process.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/elf.h>
  8. #include <common/kthread.h>
  9. #include <common/time.h>
  10. #include <common/sys/wait.h>
  11. #include <driver/video/video.h>
  12. #include <driver/usb/usb.h>
  13. #include <exception/gate.h>
  14. #include <filesystem/fat32/fat32.h>
  15. #include <filesystem/devfs/devfs.h>
  16. #include <filesystem/rootfs/rootfs.h>
  17. #include <mm/slab.h>
  18. #include <common/spinlock.h>
  19. #include <syscall/syscall.h>
  20. #include <syscall/syscall_num.h>
  21. #include <sched/sched.h>
  22. #include <common/unistd.h>
  23. #include <debug/traceback/traceback.h>
  24. #include <debug/bug.h>
  25. #include <driver/disk/ahci/ahci.h>
  26. #include <ktest/ktest.h>
  27. #include <mm/mmio.h>
  28. #include <common/lz4.h>
  29. // #pragma GCC push_options
  30. // #pragma GCC optimize("O0")
  31. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  32. long process_global_pid = 1; // 系统中最大的pid
  33. extern void system_call(void);
  34. extern void kernel_thread_func(void);
  35. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  36. extern struct mm_struct initial_mm;
  37. struct thread_struct initial_thread =
  38. {
  39. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  40. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  41. .fs = KERNEL_DS,
  42. .gs = KERNEL_DS,
  43. .cr2 = 0,
  44. .trap_num = 0,
  45. .err_code = 0};
  46. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  47. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  48. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  49. // 为每个核心初始化初始进程的tss
  50. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  51. /**
  52. * @brief 拷贝当前进程的标志位
  53. *
  54. * @param clone_flags 克隆标志位
  55. * @param pcb 新的进程的pcb
  56. * @return uint64_t
  57. */
  58. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  59. /**
  60. * @brief 拷贝当前进程的文件描述符等信息
  61. *
  62. * @param clone_flags 克隆标志位
  63. * @param pcb 新的进程的pcb
  64. * @return uint64_t
  65. */
  66. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  67. /**
  68. * @brief 回收进程的所有文件描述符
  69. *
  70. * @param pcb 要被回收的进程的pcb
  71. * @return uint64_t
  72. */
  73. uint64_t process_exit_files(struct process_control_block *pcb);
  74. /**
  75. * @brief 拷贝当前进程的内存空间分布结构体信息
  76. *
  77. * @param clone_flags 克隆标志位
  78. * @param pcb 新的进程的pcb
  79. * @return uint64_t
  80. */
  81. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  82. /**
  83. * @brief 释放进程的页表
  84. *
  85. * @param pcb 要被释放页表的进程
  86. * @return uint64_t
  87. */
  88. uint64_t process_exit_mm(struct process_control_block *pcb);
  89. /**
  90. * @brief 拷贝当前进程的线程结构体
  91. *
  92. * @param clone_flags 克隆标志位
  93. * @param pcb 新的进程的pcb
  94. * @return uint64_t
  95. */
  96. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  97. void process_exit_thread(struct process_control_block *pcb);
  98. /**
  99. * @brief 切换进程
  100. *
  101. * @param prev 上一个进程的pcb
  102. * @param next 将要切换到的进程的pcb
  103. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  104. * 这里切换fs和gs寄存器
  105. */
  106. #pragma GCC push_options
  107. #pragma GCC optimize("O0")
  108. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  109. {
  110. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  111. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  112. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  113. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  114. __asm__ __volatile__("movq %%fs, %0 \n\t"
  115. : "=a"(prev->thread->fs));
  116. __asm__ __volatile__("movq %%gs, %0 \n\t"
  117. : "=a"(prev->thread->gs));
  118. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  119. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  120. }
  121. #pragma GCC pop_options
  122. /**
  123. * @brief 打开要执行的程序文件
  124. *
  125. * @param path
  126. * @return struct vfs_file_t*
  127. */
  128. struct vfs_file_t *process_open_exec_file(char *path)
  129. {
  130. struct vfs_dir_entry_t *dentry = NULL;
  131. struct vfs_file_t *filp = NULL;
  132. dentry = vfs_path_walk(path, 0);
  133. if (dentry == NULL)
  134. return (void *)-ENOENT;
  135. if (dentry->dir_inode->attribute == VFS_IF_DIR)
  136. return (void *)-ENOTDIR;
  137. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  138. if (filp == NULL)
  139. return (void *)-ENOMEM;
  140. filp->position = 0;
  141. filp->mode = 0;
  142. filp->dEntry = dentry;
  143. filp->mode = ATTR_READ_ONLY;
  144. filp->file_ops = dentry->dir_inode->file_ops;
  145. return filp;
  146. }
  147. /**
  148. * @brief 加载elf格式的程序文件到内存中,并设置regs
  149. *
  150. * @param regs 寄存器
  151. * @param path 文件路径
  152. * @return int
  153. */
  154. static int process_load_elf_file(struct pt_regs *regs, char *path)
  155. {
  156. int retval = 0;
  157. struct vfs_file_t *filp = process_open_exec_file(path);
  158. if ((long)filp <= 0 && (long)filp >= -255)
  159. {
  160. // kdebug("(long)filp=%ld", (long)filp);
  161. return (unsigned long)filp;
  162. }
  163. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  164. memset(buf, 0, PAGE_4K_SIZE);
  165. uint64_t pos = 0;
  166. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  167. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  168. retval = 0;
  169. if (!elf_check(buf))
  170. {
  171. kerror("Not an ELF file: %s", path);
  172. retval = -ENOTSUP;
  173. goto load_elf_failed;
  174. }
  175. #if ARCH(X86_64)
  176. // 暂时只支持64位的文件
  177. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  178. {
  179. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  180. retval = -EUNSUPPORTED;
  181. goto load_elf_failed;
  182. }
  183. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  184. // 暂时只支持AMD64架构
  185. if (ehdr.e_machine != EM_AMD64)
  186. {
  187. kerror("e_machine=%d", ehdr.e_machine);
  188. retval = -EUNSUPPORTED;
  189. goto load_elf_failed;
  190. }
  191. #else
  192. #error Unsupported architecture!
  193. #endif
  194. if (ehdr.e_type != ET_EXEC)
  195. {
  196. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  197. retval = -EUNSUPPORTED;
  198. goto load_elf_failed;
  199. }
  200. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  201. regs->rip = ehdr.e_entry;
  202. current_pcb->mm->code_addr_start = ehdr.e_entry;
  203. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  204. // 将指针移动到program header处
  205. pos = ehdr.e_phoff;
  206. // 读取所有的phdr
  207. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  208. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  209. if ((unsigned long)filp <= 0)
  210. {
  211. kdebug("(unsigned long)filp=%d", (long)filp);
  212. retval = -ENOEXEC;
  213. goto load_elf_failed;
  214. }
  215. Elf64_Phdr *phdr = buf;
  216. // 将程序加载到内存中
  217. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  218. {
  219. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  220. // 不是可加载的段
  221. if (phdr->p_type != PT_LOAD)
  222. continue;
  223. int64_t remain_mem_size = phdr->p_memsz;
  224. int64_t remain_file_size = phdr->p_filesz;
  225. pos = phdr->p_offset;
  226. uint64_t virt_base = 0;
  227. uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
  228. if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
  229. virt_base = phdr->p_vaddr & PAGE_2M_MASK;
  230. else // 接下来只有4K页的映射
  231. virt_base = phdr->p_vaddr & PAGE_4K_MASK;
  232. beginning_offset = phdr->p_vaddr - virt_base;
  233. remain_mem_size += beginning_offset;
  234. while (remain_mem_size > 0)
  235. {
  236. // kdebug("loading...");
  237. int64_t map_size = 0;
  238. if (remain_mem_size >= PAGE_2M_SIZE)
  239. {
  240. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  241. struct vm_area_struct *vma = NULL;
  242. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  243. // 防止内存泄露
  244. if (ret == -EEXIST)
  245. free_pages(Phy_to_2M_Page(pa), 1);
  246. else
  247. mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
  248. // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  249. io_mfence();
  250. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  251. map_size = PAGE_2M_SIZE;
  252. }
  253. else
  254. {
  255. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  256. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  257. // 循环分配4K大小内存块
  258. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  259. {
  260. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  261. struct vm_area_struct *vma = NULL;
  262. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  263. // kdebug("virt_base=%#018lx", virt_base + off);
  264. if (val == -EEXIST)
  265. kfree(phys_2_virt(paddr));
  266. else
  267. mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
  268. // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
  269. io_mfence();
  270. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  271. }
  272. }
  273. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  274. int64_t val = 0;
  275. if (remain_file_size > 0)
  276. {
  277. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  278. val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos);
  279. }
  280. if (val < 0)
  281. goto load_elf_failed;
  282. remain_mem_size -= map_size;
  283. remain_file_size -= val;
  284. virt_base += map_size;
  285. }
  286. }
  287. // 分配2MB的栈内存空间
  288. regs->rsp = current_pcb->mm->stack_start;
  289. regs->rbp = current_pcb->mm->stack_start;
  290. {
  291. struct vm_area_struct *vma = NULL;
  292. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  293. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  294. if (val == -EEXIST)
  295. free_pages(Phy_to_2M_Page(pa), 1);
  296. else
  297. mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  298. }
  299. // 清空栈空间
  300. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  301. load_elf_failed:;
  302. if (buf != NULL)
  303. kfree(buf);
  304. return retval;
  305. }
  306. /**
  307. * @brief 使当前进程去执行新的代码
  308. *
  309. * @param regs 当前进程的寄存器
  310. * @param path 可执行程序的路径
  311. * @param argv 参数列表
  312. * @param envp 环境变量
  313. * @return ul 错误码
  314. */
  315. #pragma GCC push_options
  316. #pragma GCC optimize("O0")
  317. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  318. {
  319. // kdebug("do_execve is running...");
  320. // 当前进程正在与父进程共享地址空间,需要创建
  321. // 独立的地址空间才能使新程序正常运行
  322. if (current_pcb->flags & PF_VFORK)
  323. {
  324. kdebug("proc:%d creating new mem space", current_pcb->pid);
  325. // 分配新的内存空间分布结构体
  326. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  327. memset(new_mms, 0, sizeof(struct mm_struct));
  328. current_pcb->mm = new_mms;
  329. // 分配顶层页表, 并设置顶层页表的物理地址
  330. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  331. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  332. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  333. // 拷贝内核空间的页表指针
  334. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  335. }
  336. // 设置用户栈和用户堆的基地址
  337. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  338. const uint64_t brk_start_addr = 0x700000000000UL;
  339. process_switch_mm(current_pcb);
  340. // 为用户态程序设置地址边界
  341. if (!(current_pcb->flags & PF_KTHREAD))
  342. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  343. current_pcb->mm->code_addr_end = 0;
  344. current_pcb->mm->data_addr_start = 0;
  345. current_pcb->mm->data_addr_end = 0;
  346. current_pcb->mm->rodata_addr_start = 0;
  347. current_pcb->mm->rodata_addr_end = 0;
  348. current_pcb->mm->bss_start = 0;
  349. current_pcb->mm->bss_end = 0;
  350. current_pcb->mm->brk_start = brk_start_addr;
  351. current_pcb->mm->brk_end = brk_start_addr;
  352. current_pcb->mm->stack_start = stack_start_addr;
  353. // 关闭之前的文件描述符
  354. process_exit_files(current_pcb);
  355. // 清除进程的vfork标志位
  356. current_pcb->flags &= ~PF_VFORK;
  357. // 加载elf格式的可执行文件
  358. int tmp = process_load_elf_file(regs, path);
  359. if (tmp < 0)
  360. goto exec_failed;
  361. // 拷贝参数列表
  362. if (argv != NULL)
  363. {
  364. int argc = 0;
  365. // 目标程序的argv基地址指针,最大8个参数
  366. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  367. uint64_t str_addr = (uint64_t)dst_argv;
  368. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  369. {
  370. if (*argv[argc] == NULL)
  371. break;
  372. // 测量参数的长度(最大1023)
  373. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  374. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  375. str_addr -= argv_len;
  376. dst_argv[argc] = (char *)str_addr;
  377. // 字符串加上结尾字符
  378. ((char *)str_addr)[argv_len] = '\0';
  379. }
  380. // 重新设定栈基址,并预留空间防止越界
  381. stack_start_addr = str_addr - 8;
  382. current_pcb->mm->stack_start = stack_start_addr;
  383. regs->rsp = regs->rbp = stack_start_addr;
  384. // 传递参数
  385. regs->rdi = argc;
  386. regs->rsi = (uint64_t)dst_argv;
  387. }
  388. // kdebug("execve ok");
  389. regs->cs = USER_CS | 3;
  390. regs->ds = USER_DS | 3;
  391. regs->ss = USER_DS | 0x3;
  392. regs->rflags = 0x200246;
  393. regs->rax = 1;
  394. regs->es = 0;
  395. return 0;
  396. exec_failed:;
  397. process_do_exit(tmp);
  398. }
  399. #pragma GCC pop_options
  400. /**
  401. * @brief 内核init进程
  402. *
  403. * @param arg
  404. * @return ul 参数
  405. */
  406. #pragma GCC push_options
  407. #pragma GCC optimize("O0")
  408. ul initial_kernel_thread(ul arg)
  409. {
  410. // kinfo("initial proc running...\targ:%#018lx", arg);
  411. ahci_init();
  412. fat32_init();
  413. rootfs_umount();
  414. // 使用单独的内核线程来初始化usb驱动程序
  415. // 注释:由于目前usb驱动程序不完善,因此先将其注释掉
  416. // int usb_pid = kernel_thread(usb_init, 0, 0);
  417. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  418. // 对一些组件进行单元测试
  419. uint64_t tpid[] = {
  420. ktest_start(ktest_test_bitree, 0),
  421. ktest_start(ktest_test_kfifo, 0),
  422. ktest_start(ktest_test_mutex, 0),
  423. ktest_start(ktest_test_idr, 0),
  424. // usb_pid,
  425. };
  426. kinfo("Waiting test thread exit...");
  427. // 等待测试进程退出
  428. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  429. waitpid(tpid[i], NULL, NULL);
  430. kinfo("All test done.");
  431. // 准备切换到用户态
  432. struct pt_regs *regs;
  433. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  434. cli();
  435. current_pcb->thread->rip = (ul)ret_from_system_call;
  436. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  437. current_pcb->thread->fs = USER_DS | 0x3;
  438. barrier();
  439. current_pcb->thread->gs = USER_DS | 0x3;
  440. // 主动放弃内核线程身份
  441. current_pcb->flags &= (~PF_KTHREAD);
  442. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  443. regs = (struct pt_regs *)current_pcb->thread->rsp;
  444. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  445. current_pcb->flags = 0;
  446. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  447. // 加载用户态程序:shell.elf
  448. char init_path[] = "/shell.elf";
  449. uint64_t addr = (uint64_t)&init_path;
  450. __asm__ __volatile__("movq %1, %%rsp \n\t"
  451. "pushq %2 \n\t"
  452. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  453. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  454. : "memory");
  455. return 1;
  456. }
  457. #pragma GCC pop_options
  458. /**
  459. * @brief 当子进程退出后向父进程发送通知
  460. *
  461. */
  462. void process_exit_notify()
  463. {
  464. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  465. }
  466. /**
  467. * @brief 进程退出时执行的函数
  468. *
  469. * @param code 返回码
  470. * @return ul
  471. */
  472. ul process_do_exit(ul code)
  473. {
  474. // kinfo("process exiting..., code is %ld.", (long)code);
  475. cli();
  476. struct process_control_block *pcb = current_pcb;
  477. // 进程退出时释放资源
  478. process_exit_files(pcb);
  479. process_exit_thread(pcb);
  480. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  481. pcb->state = PROC_ZOMBIE;
  482. pcb->exit_code = code;
  483. sti();
  484. process_exit_notify();
  485. sched();
  486. while (1)
  487. pause();
  488. }
  489. /**
  490. * @brief 初始化内核进程
  491. *
  492. * @param fn 目标程序的地址
  493. * @param arg 向目标程序传入的参数
  494. * @param flags
  495. * @return int
  496. */
  497. pid_t kernel_thread(int (*fn)(void*), void* arg, unsigned long flags)
  498. {
  499. struct pt_regs regs;
  500. barrier();
  501. memset(&regs, 0, sizeof(regs));
  502. barrier();
  503. // 在rbx寄存器中保存进程的入口地址
  504. regs.rbx = (ul)fn;
  505. // 在rdx寄存器中保存传入的参数
  506. regs.rdx = (ul)arg;
  507. barrier();
  508. regs.ds = KERNEL_DS;
  509. barrier();
  510. regs.es = KERNEL_DS;
  511. barrier();
  512. regs.cs = KERNEL_CS;
  513. barrier();
  514. regs.ss = KERNEL_DS;
  515. barrier();
  516. // 置位中断使能标志位
  517. regs.rflags = (1 << 9);
  518. barrier();
  519. // rip寄存器指向内核线程的引导程序
  520. regs.rip = (ul)kernel_thread_func;
  521. barrier();
  522. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  523. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  524. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  525. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  526. }
  527. /**
  528. * @brief 初始化进程模块
  529. * ☆前置条件:已完成系统调用模块的初始化
  530. */
  531. void process_init()
  532. {
  533. kinfo("Initializing process...");
  534. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  535. /*
  536. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  537. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  538. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  539. */
  540. // 初始化pid的写锁
  541. spin_init(&process_global_pid_write_lock);
  542. // 初始化进程的循环链表
  543. list_init(&initial_proc_union.pcb.list);
  544. // 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
  545. current_pcb->virtual_runtime = 0;
  546. barrier();
  547. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  548. barrier();
  549. kthread_mechanism_init(); // 初始化kthread机制
  550. initial_proc_union.pcb.state = PROC_RUNNING;
  551. initial_proc_union.pcb.preempt_count = 0;
  552. initial_proc_union.pcb.cpu_id = 0;
  553. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  554. // 将IDLE进程的虚拟运行时间设置为一个很大的数值
  555. current_pcb->virtual_runtime = (1UL << 60);
  556. }
  557. /**
  558. * @brief fork当前进程
  559. *
  560. * @param regs 新的寄存器值
  561. * @param clone_flags 克隆标志
  562. * @param stack_start 堆栈开始地址
  563. * @param stack_size 堆栈大小
  564. * @return unsigned long
  565. */
  566. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  567. {
  568. int retval = 0;
  569. struct process_control_block *tsk = NULL;
  570. // 为新的进程分配栈空间,并将pcb放置在底部
  571. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  572. barrier();
  573. if (tsk == NULL)
  574. {
  575. retval = -ENOMEM;
  576. return retval;
  577. }
  578. barrier();
  579. memset(tsk, 0, sizeof(struct process_control_block));
  580. io_mfence();
  581. // 将当前进程的pcb复制到新的pcb内
  582. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  583. tsk->worker_private = NULL;
  584. io_mfence();
  585. // 初始化进程的循环链表结点
  586. list_init(&tsk->list);
  587. io_mfence();
  588. // 判断是否为内核态调用fork
  589. if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
  590. tsk->flags |= PF_KFORK;
  591. if (tsk->flags & PF_KTHREAD)
  592. {
  593. // 对于内核线程,设置其worker私有信息
  594. retval = kthread_set_worker_private(tsk);
  595. if (IS_ERR_VALUE(retval))
  596. goto copy_flags_failed;
  597. tsk->virtual_runtime = 0;
  598. }
  599. tsk->priority = 2;
  600. tsk->preempt_count = 0;
  601. // 增加全局的pid并赋值给新进程的pid
  602. spin_lock(&process_global_pid_write_lock);
  603. tsk->pid = process_global_pid++;
  604. barrier();
  605. // 加入到进程链表中
  606. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  607. barrier();
  608. initial_proc_union.pcb.next_pcb = tsk;
  609. barrier();
  610. tsk->parent_pcb = current_pcb;
  611. barrier();
  612. spin_unlock(&process_global_pid_write_lock);
  613. tsk->cpu_id = proc_current_cpu_id;
  614. tsk->state = PROC_UNINTERRUPTIBLE;
  615. tsk->parent_pcb = current_pcb;
  616. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  617. barrier();
  618. list_init(&tsk->list);
  619. retval = -ENOMEM;
  620. // 拷贝标志位
  621. if (process_copy_flags(clone_flags, tsk))
  622. goto copy_flags_failed;
  623. // 拷贝内存空间分布结构体
  624. if (process_copy_mm(clone_flags, tsk))
  625. goto copy_mm_failed;
  626. // 拷贝文件
  627. if (process_copy_files(clone_flags, tsk))
  628. goto copy_files_failed;
  629. // 拷贝线程结构体
  630. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  631. goto copy_thread_failed;
  632. // 拷贝成功
  633. retval = tsk->pid;
  634. tsk->flags &= ~PF_KFORK;
  635. // 唤醒进程
  636. process_wakeup(tsk);
  637. return retval;
  638. copy_thread_failed:;
  639. // 回收线程
  640. process_exit_thread(tsk);
  641. copy_files_failed:;
  642. // 回收文件
  643. process_exit_files(tsk);
  644. copy_mm_failed:;
  645. // 回收内存空间分布结构体
  646. process_exit_mm(tsk);
  647. copy_flags_failed:;
  648. kfree(tsk);
  649. return retval;
  650. return 0;
  651. }
  652. /**
  653. * @brief 根据pid获取进程的pcb
  654. *
  655. * @param pid
  656. * @return struct process_control_block*
  657. */
  658. struct process_control_block *process_get_pcb(long pid)
  659. {
  660. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  661. // 使用蛮力法搜索指定pid的pcb
  662. // todo: 使用哈希表来管理pcb
  663. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  664. {
  665. if (pcb->pid == pid)
  666. return pcb;
  667. }
  668. return NULL;
  669. }
  670. /**
  671. * @brief 将进程加入到调度器的就绪队列中
  672. *
  673. * @param pcb 进程的pcb
  674. */
  675. int process_wakeup(struct process_control_block *pcb)
  676. {
  677. BUG_ON(pcb == NULL);
  678. if (pcb == current_pcb || pcb == NULL)
  679. return -EINVAL;
  680. // 如果pcb正在调度队列中,则不重复加入调度队列
  681. if (pcb->state == PROC_RUNNING)
  682. return 0;
  683. pcb->state = PROC_RUNNING;
  684. sched_enqueue(pcb);
  685. return 0;
  686. }
  687. /**
  688. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  689. *
  690. * @param pcb 进程的pcb
  691. */
  692. int process_wakeup_immediately(struct process_control_block *pcb)
  693. {
  694. if (pcb->state == PROC_RUNNING)
  695. return 0;
  696. int retval = process_wakeup(pcb);
  697. if (retval != 0)
  698. return retval;
  699. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  700. current_pcb->flags |= PF_NEED_SCHED;
  701. }
  702. /**
  703. * @brief 拷贝当前进程的标志位
  704. *
  705. * @param clone_flags 克隆标志位
  706. * @param pcb 新的进程的pcb
  707. * @return uint64_t
  708. */
  709. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  710. {
  711. if (clone_flags & CLONE_VM)
  712. pcb->flags |= PF_VFORK;
  713. return 0;
  714. }
  715. /**
  716. * @brief 拷贝当前进程的文件描述符等信息
  717. *
  718. * @param clone_flags 克隆标志位
  719. * @param pcb 新的进程的pcb
  720. * @return uint64_t
  721. */
  722. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  723. {
  724. int retval = 0;
  725. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  726. // 文件描述符已经在复制pcb时被拷贝
  727. if (clone_flags & CLONE_FS)
  728. return retval;
  729. // 为新进程拷贝新的文件描述符
  730. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  731. {
  732. if (current_pcb->fds[i] == NULL)
  733. continue;
  734. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  735. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  736. }
  737. return retval;
  738. }
  739. /**
  740. * @brief 回收进程的所有文件描述符
  741. *
  742. * @param pcb 要被回收的进程的pcb
  743. * @return uint64_t
  744. */
  745. uint64_t process_exit_files(struct process_control_block *pcb)
  746. {
  747. // 不与父进程共享文件描述符
  748. if (!(pcb->flags & PF_VFORK))
  749. {
  750. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  751. {
  752. if (pcb->fds[i] == NULL)
  753. continue;
  754. kfree(pcb->fds[i]);
  755. }
  756. }
  757. // 清空当前进程的文件描述符列表
  758. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  759. }
  760. /**
  761. * @brief 拷贝当前进程的内存空间分布结构体信息
  762. *
  763. * @param clone_flags 克隆标志位
  764. * @param pcb 新的进程的pcb
  765. * @return uint64_t
  766. */
  767. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  768. {
  769. int retval = 0;
  770. // 与父进程共享内存空间
  771. if (clone_flags & CLONE_VM)
  772. {
  773. pcb->mm = current_pcb->mm;
  774. return retval;
  775. }
  776. // 分配新的内存空间分布结构体
  777. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  778. memset(new_mms, 0, sizeof(struct mm_struct));
  779. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  780. new_mms->vmas = NULL;
  781. pcb->mm = new_mms;
  782. // 分配顶层页表, 并设置顶层页表的物理地址
  783. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  784. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  785. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  786. // 拷贝内核空间的页表指针
  787. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  788. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  789. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  790. // 拷贝用户空间的vma
  791. struct vm_area_struct *vma = current_pcb->mm->vmas;
  792. while (vma != NULL)
  793. {
  794. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  795. {
  796. vma = vma->vm_next;
  797. continue;
  798. }
  799. int64_t vma_size = vma->vm_end - vma->vm_start;
  800. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  801. if (vma_size > PAGE_2M_SIZE / 2)
  802. {
  803. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  804. for (int i = 0; i < page_to_alloc; ++i)
  805. {
  806. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  807. struct vm_area_struct *new_vma = NULL;
  808. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  809. // 防止内存泄露
  810. if (unlikely(ret == -EEXIST))
  811. free_pages(Phy_to_2M_Page(pa), 1);
  812. else
  813. mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
  814. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  815. vma_size -= PAGE_2M_SIZE;
  816. }
  817. }
  818. else
  819. {
  820. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  821. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  822. struct vm_area_struct *new_vma = NULL;
  823. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  824. // 防止内存泄露
  825. if (unlikely(ret == -EEXIST))
  826. kfree((void *)va);
  827. else
  828. mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
  829. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  830. }
  831. vma = vma->vm_next;
  832. }
  833. return retval;
  834. }
  835. /**
  836. * @brief 释放进程的页表
  837. *
  838. * @param pcb 要被释放页表的进程
  839. * @return uint64_t
  840. */
  841. uint64_t process_exit_mm(struct process_control_block *pcb)
  842. {
  843. if (pcb->flags & CLONE_VM)
  844. return 0;
  845. if (pcb->mm == NULL)
  846. {
  847. kdebug("pcb->mm==NULL");
  848. return 0;
  849. }
  850. if (pcb->mm->pgd == NULL)
  851. {
  852. kdebug("pcb->mm->pgd==NULL");
  853. return 0;
  854. }
  855. // // 获取顶层页表
  856. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  857. // 循环释放VMA中的内存
  858. struct vm_area_struct *vma = pcb->mm->vmas;
  859. while (vma != NULL)
  860. {
  861. struct vm_area_struct *cur_vma = vma;
  862. vma = cur_vma->vm_next;
  863. uint64_t pa;
  864. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  865. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  866. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  867. // 释放内存
  868. switch (size)
  869. {
  870. case PAGE_4K_SIZE:
  871. kfree(phys_2_virt(pa));
  872. break;
  873. default:
  874. break;
  875. }
  876. vm_area_del(cur_vma);
  877. vm_area_free(cur_vma);
  878. }
  879. // 释放顶层页表
  880. kfree(current_pgd);
  881. if (unlikely(pcb->mm->vmas != NULL))
  882. {
  883. kwarn("pcb.mm.vmas!=NULL");
  884. }
  885. // 释放内存空间分布结构体
  886. kfree(pcb->mm);
  887. return 0;
  888. }
  889. /**
  890. * @brief 重写内核栈中的rbp地址
  891. *
  892. * @param new_regs 子进程的reg
  893. * @param new_pcb 子进程的pcb
  894. * @return int
  895. */
  896. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  897. {
  898. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  899. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  900. uint64_t *rbp = &new_regs->rbp;
  901. uint64_t *tmp = rbp;
  902. // 超出内核栈范围
  903. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  904. return 0;
  905. while (1)
  906. {
  907. // 计算delta
  908. uint64_t delta = old_top - *rbp;
  909. // 计算新的rbp值
  910. uint64_t newVal = new_top - delta;
  911. // 新的值不合法
  912. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  913. break;
  914. // 将新的值写入对应位置
  915. *rbp = newVal;
  916. // 跳转栈帧
  917. rbp = (uint64_t *)*rbp;
  918. }
  919. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  920. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  921. return 0;
  922. }
  923. /**
  924. * @brief 拷贝当前进程的线程结构体
  925. *
  926. * @param clone_flags 克隆标志位
  927. * @param pcb 新的进程的pcb
  928. * @return uint64_t
  929. */
  930. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  931. {
  932. // 将线程结构体放置在pcb后方
  933. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  934. memset(thd, 0, sizeof(struct thread_struct));
  935. pcb->thread = thd;
  936. struct pt_regs *child_regs = NULL;
  937. // 拷贝栈空间
  938. if (pcb->flags & PF_KFORK) // 内核态下的fork
  939. {
  940. // 内核态下则拷贝整个内核栈
  941. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  942. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  943. memcpy(child_regs, (void *)current_regs, size);
  944. barrier();
  945. // 然后重写新的栈中,每个栈帧的rbp值
  946. process_rewrite_rbp(child_regs, pcb);
  947. }
  948. else
  949. {
  950. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  951. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  952. barrier();
  953. child_regs->rsp = stack_start;
  954. }
  955. // 设置子进程的返回值为0
  956. child_regs->rax = 0;
  957. if (pcb->flags & PF_KFORK)
  958. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  959. else
  960. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  961. // 设置新的内核线程开始执行的时候的rsp
  962. thd->rsp = (uint64_t)child_regs;
  963. thd->fs = current_pcb->thread->fs;
  964. thd->gs = current_pcb->thread->gs;
  965. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  966. if (pcb->flags & PF_KFORK)
  967. thd->rip = (uint64_t)ret_from_system_call;
  968. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  969. thd->rip = (uint64_t)kernel_thread_func;
  970. else
  971. thd->rip = (uint64_t)ret_from_system_call;
  972. return 0;
  973. }
  974. /**
  975. * @brief todo: 回收线程结构体
  976. *
  977. * @param pcb
  978. */
  979. void process_exit_thread(struct process_control_block *pcb)
  980. {
  981. }
  982. /**
  983. * @brief 释放pcb
  984. *
  985. * @param pcb
  986. * @return int
  987. */
  988. int process_release_pcb(struct process_control_block *pcb)
  989. {
  990. kfree(pcb);
  991. return 0;
  992. }
  993. /**
  994. * @brief 申请可用的文件句柄
  995. *
  996. * @return int
  997. */
  998. int process_fd_alloc(struct vfs_file_t *file)
  999. {
  1000. int fd_num = -1;
  1001. struct vfs_file_t **f = current_pcb->fds;
  1002. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  1003. {
  1004. /* 找到指针数组中的空位 */
  1005. if (f[i] == NULL)
  1006. {
  1007. fd_num = i;
  1008. f[i] = file;
  1009. break;
  1010. }
  1011. }
  1012. return fd_num;
  1013. }