct process_control_block *pcb)
  738. {
  739. // 不与父进程共享文件描述符
  740. if (!(pcb->flags & PF_VFORK))
  741. {
  742. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  743. {
  744. if (pcb->fds[i] == NULL)
  745. continue;
  746. kfree(pcb->fds[i]);
  747. }
  748. }
  749. // 清空当前进程的文件描述符列表
  750. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  751. }
  752. /**
  753. * @brief 拷贝当前进程的内存空间分布结构体信息
  754. *
  755. * @param clone_flags 克隆标志位
  756. * @param pcb 新的进程的pcb
  757. * @return uint64_t
  758. */
  759. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  760. {
  761. int retval = 0;
  762. // 与父进程共享内存空间
  763. if (clone_flags & CLONE_VM)
  764. {
  765. pcb->mm = current_pcb->mm;
  766. return retval;
  767. }
  768. // 分配新的内存空间分布结构体
  769. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  770. memset(new_mms, 0, sizeof(struct mm_struct));
  771. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  772. new_mms->vmas = NULL;
  773. pcb->mm = new_mms;
  774. // 分配顶层页表, 并设置顶层页表的物理地址
  775. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  776. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  777. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  778. // 拷贝内核空间的页表指针
  779. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  780. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  781. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  782. // 拷贝用户空间的vma
  783. struct vm_area_struct *vma = current_pcb->mm->vmas;
  784. while (vma != NULL)
  785. {
  786. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  787. {
  788. vma = vma->vm_next;
  789. continue;
  790. }
  791. int64_t vma_size = vma->vm_end - vma->vm_start;
  792. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  793. if (vma_size > PAGE_2M_SIZE / 2)
  794. {
  795. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  796. for (int i = 0; i < page_to_alloc; ++i)
  797. {
  798. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  799. struct vm_area_struct *new_vma = NULL;
  800. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  801. // 防止内存泄露
  802. if (unlikely(ret == -EEXIST))
  803. free_pages(Phy_to_2M_Page(pa), 1);
  804. else
  805. mm_map_vma(new_vma, pa);
  806. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  807. vma_size -= PAGE_2M_SIZE;
  808. }
  809. }
  810. else
  811. {
  812. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  813. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  814. struct vm_area_struct *new_vma = NULL;
  815. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  816. // 防止内存泄露
  817. if (unlikely(ret == -EEXIST))
  818. kfree((void *)va);
  819. else
  820. mm_map_vma(new_vma, virt_2_phys(va));
  821. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  822. }
  823. vma = vma->vm_next;
  824. }
  825. return retval;
  826. }
  827. /**
  828. * @brief 释放进程的页表
  829. *
  830. * @param pcb 要被释放页表的进程
  831. * @return uint64_t
  832. */
  833. uint64_t process_exit_mm(struct process_control_block *pcb)
  834. {
  835. if (pcb->flags & CLONE_VM)
  836. return 0;
  837. if (pcb->mm == NULL)
  838. {
  839. kdebug("pcb->mm==NULL");
  840. return 0;
  841. }
  842. if (pcb->mm->pgd == NULL)
  843. {
  844. kdebug("pcb->mm->pgd==NULL");
  845. return 0;
  846. }
  847. // // 获取顶层页表
  848. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  849. // 循环释放VMA中的内存
  850. struct vm_area_struct *vma = pcb->mm->vmas;
  851. while (vma != NULL)
  852. {
  853. struct vm_area_struct *cur_vma = vma;
  854. vma = cur_vma->vm_next;
  855. uint64_t pa;
  856. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  857. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  858. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  859. // 释放内存
  860. switch (size)
  861. {
  862. case PAGE_4K_SIZE:
  863. kfree(phys_2_virt(pa));
  864. break;
  865. default:
  866. break;
  867. }
  868. vm_area_del(cur_vma);
  869. vm_area_free(cur_vma);
  870. }
  871. // 释放顶层页表
  872. kfree(current_pgd);
  873. if (unlikely(pcb->mm->vmas != NULL))
  874. {
  875. kwarn("pcb.mm.vmas!=NULL");
  876. }
  877. // 释放内存空间分布结构体
  878. kfree(pcb->mm);
  879. return 0;
  880. }
  881. /**
  882. * @brief 重写内核栈中的rbp地址
  883. *
  884. * @param new_regs 子进程的reg
  885. * @param new_pcb 子进程的pcb
  886. * @return int
  887. */
  888. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  889. {
  890. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  891. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  892. uint64_t *rbp = &new_regs->rbp;
  893. uint64_t *tmp = rbp;
  894. // 超出内核栈范围
  895. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  896. return 0;
  897. while (1)
  898. {
  899. // 计算delta
  900. uint64_t delta = old_top - *rbp;
  901. // 计算新的rbp值
  902. uint64_t newVal = new_top - delta;
  903. // 新的值不合法
  904. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  905. break;
  906. // 将新的值写入对应位置
  907. *rbp = newVal;
  908. // 跳转栈帧
  909. rbp = (uint64_t *)*rbp;
  910. }
  911. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  912. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  913. return 0;
  914. }
  915. /**
  916. * @brief 拷贝当前进程的线程结构体
  917. *
  918. * @param clone_flags 克隆标志位
  919. * @param pcb 新的进程的pcb
  920. * @return uint64_t
  921. */
  922. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  923. {
  924. // 将线程结构体放置在pcb后方
  925. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  926. memset(thd, 0, sizeof(struct thread_struct));
  927. pcb->thread = thd;
  928. struct pt_regs *child_regs = NULL;
  929. // 拷贝栈空间
  930. if (pcb->flags & PF_KFORK) // 内核态下的fork
  931. {
  932. // 内核态下则拷贝整个内核栈
  933. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  934. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  935. memcpy(child_regs, (void *)current_regs, size);
  936. barrier();
  937. // 然后重写新的栈中,每个栈帧的rbp值
  938. process_rewrite_rbp(child_regs, pcb);
  939. }
  940. else
  941. {
  942. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  943. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  944. barrier();
  945. child_regs->rsp = stack_start;
  946. }
  947. // 设置子进程的返回值为0
  948. child_regs->rax = 0;
  949. if (pcb->flags & PF_KFORK)
  950. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  951. else
  952. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  953. // 设置新的内核线程开始执行的时候的rsp
  954. thd->rsp = (uint64_t)child_regs;
  955. thd->fs = current_pcb->thread->fs;
  956. thd->gs = current_pcb->thread->gs;
  957. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  958. if (pcb->flags & PF_KFORK)
  959. thd->rip = (uint64_t)ret_from_system_call;
  960. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  961. thd->rip = (uint64_t)kernel_thread_func;
  962. else
  963. thd->rip = (uint64_t)ret_from_system_call;
  964. return 0;
  965. }
  966. /**
  967. * @brief todo: 回收线程结构体
  968. *
  969. * @param pcb
  970. */
  971. void process_exit_thread(struct process_control_block *pcb)
  972. {
  973. }
  974. /**
  975. * @brief 申请可用的文件句柄
  976. *
  977. * @return int
  978. */
  979. int process_fd_alloc(struct vfs_file_t *file)
  980. {
  981. int fd_num = -1;
  982. struct vfs_file_t **f = current_pcb->fds;
  983. for (int i = 0; i < PROC_MAX_FD_NUM; ++i) {
  984. /* 找到指针数组中的空位 */
  985. if (f[i] == NULL) {
  986. fd_num = i;
  987. f[i] = file;
  988. break;
  989. }
  990. }
  991. return fd_num;
  992. }