malloc.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. #include <libc/stdlib.h>
  2. #include <libsystem/syscall.h>
  3. #include <libc/stddef.h>
  4. #include <libc/unistd.h>
  5. #include <libc/errno.h>
  6. #include <libc/stdio.h>
  7. #define PAGE_4K_SHIFT 12
  8. #define PAGE_2M_SHIFT 21
  9. #define PAGE_1G_SHIFT 30
  10. #define PAGE_GDT_SHIFT 39
  11. // 不同大小的页的容量
  12. #define PAGE_4K_SIZE (1UL << PAGE_4K_SHIFT)
  13. #define PAGE_2M_SIZE (1UL << PAGE_2M_SHIFT)
  14. #define PAGE_1G_SIZE (1UL << PAGE_1G_SHIFT)
  15. // 屏蔽低于x的数值
  16. #define PAGE_4K_MASK (~(PAGE_4K_SIZE - 1))
  17. #define PAGE_2M_MASK (~(PAGE_2M_SIZE - 1))
  18. // 将addr按照x的上边界对齐
  19. #define PAGE_4K_ALIGN(addr) (((unsigned long)(addr) + PAGE_4K_SIZE - 1) & PAGE_4K_MASK)
  20. #define PAGE_2M_ALIGN(addr) (((unsigned long)(addr) + PAGE_2M_SIZE - 1) & PAGE_2M_MASK)
  21. /**
  22. * @brief 显式链表的结点
  23. *
  24. */
  25. typedef struct malloc_mem_chunk_t
  26. {
  27. uint64_t length; // 整个块所占用的内存区域的大小
  28. struct malloc_mem_chunk_t *prev; // 上一个结点的指针
  29. struct malloc_mem_chunk_t *next; // 下一个结点的指针
  30. } malloc_mem_chunk_t;
  31. static uint64_t brk_base_addr = 0; // 堆区域的内存基地址
  32. static uint64_t brk_max_addr = 0; // 堆区域的内存最大地址
  33. static uint64_t brk_managed_addr = 0; // 堆区域已经被管理的地址
  34. // 空闲链表
  35. // 按start_addr升序排序
  36. static malloc_mem_chunk_t *malloc_free_list = NULL;
  37. static malloc_mem_chunk_t *malloc_free_list_end = NULL; // 空闲链表的末尾结点
  38. static uint64_t count_last_free_size = 0; // 统计距离上一次回收内存,已经free了多少内存
  39. /**
  40. * @brief 将块插入空闲链表
  41. *
  42. * @param ck 待插入的块
  43. */
  44. static void malloc_insert_free_list(malloc_mem_chunk_t *ck);
  45. /**
  46. * @brief 当堆顶空闲空间大于2个页的空间的时候,释放1个页
  47. *
  48. */
  49. static void release_brk();
  50. /**
  51. * @brief 在链表中检索符合要求的空闲块(best fit)
  52. *
  53. * @param size 块的大小
  54. * @return malloc_mem_chunk_t*
  55. */
  56. static malloc_mem_chunk_t *malloc_query_free_chunk_bf(uint64_t size)
  57. {
  58. // 在满足best fit的前提下,尽可能的使分配的内存在低地址
  59. // 使得总的堆内存可以更快被释放
  60. if (malloc_free_list == NULL)
  61. {
  62. return NULL;
  63. }
  64. malloc_mem_chunk_t *ptr = malloc_free_list;
  65. malloc_mem_chunk_t *best = NULL;
  66. // printf("query size=%d", size);
  67. while (ptr != NULL)
  68. {
  69. // printf("ptr->length=%#010lx\n", ptr->length);
  70. if (ptr->length == size)
  71. {
  72. best = ptr;
  73. break;
  74. }
  75. if (ptr->length > size)
  76. {
  77. if (best == NULL)
  78. best = ptr;
  79. else if (best->length > ptr->length)
  80. best = ptr;
  81. }
  82. ptr = ptr->next;
  83. }
  84. return best;
  85. }
  86. /**
  87. * @brief 在链表中检索符合要求的空闲块(first fit)
  88. *
  89. * @param size
  90. * @return malloc_mem_chunk_t*
  91. */
  92. static malloc_mem_chunk_t *malloc_query_free_chunk_ff(uint64_t size)
  93. {
  94. if (malloc_free_list == NULL)
  95. return NULL;
  96. malloc_mem_chunk_t *ptr = malloc_free_list;
  97. while (ptr)
  98. {
  99. if (ptr->length >= size)
  100. {
  101. return ptr;
  102. }
  103. ptr = ptr->next;
  104. }
  105. return NULL;
  106. }
  107. /**
  108. * @brief 扩容malloc管理的内存区域
  109. *
  110. * @param size 扩大的内存大小
  111. */
  112. static int malloc_enlarge(int64_t size)
  113. {
  114. if (brk_base_addr == 0) // 第一次调用,需要初始化
  115. {
  116. brk_base_addr = brk(-1);
  117. // printf("brk_base_addr=%#018lx\n", brk_base_addr);
  118. brk_managed_addr = brk_base_addr;
  119. brk_max_addr = brk(-2);
  120. }
  121. int64_t free_space = brk_max_addr - brk_managed_addr;
  122. if (free_space < size) // 现有堆空间不足
  123. {
  124. if (sbrk(size - free_space) != (void *)(-1))
  125. brk_max_addr = brk((-2));
  126. else
  127. {
  128. put_string("malloc_enlarge(): no_mem\n", COLOR_YELLOW, COLOR_BLACK);
  129. return -ENOMEM;
  130. }
  131. }
  132. // 扩展管理的堆空间
  133. // 在新分配的内存的底部放置header
  134. // printf("managed addr = %#018lx\n", brk_managed_addr);
  135. malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)brk_managed_addr;
  136. new_ck->length = brk_max_addr - brk_managed_addr;
  137. // printf("new_ck->start_addr=%#018lx\tbrk_max_addr=%#018lx\tbrk_managed_addr=%#018lx\n", (uint64_t)new_ck, brk_max_addr, brk_managed_addr);
  138. new_ck->prev = NULL;
  139. new_ck->next = NULL;
  140. brk_managed_addr = brk_max_addr;
  141. malloc_insert_free_list(new_ck);
  142. return 0;
  143. }
  144. /**
  145. * @brief 合并空闲块
  146. *
  147. */
  148. static void malloc_merge_free_chunk()
  149. {
  150. if (malloc_free_list == NULL)
  151. return;
  152. malloc_mem_chunk_t *ptr = malloc_free_list->next;
  153. while (ptr != NULL)
  154. {
  155. // 内存块连续
  156. if (((uint64_t)(ptr->prev) + ptr->prev->length == (uint64_t)ptr))
  157. {
  158. // printf("merged %#018lx and %#018lx\n", (uint64_t)ptr, (uint64_t)(ptr->prev));
  159. // 将ptr与前面的空闲块合并
  160. ptr->prev->length += ptr->length;
  161. ptr->prev->next = ptr->next;
  162. if (ptr->next == NULL)
  163. malloc_free_list_end = ptr->prev;
  164. else
  165. ptr->next->prev = ptr->prev;
  166. // 由于内存组成结构的原因,不需要free掉header
  167. ptr = ptr->prev;
  168. }
  169. ptr = ptr->next;
  170. }
  171. }
  172. /**
  173. * @brief 将块插入空闲链表
  174. *
  175. * @param ck 待插入的块
  176. */
  177. static void malloc_insert_free_list(malloc_mem_chunk_t *ck)
  178. {
  179. if (malloc_free_list == NULL) // 空闲链表为空
  180. {
  181. malloc_free_list = ck;
  182. malloc_free_list_end = ck;
  183. ck->prev = ck->next = NULL;
  184. return;
  185. }
  186. else
  187. {
  188. malloc_mem_chunk_t *ptr = malloc_free_list;
  189. while (ptr != NULL)
  190. {
  191. if ((uint64_t)ptr < (uint64_t)ck)
  192. {
  193. if (ptr->next == NULL) // 当前是最后一个项
  194. {
  195. ptr->next = ck;
  196. ck->next = NULL;
  197. ck->prev = ptr;
  198. malloc_free_list_end = ck;
  199. break;
  200. }
  201. else if ((uint64_t)(ptr->next) > (uint64_t)ck)
  202. {
  203. ck->prev = ptr;
  204. ck->next = ptr->next;
  205. ptr->next = ck;
  206. ck->next->prev = ck;
  207. break;
  208. }
  209. }
  210. else // 在ptr之前插入
  211. {
  212. if (ptr->prev == NULL) // 是第一个项
  213. {
  214. malloc_free_list = ck;
  215. ck->prev = NULL;
  216. ck->next = ptr;
  217. ptr->prev = ck;
  218. break;
  219. }
  220. else
  221. {
  222. ck->prev = ptr->prev;
  223. ck->next = ptr;
  224. ck->prev->next = ck;
  225. ptr->prev = ck;
  226. break;
  227. }
  228. }
  229. ptr = ptr->next;
  230. }
  231. }
  232. }
  233. /**
  234. * @brief 获取一块堆内存
  235. *
  236. * @param size 内存大小
  237. * @return void* 内存空间的指针
  238. *
  239. * 分配内存的时候,结点的prev next指针所占用的空间被当做空闲空间分配出去
  240. */
  241. void *malloc(ssize_t size)
  242. {
  243. // 计算需要分配的块的大小
  244. if (size + sizeof(uint64_t) <= sizeof(malloc_mem_chunk_t))
  245. size = sizeof(malloc_mem_chunk_t);
  246. else
  247. size += sizeof(uint64_t);
  248. // 采用best fit
  249. malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
  250. if (ck == NULL) // 没有空闲块
  251. {
  252. // 尝试合并空闲块
  253. malloc_merge_free_chunk();
  254. ck = malloc_query_free_chunk_bf(size);
  255. // 找到了合适的块
  256. if (ck)
  257. goto found;
  258. // 找不到合适的块,扩容堆区域
  259. if (malloc_enlarge(size) == -ENOMEM)
  260. return (void *)-ENOMEM; // 内存不足
  261. malloc_merge_free_chunk(); // 扩容后运行合并,否则会导致碎片
  262. // 扩容后再次尝试获取
  263. ck = malloc_query_free_chunk_bf(size);
  264. }
  265. found:;
  266. // printf("ck = %#018lx\n", (uint64_t)ck);
  267. if (ck == NULL)
  268. return (void *)-ENOMEM;
  269. // 分配空闲块
  270. // 从空闲链表取出
  271. if (ck->prev == NULL) // 当前是链表的第一个块
  272. {
  273. malloc_free_list = ck->next;
  274. }
  275. else
  276. ck->prev->next = ck->next;
  277. if (ck->next != NULL) // 当前不是最后一个块
  278. ck->next->prev = ck->prev;
  279. else
  280. malloc_free_list_end = ck->prev;
  281. // 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
  282. if ((int64_t)(ck->length) - size > sizeof(malloc_mem_chunk_t))
  283. {
  284. malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)(((uint64_t)ck) + size);
  285. new_ck->length = ck->length - size;
  286. new_ck->prev = new_ck->next = NULL;
  287. // printf("new_ck=%#018lx, new_ck->length=%#010lx\n", (uint64_t)new_ck, new_ck->length);
  288. ck->length = size;
  289. malloc_insert_free_list(new_ck);
  290. }
  291. // 此时链表结点的指针的空间被分配出去
  292. return (void *)((uint64_t)ck + sizeof(uint64_t));
  293. }
  294. /**
  295. * @brief 当堆顶空闲空间大于2个页的空间的时候,释放1个页
  296. *
  297. */
  298. static void release_brk()
  299. {
  300. // 先检测最顶上的块
  301. // 由于块按照开始地址排列,因此找最后一个块
  302. if (malloc_free_list_end == NULL)
  303. {
  304. printf("release(): free list end is null. \n");
  305. return;
  306. }
  307. if ((uint64_t)malloc_free_list_end + malloc_free_list_end->length == brk_max_addr && (uint64_t)malloc_free_list_end <= brk_max_addr - (PAGE_2M_SIZE << 1))
  308. {
  309. int64_t delta = ((brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK) - PAGE_2M_SIZE;
  310. // printf("(brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK);
  311. // printf("PAGE_2M_SIZE=%#018lx\n", PAGE_2M_SIZE);
  312. // printf("tdfghgbdfggkmfn=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK - PAGE_2M_SIZE);
  313. // printf("delta=%#018lx\n ", delta);
  314. if (delta <= 0) // 不用释放内存
  315. return;
  316. sbrk(-delta);
  317. brk_max_addr = brk(-2);
  318. brk_managed_addr = brk_max_addr;
  319. malloc_free_list_end->length = brk_max_addr - (uint64_t)malloc_free_list_end;
  320. }
  321. }
  322. /**
  323. * @brief 释放一块堆内存
  324. *
  325. * @param ptr 堆内存的指针
  326. */
  327. void free(void *ptr)
  328. {
  329. // 找到结点(此时prev和next都处于未初始化的状态)
  330. malloc_mem_chunk_t *ck = (malloc_mem_chunk_t *)((uint64_t)ptr - sizeof(uint64_t));
  331. // printf("free(): addr = %#018lx\t len=%#018lx\n", (uint64_t)ck, ck->length);
  332. count_last_free_size += ck->length;
  333. malloc_insert_free_list(ck);
  334. if (count_last_free_size > PAGE_2M_SIZE)
  335. {
  336. count_last_free_size = 0;
  337. malloc_merge_free_chunk();
  338. release_brk();
  339. }
  340. }