cpu.c 3.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. #include "cpu.h"
  2. #include "kprint.h"
  3. #include "printk.h"
  4. // cpu支持的最大cpuid指令的基础主功能号
  5. uint Cpu_cpuid_max_Basic_mop;
  6. // cpu支持的最大cpuid指令的扩展主功能号
  7. uint Cpu_cpuid_max_Extended_mop;
  8. // cpu制造商信息
  9. char Cpu_Manufacturer_Name[17]={0};
  10. // 处理器名称信息
  11. char Cpu_BrandName[49] = {0};
  12. // 处理器家族ID
  13. uint Cpu_Family_ID;
  14. // 处理器扩展家族ID
  15. uint Cpu_Extended_Family_ID;
  16. // 处理器模式ID
  17. uint Cpu_Model_ID;
  18. // 处理器扩展模式ID
  19. uint Cpu_Extended_Model_ID;
  20. // 处理器步进ID
  21. uint Cpu_Stepping_ID;
  22. // 处理器类型
  23. uint Cpu_Processor_Type;
  24. // 处理器支持的最大物理地址可寻址地址线宽度
  25. uint Cpu_max_phys_addrline_size;
  26. // 处理器支持的最大线性地址可寻址地址线宽度
  27. uint Cpu_max_linear_addrline_size;
  28. struct cpu_core_info_t cpu_core_info[MAX_CPU_NUM];
  29. void cpu_init(void)
  30. {
  31. // 获取处理器制造商信息
  32. uint tmp_info[4] = {0};
  33. cpu_cpuid(0, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
  34. // 保存CPU支持的最大cpuid指令主功能号
  35. Cpu_cpuid_max_Basic_mop = tmp_info[0];
  36. // 保存制造商名称
  37. *(uint *)&Cpu_Manufacturer_Name[0] = tmp_info[1];
  38. *(uint *)&Cpu_Manufacturer_Name[4] = tmp_info[3];
  39. *(uint *)&Cpu_Manufacturer_Name[8] = tmp_info[2];
  40. Cpu_Manufacturer_Name[12] = '\0';
  41. kinfo("CPU manufacturer: %s", Cpu_Manufacturer_Name);
  42. // 获取处理器型号信息
  43. int count = 0;
  44. for (uint i = 0x80000002; i < 0x80000005; ++i)
  45. {
  46. cpu_cpuid(i, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
  47. for (int j = 0; j <= 3; ++j)
  48. {
  49. *(uint *)&Cpu_BrandName[4 * count] = tmp_info[j];
  50. ++count;
  51. }
  52. }
  53. Cpu_BrandName[48] = '\0';
  54. kinfo("CPU Brand Name: %s", Cpu_BrandName);
  55. // 使用cpuid主功能号0x01进行查询(未保存ebx ecx edx的信息,具体参见白皮书)
  56. cpu_cpuid(1, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
  57. // EAX中包含 Version Informatin Type,Family,Model,and Stepping ID
  58. Cpu_Stepping_ID = tmp_info[0] & 0xf;
  59. Cpu_Model_ID = (tmp_info[0] >> 4) & 0xf;
  60. Cpu_Family_ID = (tmp_info[0] >> 8) & 0xf;
  61. Cpu_Processor_Type = (tmp_info[0] >> 12) & 0x3;
  62. // 14-15位保留
  63. Cpu_Extended_Model_ID = (tmp_info[0] >> 16) & 0xf;
  64. Cpu_Extended_Family_ID = (tmp_info[0] >> 20) & 0xff;
  65. // 31-25位保留
  66. kinfo("Family ID=%#03lx\t Extended Family ID=%#03lx\t Processor Type=%#03lx\t", Cpu_Family_ID, Cpu_Extended_Family_ID, Cpu_Processor_Type);
  67. kinfo("Model ID=%#03lx\t Extended Model ID=%#03lx\tStepping ID=%#03lx\t", Cpu_Model_ID, Cpu_Extended_Model_ID, Cpu_Stepping_ID);
  68. // 使用0x80000008主功能号,查询处理器支持的最大可寻址地址线宽度
  69. cpu_cpuid(0x80000008, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
  70. Cpu_max_phys_addrline_size = tmp_info[0] & 0xff;
  71. Cpu_max_linear_addrline_size = (tmp_info[0] >> 8) & 0xff;
  72. kinfo("Cpu_max_phys_addrline_size = %d", Cpu_max_phys_addrline_size);
  73. kinfo("Cpu_max_linear_addrline_size = %d", Cpu_max_linear_addrline_size);
  74. cpu_cpuid(0x80000000, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
  75. Cpu_cpuid_max_Extended_mop = tmp_info[0];
  76. kinfo("Max basic mop=%#05lx", Cpu_cpuid_max_Basic_mop);
  77. kinfo("Max extended mop=%#05lx", Cpu_cpuid_max_Extended_mop);
  78. return;
  79. }
  80. void cpu_cpuid(uint32_t mop, uint32_t sop, uint32_t *eax, uint32_t*ebx, uint32_t*ecx, uint32_t*edx)
  81. {
  82. // 向eax和ecx分别输入主功能号和子功能号
  83. // 结果输出到eax, ebx, ecx, edx
  84. __asm__ __volatile__("cpuid \n\t":"=a"(*eax),"=b"(*ebx), "=c"(*ecx), "=d"(*edx):"0"(mop),"2"(sop):"memory");
  85. }