process.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/compiler.h>
  6. #include <common/libELF/elf.h>
  7. #include <driver/video/video.h>
  8. #include <exception/gate.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <mm/slab.h>
  11. #include <process/spinlock.h>
  12. #include <syscall/syscall.h>
  13. #include <syscall/syscall_num.h>
  14. #include <sched/sched.h>
  15. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  16. long process_global_pid = 1; // 系统中最大的pid
  17. extern void system_call(void);
  18. extern void kernel_thread_func(void);
  19. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  20. struct mm_struct initial_mm = {0};
  21. struct thread_struct initial_thread =
  22. {
  23. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  24. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  25. .fs = KERNEL_DS,
  26. .gs = KERNEL_DS,
  27. .cr2 = 0,
  28. .trap_num = 0,
  29. .err_code = 0};
  30. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  31. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  32. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  33. // 为每个核心初始化初始进程的tss
  34. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  35. /**
  36. * @brief 拷贝当前进程的标志位
  37. *
  38. * @param clone_flags 克隆标志位
  39. * @param pcb 新的进程的pcb
  40. * @return uint64_t
  41. */
  42. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  43. /**
  44. * @brief 拷贝当前进程的文件描述符等信息
  45. *
  46. * @param clone_flags 克隆标志位
  47. * @param pcb 新的进程的pcb
  48. * @return uint64_t
  49. */
  50. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  51. /**
  52. * @brief 回收进程的所有文件描述符
  53. *
  54. * @param pcb 要被回收的进程的pcb
  55. * @return uint64_t
  56. */
  57. uint64_t process_exit_files(struct process_control_block *pcb);
  58. /**
  59. * @brief 拷贝当前进程的内存空间分布结构体信息
  60. *
  61. * @param clone_flags 克隆标志位
  62. * @param pcb 新的进程的pcb
  63. * @return uint64_t
  64. */
  65. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  66. /**
  67. * @brief 释放进程的页表
  68. *
  69. * @param pcb 要被释放页表的进程
  70. * @return uint64_t
  71. */
  72. uint64_t process_exit_mm(struct process_control_block *pcb);
  73. /**
  74. * @brief 拷贝当前进程的线程结构体
  75. *
  76. * @param clone_flags 克隆标志位
  77. * @param pcb 新的进程的pcb
  78. * @return uint64_t
  79. */
  80. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  81. void process_exit_thread(struct process_control_block *pcb);
  82. /**
  83. * @brief 切换进程
  84. *
  85. * @param prev 上一个进程的pcb
  86. * @param next 将要切换到的进程的pcb
  87. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  88. * 这里切换fs和gs寄存器
  89. */
  90. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  91. {
  92. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  93. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  94. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  95. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  96. __asm__ __volatile__("movq %%fs, %0 \n\t"
  97. : "=a"(prev->thread->fs));
  98. __asm__ __volatile__("movq %%gs, %0 \n\t"
  99. : "=a"(prev->thread->gs));
  100. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  101. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  102. // wrmsr(0x175, next->thread->rbp);
  103. }
  104. /**
  105. * @brief 打开要执行的程序文件
  106. *
  107. * @param path
  108. * @return struct vfs_file_t*
  109. */
  110. struct vfs_file_t *process_open_exec_file(char *path)
  111. {
  112. struct vfs_dir_entry_t *dentry = NULL;
  113. struct vfs_file_t *filp = NULL;
  114. dentry = vfs_path_walk(path, 0);
  115. if (dentry == NULL)
  116. return (void *)-ENOENT;
  117. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  118. return (void *)-ENOTDIR;
  119. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  120. if (filp == NULL)
  121. return (void *)-ENOMEM;
  122. filp->position = 0;
  123. filp->mode = 0;
  124. filp->dEntry = dentry;
  125. filp->mode = ATTR_READ_ONLY;
  126. filp->file_ops = dentry->dir_inode->file_ops;
  127. return filp;
  128. }
  129. /**
  130. * @brief 加载elf格式的程序文件到内存中,并设置regs
  131. *
  132. * @param regs 寄存器
  133. * @param path 文件路径
  134. * @return int
  135. */
  136. static int process_load_elf_file(struct pt_regs *regs, char *path)
  137. {
  138. int retval = 0;
  139. struct vfs_file_t *filp = process_open_exec_file(path);
  140. if ((long)filp <= 0 && (long)filp >= -255)
  141. {
  142. // kdebug("(long)filp=%ld", (long)filp);
  143. return (unsigned long)filp;
  144. }
  145. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  146. memset(buf, 0, PAGE_4K_SIZE);
  147. uint64_t pos = 0;
  148. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  149. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  150. retval = 0;
  151. if (!elf_check(buf))
  152. {
  153. kerror("Not an ELF file: %s", path);
  154. retval = -ENOTSUP;
  155. goto load_elf_failed;
  156. }
  157. #if ARCH(X86_64)
  158. // 暂时只支持64位的文件
  159. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  160. {
  161. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  162. retval = -EUNSUPPORTED;
  163. goto load_elf_failed;
  164. }
  165. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  166. // 暂时只支持AMD64架构
  167. if (ehdr.e_machine != EM_AMD64)
  168. {
  169. kerror("e_machine=%d", ehdr.e_machine);
  170. retval = -EUNSUPPORTED;
  171. goto load_elf_failed;
  172. }
  173. #else
  174. #error Unsupported architecture!
  175. #endif
  176. if (ehdr.e_type != ET_EXEC)
  177. {
  178. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  179. retval = -EUNSUPPORTED;
  180. goto load_elf_failed;
  181. }
  182. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  183. regs->rip = ehdr.e_entry;
  184. current_pcb->mm->code_addr_start = ehdr.e_entry;
  185. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  186. // 将指针移动到program header处
  187. pos = ehdr.e_phoff;
  188. // 读取所有的phdr
  189. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  190. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  191. if ((unsigned long)filp <= 0)
  192. {
  193. kdebug("(unsigned long)filp=%d", (long)filp);
  194. retval = -ENOEXEC;
  195. goto load_elf_failed;
  196. }
  197. Elf64_Phdr *phdr = buf;
  198. // 将程序加载到内存中
  199. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  200. {
  201. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  202. // 不是可加载的段
  203. if (phdr->p_type != PT_LOAD)
  204. continue;
  205. int64_t remain_mem_size = phdr->p_memsz;
  206. int64_t remain_file_size = phdr->p_filesz;
  207. pos = phdr->p_offset;
  208. uint64_t virt_base = phdr->p_vaddr;
  209. // kdebug("virt_base = %#018lx, &memory_management_struct=%#018lx", virt_base, &memory_management_struct);
  210. while (remain_mem_size > 0)
  211. {
  212. // todo: 改用slab分配4K大小内存块并映射到4K页
  213. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  214. {
  215. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
  216. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  217. }
  218. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  219. int64_t val = 0;
  220. if (remain_file_size != 0)
  221. {
  222. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  223. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  224. }
  225. if (val < 0)
  226. goto load_elf_failed;
  227. remain_mem_size -= PAGE_2M_SIZE;
  228. remain_file_size -= val;
  229. virt_base += PAGE_2M_SIZE;
  230. }
  231. }
  232. // 分配2MB的栈内存空间
  233. regs->rsp = current_pcb->mm->stack_start;
  234. regs->rbp = current_pcb->mm->stack_start;
  235. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  236. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
  237. // 清空栈空间
  238. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  239. load_elf_failed:;
  240. if (buf != NULL)
  241. kfree(buf);
  242. return retval;
  243. }
  244. /**
  245. * @brief 使当前进程去执行新的代码
  246. *
  247. * @param regs 当前进程的寄存器
  248. * @param path 可执行程序的路径
  249. * @param argv 参数列表
  250. * @param envp 环境变量
  251. * @return ul 错误码
  252. */
  253. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  254. {
  255. // kdebug("do_execve is running...");
  256. // 当前进程正在与父进程共享地址空间,需要创建
  257. // 独立的地址空间才能使新程序正常运行
  258. if (current_pcb->flags & PF_VFORK)
  259. {
  260. kdebug("proc:%d creating new mem space", current_pcb->pid);
  261. // 分配新的内存空间分布结构体
  262. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  263. memset(new_mms, 0, sizeof(struct mm_struct));
  264. current_pcb->mm = new_mms;
  265. // 分配顶层页表, 并设置顶层页表的物理地址
  266. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  267. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  268. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  269. // 拷贝内核空间的页表指针
  270. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  271. }
  272. // 设置用户栈和用户堆的基地址
  273. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  274. const uint64_t brk_start_addr = 0x700000000000UL;
  275. process_switch_mm(current_pcb);
  276. // 为用户态程序设置地址边界
  277. if (!(current_pcb->flags & PF_KTHREAD))
  278. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  279. current_pcb->mm->code_addr_end = 0;
  280. current_pcb->mm->data_addr_start = 0;
  281. current_pcb->mm->data_addr_end = 0;
  282. current_pcb->mm->rodata_addr_start = 0;
  283. current_pcb->mm->rodata_addr_end = 0;
  284. current_pcb->mm->bss_start = 0;
  285. current_pcb->mm->bss_end = 0;
  286. current_pcb->mm->brk_start = brk_start_addr;
  287. current_pcb->mm->brk_end = brk_start_addr;
  288. current_pcb->mm->stack_start = stack_start_addr;
  289. // 关闭之前的文件描述符
  290. process_exit_files(current_pcb);
  291. // 清除进程的vfork标志位
  292. current_pcb->flags &= ~PF_VFORK;
  293. // 加载elf格式的可执行文件
  294. int tmp = process_load_elf_file(regs, path);
  295. if (tmp < 0)
  296. goto exec_failed;
  297. // 拷贝参数列表
  298. if (argv != NULL)
  299. {
  300. int argc = 0;
  301. // 目标程序的argv基地址指针,最大8个参数
  302. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  303. uint64_t str_addr = (uint64_t)dst_argv;
  304. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  305. {
  306. if (*argv[argc] == NULL)
  307. break;
  308. // 测量参数的长度(最大1023)
  309. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  310. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  311. str_addr -= argv_len;
  312. dst_argv[argc] = (char *)str_addr;
  313. //字符串加上结尾字符
  314. ((char *)str_addr)[argv_len] = '\0';
  315. }
  316. // 重新设定栈基址,并预留空间防止越界
  317. stack_start_addr = str_addr - 8;
  318. current_pcb->mm->stack_start = stack_start_addr;
  319. regs->rsp = regs->rbp = stack_start_addr;
  320. // 传递参数
  321. regs->rdi = argc;
  322. regs->rsi = (uint64_t)dst_argv;
  323. }
  324. kdebug("execve ok");
  325. regs->cs = USER_CS | 3;
  326. regs->ds = USER_DS | 3;
  327. regs->ss = USER_DS | 0x3;
  328. regs->rflags = 0x200246;
  329. regs->rax = 1;
  330. regs->es = 0;
  331. return 0;
  332. exec_failed:;
  333. process_do_exit(tmp);
  334. }
  335. /**
  336. * @brief 内核init进程
  337. *
  338. * @param arg
  339. * @return ul 参数
  340. */
  341. ul initial_kernel_thread(ul arg)
  342. {
  343. // kinfo("initial proc running...\targ:%#018lx", arg);
  344. fat32_init();
  345. struct pt_regs *regs;
  346. current_pcb->thread->rip = (ul)ret_from_system_call;
  347. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  348. current_pcb->thread->fs = USER_DS | 0x3;
  349. current_pcb->thread->gs = USER_DS | 0x3;
  350. // 主动放弃内核线程身份
  351. current_pcb->flags &= (~PF_KTHREAD);
  352. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  353. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  354. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  355. regs = (struct pt_regs *)current_pcb->thread->rsp;
  356. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  357. current_pcb->flags = 0;
  358. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  359. // 加载用户态程序:shell.elf
  360. char init_path[] = "/shell.elf";
  361. uint64_t addr = (uint64_t)&init_path;
  362. __asm__ __volatile__("movq %1, %%rsp \n\t"
  363. "pushq %2 \n\t"
  364. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  365. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  366. : "memory");
  367. return 1;
  368. }
  369. /**
  370. * @brief 当子进程退出后向父进程发送通知
  371. *
  372. */
  373. void process_exit_notify()
  374. {
  375. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  376. }
  377. /**
  378. * @brief 进程退出时执行的函数
  379. *
  380. * @param code 返回码
  381. * @return ul
  382. */
  383. ul process_do_exit(ul code)
  384. {
  385. // kinfo("process exiting..., code is %ld.", (long)code);
  386. cli();
  387. struct process_control_block *pcb = current_pcb;
  388. // 进程退出时释放资源
  389. process_exit_files(pcb);
  390. process_exit_thread(pcb);
  391. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  392. pcb->state = PROC_ZOMBIE;
  393. pcb->exit_code = code;
  394. sti();
  395. process_exit_notify();
  396. sched_cfs();
  397. while (1)
  398. hlt();
  399. }
  400. /**
  401. * @brief 初始化内核进程
  402. *
  403. * @param fn 目标程序的地址
  404. * @param arg 向目标程序传入的参数
  405. * @param flags
  406. * @return int
  407. */
  408. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  409. {
  410. struct pt_regs regs;
  411. memset(&regs, 0, sizeof(regs));
  412. // 在rbx寄存器中保存进程的入口地址
  413. regs.rbx = (ul)fn;
  414. // 在rdx寄存器中保存传入的参数
  415. regs.rdx = (ul)arg;
  416. regs.ds = KERNEL_DS;
  417. regs.es = KERNEL_DS;
  418. regs.cs = KERNEL_CS;
  419. regs.ss = KERNEL_DS;
  420. // 置位中断使能标志位
  421. regs.rflags = (1 << 9);
  422. // rip寄存器指向内核线程的引导程序
  423. regs.rip = (ul)kernel_thread_func;
  424. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  425. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  426. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  427. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  428. }
  429. /**
  430. * @brief 初始化进程模块
  431. * ☆前置条件:已完成系统调用模块的初始化
  432. */
  433. void process_init()
  434. {
  435. kinfo("Initializing process...");
  436. initial_mm.pgd = (pml4t_t *)get_CR3();
  437. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  438. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  439. initial_mm.data_addr_start = (ul)&_data;
  440. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  441. initial_mm.rodata_addr_start = (ul)&_rodata;
  442. initial_mm.rodata_addr_end = (ul)&_erodata;
  443. initial_mm.bss_start = (uint64_t)&_bss;
  444. initial_mm.bss_end = (uint64_t)&_ebss;
  445. initial_mm.brk_start = memory_management_struct.start_brk;
  446. initial_mm.brk_end = current_pcb->addr_limit;
  447. initial_mm.stack_start = _stack_start;
  448. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  449. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  450. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  451. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  452. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  453. for (int i = 256; i < 512; ++i)
  454. {
  455. uint64_t *tmp = idle_pml4t_vaddr + i;
  456. if (*tmp == 0)
  457. {
  458. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  459. memset(pdpt, 0, PAGE_4K_SIZE);
  460. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  461. }
  462. }
  463. /*
  464. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  465. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  466. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  467. */
  468. // 初始化pid的写锁
  469. spin_init(&process_global_pid_write_lock);
  470. // 初始化进程的循环链表
  471. list_init(&initial_proc_union.pcb.list);
  472. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  473. initial_proc_union.pcb.state = PROC_RUNNING;
  474. initial_proc_union.pcb.preempt_count = 0;
  475. initial_proc_union.pcb.cpu_id = 0;
  476. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  477. current_pcb->virtual_runtime = (1UL << 60);
  478. }
  479. /**
  480. * @brief fork当前进程
  481. *
  482. * @param regs 新的寄存器值
  483. * @param clone_flags 克隆标志
  484. * @param stack_start 堆栈开始地址
  485. * @param stack_size 堆栈大小
  486. * @return unsigned long
  487. */
  488. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  489. {
  490. int retval = 0;
  491. struct process_control_block *tsk = NULL;
  492. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  493. // 为新的进程分配栈空间,并将pcb放置在底部
  494. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  495. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  496. if (tsk == NULL)
  497. {
  498. retval = -ENOMEM;
  499. return retval;
  500. }
  501. memset(tsk, 0, sizeof(struct process_control_block));
  502. // 将当前进程的pcb复制到新的pcb内
  503. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  504. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  505. // 将进程加入循环链表
  506. list_init(&tsk->list);
  507. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  508. tsk->priority = 2;
  509. tsk->preempt_count = 0;
  510. // 增加全局的pid并赋值给新进程的pid
  511. spin_lock(&process_global_pid_write_lock);
  512. tsk->pid = process_global_pid++;
  513. // 加入到进程链表中
  514. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  515. initial_proc_union.pcb.next_pcb = tsk;
  516. tsk->parent_pcb = current_pcb;
  517. spin_unlock(&process_global_pid_write_lock);
  518. tsk->cpu_id = proc_current_cpu_id;
  519. tsk->state = PROC_UNINTERRUPTIBLE;
  520. tsk->parent_pcb = current_pcb;
  521. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  522. list_init(&tsk->list);
  523. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  524. retval = -ENOMEM;
  525. // 拷贝标志位
  526. if (process_copy_flags(clone_flags, tsk))
  527. goto copy_flags_failed;
  528. // 拷贝内存空间分布结构体
  529. if (process_copy_mm(clone_flags, tsk))
  530. goto copy_mm_failed;
  531. // 拷贝文件
  532. if (process_copy_files(clone_flags, tsk))
  533. goto copy_files_failed;
  534. // 拷贝线程结构体
  535. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  536. goto copy_thread_failed;
  537. // 拷贝成功
  538. retval = tsk->pid;
  539. // 唤醒进程
  540. process_wakeup(tsk);
  541. return retval;
  542. copy_thread_failed:;
  543. // 回收线程
  544. process_exit_thread(tsk);
  545. copy_files_failed:;
  546. // 回收文件
  547. process_exit_files(tsk);
  548. copy_mm_failed:;
  549. // 回收内存空间分布结构体
  550. process_exit_mm(tsk);
  551. copy_flags_failed:;
  552. kfree(tsk);
  553. return retval;
  554. return 0;
  555. }
  556. /**
  557. * @brief 根据pid获取进程的pcb
  558. *
  559. * @param pid
  560. * @return struct process_control_block*
  561. */
  562. struct process_control_block *process_get_pcb(long pid)
  563. {
  564. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  565. // 使用蛮力法搜索指定pid的pcb
  566. // todo: 使用哈希表来管理pcb
  567. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  568. {
  569. if (pcb->pid == pid)
  570. return pcb;
  571. }
  572. return NULL;
  573. }
  574. /**
  575. * @brief 将进程加入到调度器的就绪队列中
  576. *
  577. * @param pcb 进程的pcb
  578. */
  579. void process_wakeup(struct process_control_block *pcb)
  580. {
  581. pcb->state = PROC_RUNNING;
  582. sched_cfs_enqueue(pcb);
  583. }
  584. /**
  585. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  586. *
  587. * @param pcb 进程的pcb
  588. */
  589. void process_wakeup_immediately(struct process_control_block *pcb)
  590. {
  591. pcb->state = PROC_RUNNING;
  592. sched_cfs_enqueue(pcb);
  593. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  594. current_pcb->flags |= PF_NEED_SCHED;
  595. }
  596. /**
  597. * @brief 拷贝当前进程的标志位
  598. *
  599. * @param clone_flags 克隆标志位
  600. * @param pcb 新的进程的pcb
  601. * @return uint64_t
  602. */
  603. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  604. {
  605. if (clone_flags & CLONE_VM)
  606. pcb->flags |= PF_VFORK;
  607. return 0;
  608. }
  609. /**
  610. * @brief 拷贝当前进程的文件描述符等信息
  611. *
  612. * @param clone_flags 克隆标志位
  613. * @param pcb 新的进程的pcb
  614. * @return uint64_t
  615. */
  616. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  617. {
  618. int retval = 0;
  619. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  620. // 文件描述符已经在复制pcb时被拷贝
  621. if (clone_flags & CLONE_FS)
  622. return retval;
  623. // 为新进程拷贝新的文件描述符
  624. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  625. {
  626. if (current_pcb->fds[i] == NULL)
  627. continue;
  628. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  629. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  630. }
  631. return retval;
  632. }
  633. /**
  634. * @brief 回收进程的所有文件描述符
  635. *
  636. * @param pcb 要被回收的进程的pcb
  637. * @return uint64_t
  638. */
  639. uint64_t process_exit_files(struct process_control_block *pcb)
  640. {
  641. // 不与父进程共享文件描述符
  642. if (!(pcb->flags & PF_VFORK))
  643. {
  644. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  645. {
  646. if (pcb->fds[i] == NULL)
  647. continue;
  648. kfree(pcb->fds[i]);
  649. }
  650. }
  651. // 清空当前进程的文件描述符列表
  652. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  653. }
  654. /**
  655. * @brief 拷贝当前进程的内存空间分布结构体信息
  656. *
  657. * @param clone_flags 克隆标志位
  658. * @param pcb 新的进程的pcb
  659. * @return uint64_t
  660. */
  661. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  662. {
  663. int retval = 0;
  664. // 与父进程共享内存空间
  665. if (clone_flags & CLONE_VM)
  666. {
  667. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  668. pcb->mm = current_pcb->mm;
  669. return retval;
  670. }
  671. // 分配新的内存空间分布结构体
  672. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  673. memset(new_mms, 0, sizeof(struct mm_struct));
  674. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  675. pcb->mm = new_mms;
  676. // 分配顶层页表, 并设置顶层页表的物理地址
  677. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  678. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  679. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  680. // 拷贝内核空间的页表指针
  681. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  682. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  683. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  684. // 迭代地拷贝用户空间
  685. for (int i = 0; i <= 255; ++i)
  686. {
  687. // 当前页表项为空
  688. if ((*(uint64_t *)(current_pgd + i)) == 0)
  689. continue;
  690. // 分配新的二级页表
  691. uint64_t *new_pdpt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  692. memset(new_pdpt, 0, PAGE_4K_SIZE);
  693. // 在新的一级页表中设置新的二级页表表项
  694. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  695. uint64_t *current_pdpt = (uint64_t *)phys_2_virt((*(uint64_t *)(current_pgd + i)) & (~0xfffUL));
  696. // kdebug("current_pdpt=%#018lx, current_pid=%d", current_pdpt, current_pcb->pid);
  697. for (int j = 0; j < 512; ++j)
  698. {
  699. if (*(current_pdpt + j) == 0)
  700. continue;
  701. // 分配新的三级页表
  702. uint64_t *new_pdt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  703. memset(new_pdt, 0, PAGE_4K_SIZE);
  704. // 在二级页表中填写新的三级页表
  705. // 在新的二级页表中设置三级页表的表项
  706. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(current_pdpt + j)) & 0xfffUL));
  707. uint64_t *current_pdt = (uint64_t *)phys_2_virt((*(current_pdpt + j)) & (~0xfffUL));
  708. // kdebug("current_pdt=%#018lx", current_pdt);
  709. // 循环拷贝三级页表
  710. for (int k = 0; k < 512; ++k)
  711. {
  712. if (*(current_pdt + k) == 0)
  713. continue;
  714. // 获取新的物理页
  715. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  716. memset((void *)phys_2_virt(pa), 0, PAGE_2M_SIZE);
  717. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pa, *(current_pdt + k) & 0x1ffUL));
  718. // 拷贝数据
  719. memcpy(phys_2_virt(pa), phys_2_virt((*(current_pdt + k)) & (~0x1ffUL)), PAGE_2M_SIZE);
  720. }
  721. }
  722. }
  723. return retval;
  724. }
  725. /**
  726. * @brief 释放进程的页表
  727. *
  728. * @param pcb 要被释放页表的进程
  729. * @return uint64_t
  730. */
  731. uint64_t process_exit_mm(struct process_control_block *pcb)
  732. {
  733. if (pcb->flags & CLONE_VM)
  734. return 0;
  735. if (pcb->mm == NULL)
  736. {
  737. kdebug("pcb->mm==NULL");
  738. return 0;
  739. }
  740. if (pcb->mm->pgd == NULL)
  741. {
  742. kdebug("pcb->mm->pgd==NULL");
  743. return 0;
  744. }
  745. // 获取顶层页表
  746. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  747. // 迭代地释放用户空间
  748. for (int i = 0; i <= 255; ++i)
  749. {
  750. // 当前页表项为空
  751. if ((current_pgd + i)->pml4t == 0)
  752. continue;
  753. // 二级页表entry
  754. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  755. // 遍历二级页表
  756. for (int j = 0; j < 512; ++j)
  757. {
  758. if ((current_pdpt + j)->pdpt == 0)
  759. continue;
  760. // 三级页表的entry
  761. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  762. // 释放三级页表的内存页
  763. for (int k = 0; k < 512; ++k)
  764. {
  765. if ((current_pdt + k)->pdt == 0)
  766. continue;
  767. // 存在4级页表
  768. if (unlikely(((current_pdt + k)->pdt & (1 << 7)) == 0))
  769. {
  770. // 存在4K页
  771. uint64_t *pt_ptr = (uint64_t *)phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL));
  772. uint64_t *pte_ptr = pt_ptr;
  773. // 循环处理4K页表, 直接清空
  774. // todo: 当支持使用slab分配4K内存作为进程的4K页之后,在这里需要释放这些4K对象
  775. for (int16_t g = 0; g < 512; ++g, ++pte_ptr)
  776. *pte_ptr = 0;
  777. // 4级页表已经空了,释放页表
  778. if (unlikely(mm_check_page_table(pt_ptr)) == 0)
  779. kfree(pt_ptr);
  780. }
  781. else
  782. {
  783. // 释放内存页
  784. if (mm_is_2M_page((current_pdt + k)->pdt & (~0x1fffUL))) // 校验是否为内存中的物理页
  785. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  786. }
  787. }
  788. // 释放三级页表
  789. kfree(current_pdt);
  790. }
  791. // 释放二级页表
  792. kfree(current_pdpt);
  793. }
  794. // 释放顶层页表
  795. kfree(current_pgd);
  796. // 释放内存空间分布结构体
  797. kfree(pcb->mm);
  798. return 0;
  799. }
  800. /**
  801. * @brief 拷贝当前进程的线程结构体
  802. *
  803. * @param clone_flags 克隆标志位
  804. * @param pcb 新的进程的pcb
  805. * @return uint64_t
  806. */
  807. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  808. {
  809. // 将线程结构体放置在pcb后方
  810. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  811. memset(thd, 0, sizeof(struct thread_struct));
  812. pcb->thread = thd;
  813. // 拷贝栈空间
  814. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  815. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  816. // 设置子进程的返回值为0
  817. child_regs->rax = 0;
  818. child_regs->rsp = stack_start;
  819. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  820. thd->rsp = (uint64_t)child_regs;
  821. thd->fs = current_pcb->thread->fs;
  822. thd->gs = current_pcb->thread->gs;
  823. // kdebug("pcb->flags=%ld", pcb->flags);
  824. // 根据是否为内核线程,设置进程的开始执行的地址
  825. if (pcb->flags & PF_KTHREAD)
  826. thd->rip = (uint64_t)kernel_thread_func;
  827. else
  828. thd->rip = (uint64_t)ret_from_system_call;
  829. // kdebug("new proc's ret addr = %#018lx\tthd->rip=%#018lx stack_start=%#018lx child_regs->rsp = %#018lx, new_rip=%#018lx)", child_regs->rbx, thd->rip, stack_start, child_regs->rsp, child_regs->rip);
  830. return 0;
  831. }
  832. /**
  833. * @brief todo: 回收线程结构体
  834. *
  835. * @param pcb
  836. */
  837. void process_exit_thread(struct process_control_block *pcb)
  838. {
  839. }