page.rs 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415
  1. use core::{
  2. fmt::{self, Debug, Error, Formatter},
  3. marker::PhantomData,
  4. mem,
  5. ops::Add,
  6. sync::atomic::{compiler_fence, Ordering},
  7. };
  8. use alloc::sync::Arc;
  9. use hashbrown::{HashMap, HashSet};
  10. use log::{error, info};
  11. use crate::{
  12. arch::{interrupt::ipi::send_ipi, MMArch},
  13. exception::ipi::{IpiKind, IpiTarget},
  14. ipc::shm::ShmId,
  15. libs::spinlock::{SpinLock, SpinLockGuard},
  16. };
  17. use super::{
  18. allocator::page_frame::{FrameAllocator, PageFrameCount},
  19. syscall::ProtFlags,
  20. ucontext::LockedVMA,
  21. MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr,
  22. };
  23. pub const PAGE_4K_SHIFT: usize = 12;
  24. #[allow(dead_code)]
  25. pub const PAGE_2M_SHIFT: usize = 21;
  26. pub const PAGE_1G_SHIFT: usize = 30;
  27. pub const PAGE_4K_SIZE: usize = 1 << PAGE_4K_SHIFT;
  28. pub const PAGE_2M_SIZE: usize = 1 << PAGE_2M_SHIFT;
  29. /// 全局物理页信息管理器
  30. pub static mut PAGE_MANAGER: Option<SpinLock<PageManager>> = None;
  31. /// 初始化PAGE_MANAGER
  32. pub fn page_manager_init() {
  33. info!("page_manager_init");
  34. let page_manager = SpinLock::new(PageManager::new());
  35. compiler_fence(Ordering::SeqCst);
  36. unsafe { PAGE_MANAGER = Some(page_manager) };
  37. compiler_fence(Ordering::SeqCst);
  38. info!("page_manager_init done");
  39. }
  40. pub fn page_manager_lock_irqsave() -> SpinLockGuard<'static, PageManager> {
  41. unsafe { PAGE_MANAGER.as_ref().unwrap().lock_irqsave() }
  42. }
  43. // 物理页管理器
  44. pub struct PageManager {
  45. phys2page: HashMap<PhysAddr, Page>,
  46. }
  47. impl PageManager {
  48. pub fn new() -> Self {
  49. Self {
  50. phys2page: HashMap::new(),
  51. }
  52. }
  53. pub fn contains(&self, paddr: &PhysAddr) -> bool {
  54. self.phys2page.contains_key(paddr)
  55. }
  56. pub fn get(&self, paddr: &PhysAddr) -> Option<&Page> {
  57. self.phys2page.get(paddr)
  58. }
  59. pub fn get_mut(&mut self, paddr: &PhysAddr) -> &mut Page {
  60. self.phys2page
  61. .get_mut(paddr)
  62. .unwrap_or_else(|| panic!("{:?}", paddr))
  63. }
  64. pub fn insert(&mut self, paddr: PhysAddr, page: Page) {
  65. self.phys2page.insert(paddr, page);
  66. }
  67. pub fn remove_page(&mut self, paddr: &PhysAddr) {
  68. self.phys2page.remove(paddr);
  69. }
  70. }
  71. /// 物理页面信息
  72. pub struct Page {
  73. /// 映射计数
  74. map_count: usize,
  75. /// 是否为共享页
  76. shared: bool,
  77. /// 映射计数为0时,是否可回收
  78. free_when_zero: bool,
  79. /// 共享页id(如果是共享页)
  80. shm_id: Option<ShmId>,
  81. /// 映射到当前page的VMA
  82. anon_vma: HashSet<Arc<LockedVMA>>,
  83. }
  84. impl Page {
  85. pub fn new(shared: bool) -> Self {
  86. let dealloc_when_zero = !shared;
  87. Self {
  88. map_count: 0,
  89. shared,
  90. free_when_zero: dealloc_when_zero,
  91. shm_id: None,
  92. anon_vma: HashSet::new(),
  93. }
  94. }
  95. /// 将vma加入anon_vma
  96. pub fn insert_vma(&mut self, vma: Arc<LockedVMA>) {
  97. self.anon_vma.insert(vma);
  98. self.map_count += 1;
  99. }
  100. /// 将vma从anon_vma中删去
  101. pub fn remove_vma(&mut self, vma: &LockedVMA) {
  102. self.anon_vma.remove(vma);
  103. self.map_count -= 1;
  104. }
  105. /// 判断当前物理页是否能被回
  106. pub fn can_deallocate(&self) -> bool {
  107. self.map_count == 0 && self.free_when_zero
  108. }
  109. pub fn shared(&self) -> bool {
  110. self.shared
  111. }
  112. pub fn shm_id(&self) -> Option<ShmId> {
  113. self.shm_id
  114. }
  115. pub fn set_shm_id(&mut self, shm_id: ShmId) {
  116. self.shm_id = Some(shm_id);
  117. }
  118. pub fn set_dealloc_when_zero(&mut self, dealloc_when_zero: bool) {
  119. self.free_when_zero = dealloc_when_zero;
  120. }
  121. #[inline(always)]
  122. pub fn anon_vma(&self) -> &HashSet<Arc<LockedVMA>> {
  123. &self.anon_vma
  124. }
  125. #[inline(always)]
  126. pub fn map_count(&self) -> usize {
  127. self.map_count
  128. }
  129. }
  130. #[derive(Debug)]
  131. pub struct PageTable<Arch> {
  132. /// 当前页表表示的虚拟地址空间的起始地址
  133. base: VirtAddr,
  134. /// 当前页表所在的物理地址
  135. phys: PhysAddr,
  136. /// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
  137. level: usize,
  138. phantom: PhantomData<Arch>,
  139. }
  140. #[allow(dead_code)]
  141. impl<Arch: MemoryManagementArch> PageTable<Arch> {
  142. pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
  143. Self {
  144. base,
  145. phys,
  146. level,
  147. phantom: PhantomData,
  148. }
  149. }
  150. /// 获取顶级页表
  151. ///
  152. /// ## 参数
  153. ///
  154. /// - table_kind 页表类型
  155. ///
  156. /// ## 返回值
  157. ///
  158. /// 返回顶级页表
  159. pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
  160. return Self::new(
  161. VirtAddr::new(0),
  162. Arch::table(table_kind),
  163. Arch::PAGE_LEVELS - 1,
  164. );
  165. }
  166. /// 获取当前页表的物理地址
  167. #[inline(always)]
  168. pub fn phys(&self) -> PhysAddr {
  169. self.phys
  170. }
  171. /// 当前页表表示的虚拟地址空间的起始地址
  172. #[inline(always)]
  173. pub fn base(&self) -> VirtAddr {
  174. self.base
  175. }
  176. /// 获取当前页表的层级
  177. #[inline(always)]
  178. pub fn level(&self) -> usize {
  179. self.level
  180. }
  181. /// 获取当前页表自身所在的虚拟地址
  182. #[inline(always)]
  183. pub unsafe fn virt(&self) -> VirtAddr {
  184. return Arch::phys_2_virt(self.phys).unwrap();
  185. }
  186. /// 获取第i个页表项所表示的虚拟内存空间的起始地址
  187. pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
  188. if i < Arch::PAGE_ENTRY_NUM {
  189. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  190. return Some(self.base.add(i << shift));
  191. } else {
  192. return None;
  193. }
  194. }
  195. /// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
  196. pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
  197. if i < Arch::PAGE_ENTRY_NUM {
  198. return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
  199. } else {
  200. return None;
  201. }
  202. }
  203. /// 获取当前页表的第i个页表项
  204. pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
  205. let entry_virt = self.entry_virt(i)?;
  206. return Some(PageEntry::from_usize(Arch::read::<usize>(entry_virt)));
  207. }
  208. /// 设置当前页表的第i个页表项
  209. pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
  210. let entry_virt = self.entry_virt(i)?;
  211. Arch::write::<usize>(entry_virt, entry.data());
  212. return Some(());
  213. }
  214. /// 判断当前页表的第i个页表项是否已经填写了值
  215. ///
  216. /// ## 参数
  217. /// - Some(true) 如果已经填写了值
  218. /// - Some(false) 如果未填写值
  219. /// - None 如果i超出了页表项的范围
  220. pub fn entry_mapped(&self, i: usize) -> Option<bool> {
  221. let etv = unsafe { self.entry_virt(i) }?;
  222. if unsafe { Arch::read::<usize>(etv) } != 0 {
  223. return Some(true);
  224. } else {
  225. return Some(false);
  226. }
  227. }
  228. /// 根据虚拟地址,获取对应的页表项在页表中的下标
  229. ///
  230. /// ## 参数
  231. ///
  232. /// - addr: 虚拟地址
  233. ///
  234. /// ## 返回值
  235. ///
  236. /// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
  237. pub fn index_of(&self, addr: VirtAddr) -> Option<usize> {
  238. let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
  239. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  240. let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
  241. if addr < self.base || addr >= self.base.add(mask) {
  242. return None;
  243. } else {
  244. return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
  245. }
  246. }
  247. /// 获取第i个页表项指向的下一级页表
  248. pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
  249. if self.level == 0 {
  250. return None;
  251. }
  252. // 返回下一级页表
  253. return Some(PageTable::new(
  254. self.entry_base(index)?,
  255. self.entry(index)?.address().ok()?,
  256. self.level - 1,
  257. ));
  258. }
  259. /// 拷贝页表
  260. /// ## 参数
  261. ///
  262. /// - `allocator`: 物理页框分配器
  263. /// - `copy_on_write`: 是否写时复制
  264. pub unsafe fn clone(
  265. &self,
  266. allocator: &mut impl FrameAllocator,
  267. copy_on_write: bool,
  268. ) -> Option<PageTable<Arch>> {
  269. // 分配新页面作为新的页表
  270. let phys = allocator.allocate_one()?;
  271. let frame = MMArch::phys_2_virt(phys).unwrap();
  272. MMArch::write_bytes(frame, 0, MMArch::PAGE_SIZE);
  273. let new_table = PageTable::new(self.base, phys, self.level);
  274. if self.level == 0 {
  275. for i in 0..Arch::PAGE_ENTRY_NUM {
  276. if let Some(mut entry) = self.entry(i) {
  277. if entry.present() {
  278. if copy_on_write {
  279. let mut new_flags = entry.flags().set_write(false);
  280. entry.set_flags(new_flags);
  281. self.set_entry(i, entry);
  282. new_flags = new_flags.set_dirty(false);
  283. entry.set_flags(new_flags);
  284. new_table.set_entry(i, entry);
  285. } else {
  286. let phys = allocator.allocate_one()?;
  287. let mut anon_vma_guard = page_manager_lock_irqsave();
  288. anon_vma_guard.insert(phys, Page::new(false));
  289. let old_phys = entry.address().unwrap();
  290. let frame = MMArch::phys_2_virt(phys).unwrap().data() as *mut u8;
  291. frame.copy_from_nonoverlapping(
  292. MMArch::phys_2_virt(old_phys).unwrap().data() as *mut u8,
  293. MMArch::PAGE_SIZE,
  294. );
  295. new_table.set_entry(i, PageEntry::new(phys, entry.flags()));
  296. }
  297. }
  298. }
  299. }
  300. } else {
  301. // 非一级页表拷贝时,对每个页表项对应的页表都进行拷贝
  302. for i in 0..MMArch::PAGE_ENTRY_NUM {
  303. if let Some(next_table) = self.next_level_table(i) {
  304. let table = next_table.clone(allocator, copy_on_write)?;
  305. let old_entry = self.entry(i).unwrap();
  306. let entry = PageEntry::new(table.phys(), old_entry.flags());
  307. new_table.set_entry(i, entry);
  308. }
  309. }
  310. }
  311. Some(new_table)
  312. }
  313. }
  314. /// 页表项
  315. #[derive(Copy, Clone)]
  316. pub struct PageEntry<Arch> {
  317. data: usize,
  318. phantom: PhantomData<Arch>,
  319. }
  320. impl<Arch> Debug for PageEntry<Arch> {
  321. fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
  322. f.write_fmt(format_args!("PageEntry({:#x})", self.data))
  323. }
  324. }
  325. impl<Arch: MemoryManagementArch> PageEntry<Arch> {
  326. #[inline(always)]
  327. pub fn new(paddr: PhysAddr, flags: PageFlags<Arch>) -> Self {
  328. Self {
  329. data: MMArch::make_entry(paddr, flags.data()),
  330. phantom: PhantomData,
  331. }
  332. }
  333. #[inline(always)]
  334. pub fn from_usize(data: usize) -> Self {
  335. Self {
  336. data,
  337. phantom: PhantomData,
  338. }
  339. }
  340. #[inline(always)]
  341. pub fn data(&self) -> usize {
  342. self.data
  343. }
  344. /// 获取当前页表项指向的物理地址
  345. ///
  346. /// ## 返回值
  347. ///
  348. /// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
  349. /// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
  350. #[inline(always)]
  351. pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
  352. let paddr: PhysAddr = {
  353. #[cfg(target_arch = "x86_64")]
  354. {
  355. PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK)
  356. }
  357. #[cfg(target_arch = "riscv64")]
  358. {
  359. let ppn = ((self.data & (!((1 << 10) - 1))) >> 10) & ((1 << 54) - 1);
  360. super::allocator::page_frame::PhysPageFrame::from_ppn(ppn).phys_address()
  361. }
  362. };
  363. if self.present() {
  364. Ok(paddr)
  365. } else {
  366. Err(paddr)
  367. }
  368. }
  369. #[inline(always)]
  370. pub fn flags(&self) -> PageFlags<Arch> {
  371. unsafe { PageFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
  372. }
  373. #[inline(always)]
  374. pub fn set_flags(&mut self, flags: PageFlags<Arch>) {
  375. self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
  376. }
  377. #[inline(always)]
  378. pub fn present(&self) -> bool {
  379. return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
  380. }
  381. #[inline(always)]
  382. pub fn empty(&self) -> bool {
  383. self.data & !(Arch::ENTRY_FLAG_DIRTY & Arch::ENTRY_FLAG_ACCESSED) == 0
  384. }
  385. #[inline(always)]
  386. pub fn protnone(&self) -> bool {
  387. return self.data & (Arch::ENTRY_FLAG_PRESENT | Arch::ENTRY_FLAG_GLOBAL)
  388. == Arch::ENTRY_FLAG_GLOBAL;
  389. }
  390. #[inline(always)]
  391. pub fn write(&self) -> bool {
  392. return self.data & Arch::ENTRY_FLAG_READWRITE != 0;
  393. }
  394. }
  395. /// 页表项的标志位
  396. #[derive(Copy, Clone, Hash)]
  397. pub struct PageFlags<Arch> {
  398. data: usize,
  399. phantom: PhantomData<Arch>,
  400. }
  401. impl<Arch: MemoryManagementArch> Default for PageFlags<Arch> {
  402. fn default() -> Self {
  403. Self::new()
  404. }
  405. }
  406. #[allow(dead_code)]
  407. impl<Arch: MemoryManagementArch> PageFlags<Arch> {
  408. #[inline(always)]
  409. pub fn new() -> Self {
  410. let mut r = unsafe {
  411. Self::from_data(
  412. Arch::ENTRY_FLAG_DEFAULT_PAGE
  413. | Arch::ENTRY_FLAG_READONLY
  414. | Arch::ENTRY_FLAG_NO_EXEC,
  415. )
  416. };
  417. #[cfg(target_arch = "x86_64")]
  418. {
  419. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  420. r = r.set_execute(true);
  421. }
  422. }
  423. return r;
  424. }
  425. /// 根据ProtFlags生成PageFlags
  426. ///
  427. /// ## 参数
  428. ///
  429. /// - prot_flags: 页的保护标志
  430. /// - user: 用户空间是否可访问
  431. pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> PageFlags<Arch> {
  432. let flags: PageFlags<Arch> = PageFlags::new()
  433. .set_user(user)
  434. .set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
  435. .set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
  436. return flags;
  437. }
  438. #[inline(always)]
  439. pub fn data(&self) -> usize {
  440. self.data
  441. }
  442. #[inline(always)]
  443. pub const unsafe fn from_data(data: usize) -> Self {
  444. return Self {
  445. data,
  446. phantom: PhantomData,
  447. };
  448. }
  449. /// 为新页表的页表项设置默认值
  450. ///
  451. /// 默认值为:
  452. /// - present
  453. /// - read only
  454. /// - kernel space
  455. /// - no exec
  456. #[inline(always)]
  457. pub fn new_page_table(user: bool) -> Self {
  458. return unsafe {
  459. let r = {
  460. #[cfg(target_arch = "x86_64")]
  461. {
  462. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE)
  463. }
  464. #[cfg(target_arch = "riscv64")]
  465. {
  466. // riscv64指向下一级页表的页表项,不应设置R/W/X权限位
  467. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE)
  468. }
  469. };
  470. #[cfg(target_arch = "x86_64")]
  471. {
  472. if user {
  473. r.set_user(true)
  474. } else {
  475. r
  476. }
  477. }
  478. #[cfg(target_arch = "riscv64")]
  479. {
  480. r
  481. }
  482. };
  483. }
  484. /// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
  485. ///
  486. /// ## 参数
  487. /// - flag 要更新的标志位的值
  488. /// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
  489. ///
  490. /// ## 返回值
  491. ///
  492. /// 更新后的页表项
  493. #[inline(always)]
  494. #[must_use]
  495. pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
  496. if value {
  497. self.data |= flag;
  498. } else {
  499. self.data &= !flag;
  500. }
  501. return self;
  502. }
  503. /// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
  504. #[inline(always)]
  505. pub fn has_flag(&self, flag: usize) -> bool {
  506. return self.data & flag == flag;
  507. }
  508. #[inline(always)]
  509. pub fn present(&self) -> bool {
  510. return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
  511. }
  512. /// 设置当前页表项的权限
  513. ///
  514. /// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
  515. #[must_use]
  516. #[inline(always)]
  517. pub fn set_user(self, value: bool) -> Self {
  518. return self.update_flags(Arch::ENTRY_FLAG_USER, value);
  519. }
  520. /// 用户态是否可以访问当前页表项
  521. #[inline(always)]
  522. pub fn has_user(&self) -> bool {
  523. return self.has_flag(Arch::ENTRY_FLAG_USER);
  524. }
  525. /// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
  526. ///
  527. /// ## 返回值
  528. ///
  529. /// 更新后的页表项.
  530. ///
  531. /// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
  532. #[must_use]
  533. #[inline(always)]
  534. pub fn set_write(self, value: bool) -> Self {
  535. #[cfg(target_arch = "x86_64")]
  536. {
  537. // 有的架构同时具有可写和不可写的标志位,因此需要同时更新
  538. return self
  539. .update_flags(Arch::ENTRY_FLAG_READONLY, !value)
  540. .update_flags(Arch::ENTRY_FLAG_READWRITE, value);
  541. }
  542. #[cfg(target_arch = "riscv64")]
  543. {
  544. if value {
  545. return self.update_flags(Arch::ENTRY_FLAG_READWRITE, true);
  546. } else {
  547. return self
  548. .update_flags(Arch::ENTRY_FLAG_READONLY, true)
  549. .update_flags(Arch::ENTRY_FLAG_WRITEABLE, false);
  550. }
  551. }
  552. }
  553. /// 当前页表项是否可写
  554. #[inline(always)]
  555. pub fn has_write(&self) -> bool {
  556. // 有的架构同时具有可写和不可写的标志位,因此需要同时判断
  557. return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
  558. == Arch::ENTRY_FLAG_READWRITE;
  559. }
  560. /// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
  561. #[must_use]
  562. #[inline(always)]
  563. pub fn set_execute(self, mut value: bool) -> Self {
  564. #[cfg(target_arch = "x86_64")]
  565. {
  566. // 如果xd位被保留,那么将可执行性设置为true
  567. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  568. value = true;
  569. }
  570. }
  571. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
  572. return self
  573. .update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
  574. .update_flags(Arch::ENTRY_FLAG_EXEC, value);
  575. }
  576. /// 当前页表项是否可执行
  577. #[inline(always)]
  578. pub fn has_execute(&self) -> bool {
  579. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
  580. return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
  581. == Arch::ENTRY_FLAG_EXEC;
  582. }
  583. /// 设置当前页表项的缓存策略
  584. ///
  585. /// ## 参数
  586. ///
  587. /// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
  588. #[inline(always)]
  589. pub fn set_page_cache_disable(self, value: bool) -> Self {
  590. return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
  591. }
  592. /// 获取当前页表项的缓存策略
  593. ///
  594. /// ## 返回值
  595. ///
  596. /// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
  597. #[inline(always)]
  598. pub fn has_page_cache_disable(&self) -> bool {
  599. return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
  600. }
  601. /// 设置当前页表项的写穿策略
  602. ///
  603. /// ## 参数
  604. ///
  605. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  606. #[inline(always)]
  607. pub fn set_page_write_through(self, value: bool) -> Self {
  608. return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
  609. }
  610. #[inline(always)]
  611. pub fn set_page_global(self, value: bool) -> Self {
  612. return self.update_flags(MMArch::ENTRY_FLAG_GLOBAL, value);
  613. }
  614. /// 获取当前页表项的写穿策略
  615. ///
  616. /// ## 返回值
  617. ///
  618. /// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
  619. #[inline(always)]
  620. pub fn has_page_write_through(&self) -> bool {
  621. return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
  622. }
  623. /// 设置当前页表是否为脏页
  624. ///
  625. /// ## 参数
  626. ///
  627. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  628. #[inline(always)]
  629. pub fn set_dirty(self, value: bool) -> Self {
  630. return self.update_flags(Arch::ENTRY_FLAG_DIRTY, value);
  631. }
  632. /// 设置当前页表被访问
  633. ///
  634. /// ## 参数
  635. ///
  636. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  637. #[inline(always)]
  638. pub fn set_access(self, value: bool) -> Self {
  639. return self.update_flags(Arch::ENTRY_FLAG_ACCESSED, value);
  640. }
  641. /// 设置指向的页是否为大页
  642. ///
  643. /// ## 参数
  644. ///
  645. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  646. #[inline(always)]
  647. pub fn set_huge_page(self, value: bool) -> Self {
  648. return self.update_flags(Arch::ENTRY_FLAG_HUGE_PAGE, value);
  649. }
  650. /// MMIO内存的页表项标志
  651. #[inline(always)]
  652. pub fn mmio_flags() -> Self {
  653. #[cfg(target_arch = "x86_64")]
  654. {
  655. Self::new()
  656. .set_user(false)
  657. .set_write(true)
  658. .set_execute(true)
  659. .set_page_cache_disable(true)
  660. .set_page_write_through(true)
  661. .set_page_global(true)
  662. }
  663. #[cfg(target_arch = "riscv64")]
  664. {
  665. Self::new()
  666. .set_user(false)
  667. .set_write(true)
  668. .set_execute(true)
  669. .set_page_global(true)
  670. }
  671. }
  672. }
  673. impl<Arch: MemoryManagementArch> fmt::Debug for PageFlags<Arch> {
  674. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  675. f.debug_struct("PageFlags")
  676. .field("bits", &format_args!("{:#0x}", self.data))
  677. .field("present", &self.present())
  678. .field("has_write", &self.has_write())
  679. .field("has_execute", &self.has_execute())
  680. .field("has_user", &self.has_user())
  681. .finish()
  682. }
  683. }
  684. /// 页表映射器
  685. #[derive(Hash)]
  686. pub struct PageMapper<Arch, F> {
  687. /// 页表类型
  688. table_kind: PageTableKind,
  689. /// 根页表物理地址
  690. table_paddr: PhysAddr,
  691. /// 页分配器
  692. frame_allocator: F,
  693. phantom: PhantomData<fn() -> Arch>,
  694. }
  695. impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
  696. /// 创建新的页面映射器
  697. ///
  698. /// ## 参数
  699. /// - table_kind 页表类型
  700. /// - table_paddr 根页表物理地址
  701. /// - allocator 页分配器
  702. ///
  703. /// ## 返回值
  704. ///
  705. /// 页面映射器
  706. pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
  707. return Self {
  708. table_kind,
  709. table_paddr,
  710. frame_allocator: allocator,
  711. phantom: PhantomData,
  712. };
  713. }
  714. /// 创建页表,并为这个页表创建页面映射器
  715. pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
  716. let table_paddr = allocator.allocate_one()?;
  717. // 清空页表
  718. let table_vaddr = Arch::phys_2_virt(table_paddr)?;
  719. Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
  720. return Some(Self::new(table_kind, table_paddr, allocator));
  721. }
  722. /// 获取当前页表的页面映射器
  723. #[inline(always)]
  724. pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
  725. let table_paddr = Arch::table(table_kind);
  726. return Self::new(table_kind, table_paddr, allocator);
  727. }
  728. /// 判断当前页表分配器所属的页表是否是当前页表
  729. #[inline(always)]
  730. pub fn is_current(&self) -> bool {
  731. return unsafe { self.table().phys() == Arch::table(self.table_kind) };
  732. }
  733. /// 将当前页表分配器所属的页表设置为当前页表
  734. #[inline(always)]
  735. pub unsafe fn make_current(&self) {
  736. Arch::set_table(self.table_kind, self.table_paddr);
  737. }
  738. /// 获取当前页表分配器所属的根页表的结构体
  739. #[inline(always)]
  740. pub fn table(&self) -> PageTable<Arch> {
  741. // 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
  742. return unsafe {
  743. PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
  744. };
  745. }
  746. /// 获取当前PageMapper所对应的页分配器实例的引用
  747. #[inline(always)]
  748. #[allow(dead_code)]
  749. pub fn allocator_ref(&self) -> &F {
  750. return &self.frame_allocator;
  751. }
  752. /// 获取当前PageMapper所对应的页分配器实例的可变引用
  753. #[inline(always)]
  754. pub fn allocator_mut(&mut self) -> &mut F {
  755. return &mut self.frame_allocator;
  756. }
  757. /// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
  758. pub unsafe fn map(
  759. &mut self,
  760. virt: VirtAddr,
  761. flags: PageFlags<Arch>,
  762. ) -> Option<PageFlush<Arch>> {
  763. compiler_fence(Ordering::SeqCst);
  764. let phys: PhysAddr = self.frame_allocator.allocate_one()?;
  765. compiler_fence(Ordering::SeqCst);
  766. unsafe {
  767. let vaddr = MMArch::phys_2_virt(phys).unwrap();
  768. MMArch::write_bytes(vaddr, 0, MMArch::PAGE_SIZE);
  769. }
  770. let mut page_manager_guard: SpinLockGuard<'static, PageManager> =
  771. page_manager_lock_irqsave();
  772. if !page_manager_guard.contains(&phys) {
  773. page_manager_guard.insert(phys, Page::new(false))
  774. }
  775. return self.map_phys(virt, phys, flags);
  776. }
  777. /// 映射一个物理页到指定的虚拟地址
  778. pub unsafe fn map_phys(
  779. &mut self,
  780. virt: VirtAddr,
  781. phys: PhysAddr,
  782. flags: PageFlags<Arch>,
  783. ) -> Option<PageFlush<Arch>> {
  784. // 验证虚拟地址和物理地址是否对齐
  785. if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
  786. error!(
  787. "Try to map unaligned page: virt={:?}, phys={:?}",
  788. virt, phys
  789. );
  790. return None;
  791. }
  792. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  793. // TODO: 验证flags是否合法
  794. // 创建页表项
  795. let entry = PageEntry::new(phys, flags);
  796. let mut table = self.table();
  797. loop {
  798. let i = table.index_of(virt)?;
  799. assert!(i < Arch::PAGE_ENTRY_NUM);
  800. if table.level() == 0 {
  801. compiler_fence(Ordering::SeqCst);
  802. table.set_entry(i, entry);
  803. compiler_fence(Ordering::SeqCst);
  804. return Some(PageFlush::new(virt));
  805. } else {
  806. let next_table = table.next_level_table(i);
  807. if let Some(next_table) = next_table {
  808. table = next_table;
  809. // debug!("Mapping {:?} to next level table...", virt);
  810. } else {
  811. // 分配下一级页表
  812. let frame = self.frame_allocator.allocate_one()?;
  813. // 清空这个页帧
  814. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  815. // 设置页表项的flags
  816. let flags: PageFlags<Arch> =
  817. PageFlags::new_page_table(virt.kind() == PageTableKind::User);
  818. // 把新分配的页表映射到当前页表
  819. table.set_entry(i, PageEntry::new(frame, flags));
  820. // 获取新分配的页表
  821. table = table.next_level_table(i)?;
  822. }
  823. }
  824. }
  825. }
  826. /// 进行大页映射
  827. pub unsafe fn map_huge_page(
  828. &mut self,
  829. virt: VirtAddr,
  830. flags: PageFlags<Arch>,
  831. ) -> Option<PageFlush<Arch>> {
  832. // 验证虚拟地址是否对齐
  833. if !(virt.check_aligned(Arch::PAGE_SIZE)) {
  834. error!("Try to map unaligned page: virt={:?}", virt);
  835. return None;
  836. }
  837. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  838. let mut table = self.table();
  839. loop {
  840. let i = table.index_of(virt)?;
  841. assert!(i < Arch::PAGE_ENTRY_NUM);
  842. let next_table = table.next_level_table(i);
  843. if let Some(next_table) = next_table {
  844. table = next_table;
  845. } else {
  846. break;
  847. }
  848. }
  849. // 支持2M、1G大页,即页表层级为1、2级的页表可以映射大页
  850. if table.level == 0 || table.level > 2 {
  851. return None;
  852. }
  853. let (phys, count) = self.frame_allocator.allocate(PageFrameCount::new(
  854. Arch::PAGE_ENTRY_NUM.pow(table.level as u32),
  855. ))?;
  856. MMArch::write_bytes(
  857. MMArch::phys_2_virt(phys).unwrap(),
  858. 0,
  859. MMArch::PAGE_SIZE * count.data(),
  860. );
  861. table.set_entry(
  862. table.index_of(virt)?,
  863. PageEntry::new(phys, flags.set_huge_page(true)),
  864. )?;
  865. Some(PageFlush::new(virt))
  866. }
  867. /// 为虚拟地址分配指定层级的页表
  868. /// ## 参数
  869. ///
  870. /// - `virt`: 虚拟地址
  871. /// - `level`: 指定页表层级
  872. ///
  873. /// ## 返回值
  874. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  875. /// - None: 对应页表不存在
  876. pub unsafe fn allocate_table(
  877. &mut self,
  878. virt: VirtAddr,
  879. level: usize,
  880. ) -> Option<PageTable<Arch>> {
  881. let table = self.get_table(virt, level + 1)?;
  882. let i = table.index_of(virt)?;
  883. let frame = self.frame_allocator.allocate_one()?;
  884. // 清空这个页帧
  885. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  886. // 设置页表项的flags
  887. let flags: PageFlags<Arch> = PageFlags::new_page_table(virt.kind() == PageTableKind::User);
  888. table.set_entry(i, PageEntry::new(frame, flags));
  889. table.next_level_table(i)
  890. }
  891. /// 获取虚拟地址的指定层级页表
  892. /// ## 参数
  893. ///
  894. /// - `virt`: 虚拟地址
  895. /// - `level`: 指定页表层级
  896. ///
  897. /// ## 返回值
  898. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  899. /// - None: 对应页表不存在
  900. pub fn get_table(&self, virt: VirtAddr, level: usize) -> Option<PageTable<Arch>> {
  901. let mut table = self.table();
  902. if level > Arch::PAGE_LEVELS - 1 {
  903. return None;
  904. }
  905. unsafe {
  906. loop {
  907. if table.level == level {
  908. return Some(table);
  909. }
  910. let i = table.index_of(virt)?;
  911. assert!(i < Arch::PAGE_ENTRY_NUM);
  912. table = table.next_level_table(i)?;
  913. }
  914. }
  915. }
  916. /// 获取虚拟地址在指定层级页表的PageEntry
  917. /// ## 参数
  918. ///
  919. /// - `virt`: 虚拟地址
  920. /// - `level`: 指定页表层级
  921. ///
  922. /// ## 返回值
  923. /// - Some(PageEntry<Arch>): 虚拟地址在指定层级的页表的有效PageEntry
  924. /// - None: 无对应的有效PageEntry
  925. pub fn get_entry(&self, virt: VirtAddr, level: usize) -> Option<PageEntry<Arch>> {
  926. let table = self.get_table(virt, level)?;
  927. let i = table.index_of(virt)?;
  928. let entry = unsafe { table.entry(i) }?;
  929. if !entry.empty() {
  930. Some(entry)
  931. } else {
  932. None
  933. }
  934. // let mut table = self.table();
  935. // if level > Arch::PAGE_LEVELS - 1 {
  936. // return None;
  937. // }
  938. // unsafe {
  939. // loop {
  940. // let i = table.index_of(virt)?;
  941. // assert!(i < Arch::PAGE_ENTRY_NUM);
  942. // if table.level == level {
  943. // let entry = table.entry(i)?;
  944. // if !entry.empty() {
  945. // return Some(entry);
  946. // } else {
  947. // return None;
  948. // }
  949. // }
  950. // table = table.next_level_table(i)?;
  951. // }
  952. // }
  953. }
  954. /// 拷贝用户空间映射
  955. /// ## 参数
  956. ///
  957. /// - `umapper`: 要拷贝的用户空间
  958. /// - `copy_on_write`: 是否写时复制
  959. pub unsafe fn clone_user_mapping(&mut self, umapper: &mut Self, copy_on_write: bool) {
  960. let old_table = umapper.table();
  961. let new_table = self.table();
  962. let allocator = self.allocator_mut();
  963. // 顶级页表的[0, PAGE_KERNEL_INDEX)项为用户空间映射
  964. for entry_index in 0..Arch::PAGE_KERNEL_INDEX {
  965. if let Some(next_table) = old_table.next_level_table(entry_index) {
  966. let table = next_table.clone(allocator, copy_on_write).unwrap();
  967. let old_entry = old_table.entry(entry_index).unwrap();
  968. let entry = PageEntry::new(table.phys(), old_entry.flags());
  969. new_table.set_entry(entry_index, entry);
  970. }
  971. }
  972. }
  973. /// 将物理地址映射到具有线性偏移量的虚拟地址
  974. #[allow(dead_code)]
  975. pub unsafe fn map_linearly(
  976. &mut self,
  977. phys: PhysAddr,
  978. flags: PageFlags<Arch>,
  979. ) -> Option<(VirtAddr, PageFlush<Arch>)> {
  980. let virt: VirtAddr = Arch::phys_2_virt(phys)?;
  981. return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
  982. }
  983. /// 修改虚拟地址的页表项的flags,并返回页表项刷新器
  984. ///
  985. /// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
  986. ///
  987. /// ## 参数
  988. /// - virt 虚拟地址
  989. /// - flags 新的页表项的flags
  990. ///
  991. /// ## 返回值
  992. ///
  993. /// 如果修改成功,返回刷新器,否则返回None
  994. pub unsafe fn remap(
  995. &mut self,
  996. virt: VirtAddr,
  997. flags: PageFlags<Arch>,
  998. ) -> Option<PageFlush<Arch>> {
  999. return self
  1000. .visit(virt, |p1, i| {
  1001. let mut entry = p1.entry(i)?;
  1002. entry.set_flags(flags);
  1003. p1.set_entry(i, entry);
  1004. Some(PageFlush::new(virt))
  1005. })
  1006. .flatten();
  1007. }
  1008. /// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
  1009. ///
  1010. /// ## 参数
  1011. ///
  1012. /// - virt 虚拟地址
  1013. ///
  1014. /// ## 返回值
  1015. ///
  1016. /// 如果查找成功,返回物理地址和页表项的flags,否则返回None
  1017. pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, PageFlags<Arch>)> {
  1018. let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
  1019. let paddr = entry.address().ok()?;
  1020. let flags = entry.flags();
  1021. return Some((paddr, flags));
  1022. }
  1023. /// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
  1024. ///
  1025. /// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
  1026. ///
  1027. /// ## 参数
  1028. ///
  1029. /// - virt 虚拟地址
  1030. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1031. ///
  1032. /// ## 返回值
  1033. /// 如果取消成功,返回刷新器,否则返回None
  1034. #[allow(dead_code)]
  1035. pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
  1036. let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
  1037. self.frame_allocator.free_one(paddr);
  1038. return Some(flusher);
  1039. }
  1040. /// 取消虚拟地址的映射,并返回物理地址和页表项的flags
  1041. ///
  1042. /// ## 参数
  1043. ///
  1044. /// - vaddr 虚拟地址
  1045. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1046. ///
  1047. /// ## 返回值
  1048. ///
  1049. /// 如果取消成功,返回物理地址和页表项的flags,否则返回None
  1050. pub unsafe fn unmap_phys(
  1051. &mut self,
  1052. virt: VirtAddr,
  1053. unmap_parents: bool,
  1054. ) -> Option<(PhysAddr, PageFlags<Arch>, PageFlush<Arch>)> {
  1055. if !virt.check_aligned(Arch::PAGE_SIZE) {
  1056. error!("Try to unmap unaligned page: virt={:?}", virt);
  1057. return None;
  1058. }
  1059. let table = self.table();
  1060. return unmap_phys_inner(virt, &table, unmap_parents, self.allocator_mut())
  1061. .map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
  1062. }
  1063. /// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
  1064. fn visit<T>(
  1065. &self,
  1066. virt: VirtAddr,
  1067. f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
  1068. ) -> Option<T> {
  1069. let mut table = self.table();
  1070. unsafe {
  1071. loop {
  1072. let i = table.index_of(virt)?;
  1073. if table.level() == 0 {
  1074. return Some(f(&mut table, i));
  1075. } else {
  1076. table = table.next_level_table(i)?;
  1077. }
  1078. }
  1079. }
  1080. }
  1081. }
  1082. /// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
  1083. ///
  1084. /// ## 参数
  1085. ///
  1086. /// - vaddr 虚拟地址
  1087. /// - table 页表
  1088. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1089. /// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
  1090. ///
  1091. /// ## 返回值
  1092. ///
  1093. /// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
  1094. unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
  1095. vaddr: VirtAddr,
  1096. table: &PageTable<Arch>,
  1097. unmap_parents: bool,
  1098. allocator: &mut impl FrameAllocator,
  1099. ) -> Option<(PhysAddr, PageFlags<Arch>)> {
  1100. // 获取页表项的索引
  1101. let i = table.index_of(vaddr)?;
  1102. // 如果当前是最后一级页表,直接取消页面映射
  1103. if table.level() == 0 {
  1104. let entry = table.entry(i)?;
  1105. table.set_entry(i, PageEntry::from_usize(0));
  1106. return Some((entry.address().ok()?, entry.flags()));
  1107. }
  1108. let subtable = table.next_level_table(i)?;
  1109. // 递归地取消映射
  1110. let result = unmap_phys_inner(vaddr, &subtable, unmap_parents, allocator)?;
  1111. // TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
  1112. // as these mappings may become out of sync
  1113. if unmap_parents {
  1114. // 如果子页表已经没有映射的页面了,就取消子页表的映射
  1115. // 检查子页表中是否还有映射的页面
  1116. let x = (0..Arch::PAGE_ENTRY_NUM)
  1117. .map(|k| subtable.entry(k).expect("invalid page entry"))
  1118. .any(|e| e.present());
  1119. if !x {
  1120. // 如果没有,就取消子页表的映射
  1121. table.set_entry(i, PageEntry::from_usize(0));
  1122. // 释放子页表
  1123. allocator.free_one(subtable.phys());
  1124. }
  1125. }
  1126. return Some(result);
  1127. }
  1128. impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
  1129. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  1130. f.debug_struct("PageMapper")
  1131. .field("table_paddr", &self.table_paddr)
  1132. .field("frame_allocator", &self.frame_allocator)
  1133. .finish()
  1134. }
  1135. }
  1136. /// 页表刷新器的trait
  1137. pub trait Flusher<Arch: MemoryManagementArch> {
  1138. /// 取消对指定的page flusher的刷新
  1139. fn consume(&mut self, flush: PageFlush<Arch>);
  1140. }
  1141. /// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1142. /// 否则会造成对页表的更改被忽略,这是不安全的
  1143. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1144. pub struct PageFlush<Arch: MemoryManagementArch> {
  1145. virt: VirtAddr,
  1146. phantom: PhantomData<Arch>,
  1147. }
  1148. impl<Arch: MemoryManagementArch> PageFlush<Arch> {
  1149. pub fn new(virt: VirtAddr) -> Self {
  1150. return Self {
  1151. virt,
  1152. phantom: PhantomData,
  1153. };
  1154. }
  1155. pub fn flush(self) {
  1156. unsafe { Arch::invalidate_page(self.virt) };
  1157. }
  1158. /// 忽略掉这个刷新器
  1159. pub unsafe fn ignore(self) {
  1160. mem::forget(self);
  1161. }
  1162. }
  1163. impl<Arch: MemoryManagementArch> Drop for PageFlush<Arch> {
  1164. fn drop(&mut self) {
  1165. unsafe {
  1166. MMArch::invalidate_page(self.virt);
  1167. }
  1168. }
  1169. }
  1170. /// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1171. /// 否则会造成对页表的更改被忽略,这是不安全的
  1172. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1173. pub struct PageFlushAll<Arch: MemoryManagementArch> {
  1174. phantom: PhantomData<fn() -> Arch>,
  1175. }
  1176. #[allow(dead_code)]
  1177. impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
  1178. pub fn new() -> Self {
  1179. return Self {
  1180. phantom: PhantomData,
  1181. };
  1182. }
  1183. pub fn flush(self) {
  1184. unsafe { Arch::invalidate_all() };
  1185. }
  1186. /// 忽略掉这个刷新器
  1187. pub unsafe fn ignore(self) {
  1188. mem::forget(self);
  1189. }
  1190. }
  1191. impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
  1192. /// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
  1193. fn consume(&mut self, flush: PageFlush<Arch>) {
  1194. unsafe { flush.ignore() };
  1195. }
  1196. }
  1197. impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
  1198. /// 允许一个flusher consume掉另一个flusher
  1199. fn consume(&mut self, flush: PageFlush<Arch>) {
  1200. <T as Flusher<Arch>>::consume(self, flush);
  1201. }
  1202. }
  1203. impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
  1204. fn consume(&mut self, _flush: PageFlush<Arch>) {}
  1205. }
  1206. impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
  1207. fn drop(&mut self) {
  1208. unsafe {
  1209. Arch::invalidate_all();
  1210. }
  1211. }
  1212. }
  1213. /// 未在当前CPU上激活的页表的刷新器
  1214. ///
  1215. /// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
  1216. ///
  1217. /// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
  1218. #[derive(Debug)]
  1219. pub struct InactiveFlusher;
  1220. impl InactiveFlusher {
  1221. pub fn new() -> Self {
  1222. return Self {};
  1223. }
  1224. }
  1225. impl Flusher<MMArch> for InactiveFlusher {
  1226. fn consume(&mut self, flush: PageFlush<MMArch>) {
  1227. unsafe {
  1228. flush.ignore();
  1229. }
  1230. }
  1231. }
  1232. impl Drop for InactiveFlusher {
  1233. fn drop(&mut self) {
  1234. // 发送刷新页表的IPI
  1235. send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
  1236. }
  1237. }
  1238. /// # 把一个地址向下对齐到页大小
  1239. pub fn round_down_to_page_size(addr: usize) -> usize {
  1240. addr & !(MMArch::PAGE_SIZE - 1)
  1241. }
  1242. /// # 把一个地址向上对齐到页大小
  1243. pub fn round_up_to_page_size(addr: usize) -> usize {
  1244. round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
  1245. }