slab.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. #include "slab.h"
  2. #include <common/compiler.h>
  3. #pragma GCC push_options
  4. #pragma GCC optimize("O0")
  5. struct slab kmalloc_cache_group[16] =
  6. {
  7. {32, 0, 0, NULL, NULL, NULL, NULL},
  8. {64, 0, 0, NULL, NULL, NULL, NULL},
  9. {128, 0, 0, NULL, NULL, NULL, NULL},
  10. {256, 0, 0, NULL, NULL, NULL, NULL},
  11. {512, 0, 0, NULL, NULL, NULL, NULL},
  12. {1024, 0, 0, NULL, NULL, NULL, NULL}, // 1KB
  13. {2048, 0, 0, NULL, NULL, NULL, NULL},
  14. {4096, 0, 0, NULL, NULL, NULL, NULL}, // 4KB
  15. {8192, 0, 0, NULL, NULL, NULL, NULL},
  16. {16384, 0, 0, NULL, NULL, NULL, NULL},
  17. {32768, 0, 0, NULL, NULL, NULL, NULL},
  18. {65536, 0, 0, NULL, NULL, NULL, NULL},
  19. {131072, 0, 0, NULL, NULL, NULL, NULL}, // 128KB
  20. {262144, 0, 0, NULL, NULL, NULL, NULL},
  21. {524288, 0, 0, NULL, NULL, NULL, NULL},
  22. {1048576, 0, 0, NULL, NULL, NULL, NULL}, // 1MB
  23. };
  24. /**
  25. * @brief 创建一个内存池
  26. *
  27. * @param size 内存池容量大小
  28. * @param constructor 构造函数
  29. * @param destructor 析构函数
  30. * @param arg 参数
  31. * @return struct slab* 构建好的内存池对象
  32. */
  33. struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), void *(*destructor)(void *vaddr, ul arg), ul arg)
  34. {
  35. struct slab *slab_pool = (struct slab *)kmalloc(sizeof(struct slab), 0);
  36. // BUG
  37. if (slab_pool == NULL)
  38. {
  39. kBUG("slab_create()->kmalloc()->slab == NULL");
  40. return NULL;
  41. }
  42. memset(slab_pool, 0, sizeof(struct slab));
  43. slab_pool->size = SIZEOF_LONG_ALIGN(size);
  44. slab_pool->count_total_using = 0;
  45. slab_pool->count_total_free = 0;
  46. // 直接分配cache_pool_entry结构体,避免每次访问都要检测是否为NULL,提升效率
  47. slab_pool->cache_pool_entry = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
  48. // BUG
  49. if (slab_pool->cache_pool_entry == NULL)
  50. {
  51. kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
  52. kfree(slab_pool);
  53. return NULL;
  54. }
  55. memset(slab_pool->cache_pool_entry, 0, sizeof(struct slab_obj));
  56. // dma内存池设置为空
  57. slab_pool->cache_dma_pool_entry = NULL;
  58. // 设置构造及析构函数
  59. slab_pool->constructor = constructor;
  60. slab_pool->destructor = destructor;
  61. list_init(&slab_pool->cache_pool_entry->list);
  62. // 分配属于内存池的内存页
  63. slab_pool->cache_pool_entry->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
  64. // BUG
  65. if (slab_pool->cache_pool_entry->page == NULL)
  66. {
  67. kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
  68. kfree(slab_pool->cache_pool_entry);
  69. kfree(slab_pool);
  70. return NULL;
  71. }
  72. // page_init(slab_pool->cache_pool_entry->page, PAGE_KERNEL);
  73. slab_pool->cache_pool_entry->count_using = 0;
  74. slab_pool->cache_pool_entry->count_free = PAGE_2M_SIZE / slab_pool->size;
  75. slab_pool->count_total_free = slab_pool->cache_pool_entry->count_free;
  76. slab_pool->cache_pool_entry->vaddr = phys_2_virt(slab_pool->cache_pool_entry->page->addr_phys);
  77. // bitmap有多少有效位
  78. slab_pool->cache_pool_entry->bmp_count = slab_pool->cache_pool_entry->count_free;
  79. // 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
  80. slab_pool->cache_pool_entry->bmp_len = ((slab_pool->cache_pool_entry->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  81. // 初始化位图
  82. slab_pool->cache_pool_entry->bmp = (ul *)kmalloc(slab_pool->cache_pool_entry->bmp_len, 0);
  83. // BUG
  84. if (slab_pool->cache_pool_entry->bmp == NULL)
  85. {
  86. kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
  87. free_pages(slab_pool->cache_pool_entry->page, 1);
  88. kfree(slab_pool->cache_pool_entry);
  89. kfree(slab_pool);
  90. return NULL;
  91. }
  92. // 将位图清空
  93. memset(slab_pool->cache_pool_entry->bmp, 0, slab_pool->cache_pool_entry->bmp_len);
  94. return slab_pool;
  95. }
  96. /**
  97. * @brief 销毁内存池
  98. * 只有当slab是空的时候才能销毁
  99. * @param slab_pool 要销毁的内存池
  100. * @return ul
  101. *
  102. */
  103. ul slab_destroy(struct slab *slab_pool)
  104. {
  105. struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
  106. if (slab_pool->count_total_using)
  107. {
  108. kBUG("slab_cache->count_total_using != 0");
  109. return ESLAB_NOTNULL;
  110. }
  111. struct slab_obj *tmp_slab_obj = NULL;
  112. while (!list_empty(&slab_obj_ptr->list))
  113. {
  114. tmp_slab_obj = slab_obj_ptr;
  115. // 获取下一个slab_obj的起始地址
  116. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  117. list_del(&tmp_slab_obj->list);
  118. kfree(tmp_slab_obj->bmp);
  119. page_clean(tmp_slab_obj->page);
  120. free_pages(tmp_slab_obj->page, 1);
  121. kfree(tmp_slab_obj);
  122. }
  123. kfree(slab_obj_ptr->bmp);
  124. page_clean(slab_obj_ptr->page);
  125. free_pages(slab_obj_ptr->page, 1);
  126. kfree(slab_obj_ptr);
  127. kfree(slab_pool);
  128. return 0;
  129. }
  130. /**
  131. * @brief 分配SLAB内存池中的内存对象
  132. *
  133. * @param slab_pool slab内存池
  134. * @param arg 传递给内存对象构造函数的参数
  135. * @return void* 内存空间的虚拟地址
  136. */
  137. void *slab_malloc(struct slab *slab_pool, ul arg)
  138. {
  139. struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
  140. struct slab_obj *tmp_slab_obj = NULL;
  141. // slab内存池中已经没有空闲的内存对象,进行扩容
  142. if (slab_pool->count_total_free == 0)
  143. {
  144. tmp_slab_obj = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
  145. // BUG
  146. if (tmp_slab_obj == NULL)
  147. {
  148. kBUG("slab_malloc()->kmalloc()->slab->tmp_slab_obj == NULL");
  149. return NULL;
  150. }
  151. memset(tmp_slab_obj, 0, sizeof(struct slab_obj));
  152. list_init(&tmp_slab_obj->list);
  153. tmp_slab_obj->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
  154. // BUG
  155. if (tmp_slab_obj->page == NULL)
  156. {
  157. kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->page == NULL");
  158. kfree(tmp_slab_obj);
  159. return NULL;
  160. }
  161. tmp_slab_obj->count_using = 0;
  162. tmp_slab_obj->count_free = PAGE_2M_SIZE / slab_pool->size;
  163. tmp_slab_obj->vaddr = phys_2_virt(tmp_slab_obj->page->addr_phys);
  164. tmp_slab_obj->bmp_count = tmp_slab_obj->count_free;
  165. // 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
  166. tmp_slab_obj->bmp_len = ((tmp_slab_obj->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  167. tmp_slab_obj->bmp = (ul *)kmalloc(tmp_slab_obj->bmp_len, 0);
  168. // BUG
  169. if (tmp_slab_obj->bmp == NULL)
  170. {
  171. kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->bmp == NULL");
  172. free_pages(tmp_slab_obj->page, 1);
  173. kfree(tmp_slab_obj);
  174. return NULL;
  175. }
  176. memset(tmp_slab_obj->bmp, 0, tmp_slab_obj->bmp_len);
  177. list_add(&slab_pool->cache_pool_entry->list, &tmp_slab_obj->list);
  178. slab_pool->count_total_free += tmp_slab_obj->count_free;
  179. slab_obj_ptr = tmp_slab_obj;
  180. }
  181. // 扩容完毕或无需扩容,开始分配内存对象
  182. int tmp_md;
  183. do
  184. {
  185. if (slab_obj_ptr->count_free == 0)
  186. {
  187. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  188. continue;
  189. }
  190. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  191. {
  192. // 当前bmp对应的内存对象都已经被分配
  193. if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
  194. {
  195. i += 63;
  196. continue;
  197. }
  198. // 第i个内存对象是空闲的
  199. tmp_md = i % 64;
  200. if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << tmp_md)) == 0)
  201. {
  202. // 置位bmp
  203. *(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << tmp_md);
  204. // 更新当前slab对象的计数器
  205. ++(slab_obj_ptr->count_using);
  206. --(slab_obj_ptr->count_free);
  207. // 更新slab内存池的计数器
  208. ++(slab_pool->count_total_using);
  209. --(slab_pool->count_total_free);
  210. if (slab_pool->constructor != NULL)
  211. {
  212. // 返回内存对象指针(要求构造函数返回内存对象指针)
  213. return slab_pool->constructor((char *)slab_obj_ptr->vaddr + slab_pool->size * i, arg);
  214. }
  215. // 返回内存对象指针
  216. else
  217. return (void *)((char *)slab_obj_ptr->vaddr + slab_pool->size * i);
  218. }
  219. }
  220. } while (slab_obj_ptr != slab_pool->cache_pool_entry);
  221. // should not be here
  222. kBUG("slab_malloc() ERROR: can't malloc");
  223. // 释放内存
  224. if (tmp_slab_obj != NULL)
  225. {
  226. list_del(&tmp_slab_obj->list);
  227. kfree(tmp_slab_obj->bmp);
  228. page_clean(tmp_slab_obj->page);
  229. free_pages(tmp_slab_obj->page, 1);
  230. kfree(tmp_slab_obj);
  231. }
  232. return NULL;
  233. }
  234. /**
  235. * @brief 回收slab内存池中的对象
  236. *
  237. * @param slab_pool 对应的内存池
  238. * @param addr 内存对象的虚拟地址
  239. * @param arg 传递给虚构函数的参数
  240. * @return ul
  241. */
  242. ul slab_free(struct slab *slab_pool, void *addr, ul arg)
  243. {
  244. struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
  245. do
  246. {
  247. // 虚拟地址不在当前内存池对象的管理范围内
  248. if (!(slab_obj_ptr->vaddr <= addr && addr <= (slab_obj_ptr->vaddr + PAGE_2M_SIZE)))
  249. {
  250. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  251. }
  252. else
  253. {
  254. // 计算出给定内存对象是第几个
  255. int index = (addr - slab_obj_ptr->vaddr) / slab_pool->size;
  256. // 复位位图中对应的位
  257. *(slab_obj_ptr->bmp + (index >> 6)) ^= (1UL << index % 64);
  258. ++(slab_obj_ptr->count_free);
  259. --(slab_obj_ptr->count_using);
  260. ++(slab_pool->count_total_free);
  261. --(slab_pool->count_total_using);
  262. // 有对应的析构函数,调用析构函数
  263. if (slab_pool->destructor != NULL)
  264. slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
  265. // 当前内存对象池的正在使用的内存对象为0,且内存池的空闲对象大于当前对象池的2倍,则销毁当前对象池,以减轻系统内存压力
  266. if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free) && (slab_obj_ptr != slab_pool->cache_pool_entry))
  267. {
  268. list_del(&slab_obj_ptr->list);
  269. slab_pool->count_total_free -= slab_obj_ptr->count_free;
  270. kfree(slab_obj_ptr->bmp);
  271. page_clean(slab_obj_ptr->page);
  272. free_pages(slab_obj_ptr->page, 1);
  273. kfree(slab_obj_ptr);
  274. }
  275. }
  276. return 0;
  277. } while (slab_obj_ptr != slab_pool->cache_pool_entry);
  278. kwarn("slab_free(): address not in current slab");
  279. return ENOT_IN_SLAB;
  280. }
  281. /**
  282. * @brief 初始化内存池组
  283. * 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
  284. * @return ul
  285. */
  286. ul slab_init()
  287. {
  288. kinfo("Initializing SLAB...");
  289. // 将slab的内存池空间放置在mms的后方
  290. ul tmp_addr = memory_management_struct.end_of_struct;
  291. for (int i = 0; i < 16; ++i)
  292. {
  293. io_mfence();
  294. spin_init(&kmalloc_cache_group[i].lock);
  295. // 将slab内存池对象的空间放置在mms的后面,并且预留4个unsigned long 的空间以防止内存越界
  296. kmalloc_cache_group[i].cache_pool_entry = (struct slab_obj *)memory_management_struct.end_of_struct;
  297. memory_management_struct.end_of_struct += sizeof(struct slab_obj) + (sizeof(ul) << 2);
  298. list_init(&kmalloc_cache_group[i].cache_pool_entry->list);
  299. // 初始化内存池对象
  300. kmalloc_cache_group[i].cache_pool_entry->count_using = 0;
  301. kmalloc_cache_group[i].cache_pool_entry->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
  302. kmalloc_cache_group[i].cache_pool_entry->bmp_len = (((kmalloc_cache_group[i].cache_pool_entry->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
  303. kmalloc_cache_group[i].cache_pool_entry->bmp_count = kmalloc_cache_group[i].cache_pool_entry->count_free;
  304. // 在slab对象后方放置bmp
  305. kmalloc_cache_group[i].cache_pool_entry->bmp = (ul *)memory_management_struct.end_of_struct;
  306. // bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
  307. memory_management_struct.end_of_struct = (ul)(memory_management_struct.end_of_struct + kmalloc_cache_group[i].cache_pool_entry->bmp_len + (sizeof(ul) << 2)) & (~(sizeof(ul) - 1));
  308. io_mfence();
  309. // @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
  310. memset(kmalloc_cache_group[i].cache_pool_entry->bmp, 0xff, kmalloc_cache_group[i].cache_pool_entry->bmp_len);
  311. for (int j = 0; j < kmalloc_cache_group[i].cache_pool_entry->bmp_count; ++j)
  312. *(kmalloc_cache_group[i].cache_pool_entry->bmp + (j >> 6)) ^= 1UL << (j % 64);
  313. kmalloc_cache_group[i].count_total_using = 0;
  314. kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool_entry->count_free;
  315. io_mfence();
  316. }
  317. struct Page *page = NULL;
  318. // 将上面初始化内存池组时,所占用的内存页进行初始化
  319. ul tmp_page_mms_end = virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT;
  320. ul page_num = 0;
  321. for (int i = PAGE_2M_ALIGN(virt_2_phys(tmp_addr)) >> PAGE_2M_SHIFT; i <= tmp_page_mms_end; ++i)
  322. {
  323. page = memory_management_struct.pages_struct + i;
  324. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  325. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  326. ++page->zone->count_pages_using;
  327. io_mfence();
  328. --page->zone->count_pages_free;
  329. page_init(page, PAGE_KERNEL_INIT | PAGE_KERNEL | PAGE_PGT_MAPPED);
  330. }
  331. io_mfence();
  332. // 为slab内存池对象分配内存空间
  333. ul *virt = NULL;
  334. for (int i = 0; i < 16; ++i)
  335. {
  336. // 获取一个新的空页并添加到空页表,然后返回其虚拟地址
  337. virt = (ul *)((memory_management_struct.end_of_struct + PAGE_2M_SIZE * i + PAGE_2M_SIZE - 1) & PAGE_2M_MASK);
  338. page = Virt_To_2M_Page(virt);
  339. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  340. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  341. ++page->zone->count_pages_using;
  342. io_mfence(); // 该位置必须加一个mfence,否则O3优化运行时会报错
  343. --page->zone->count_pages_free;
  344. page_init(page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  345. kmalloc_cache_group[i].cache_pool_entry->page = page;
  346. kmalloc_cache_group[i].cache_pool_entry->vaddr = virt;
  347. }
  348. kinfo("SLAB initialized successfully!");
  349. return 0;
  350. }
  351. /**
  352. * @brief 在kmalloc中创建slab_obj的函数(与slab_malloc()中的类似)
  353. *
  354. * @param size
  355. * @return struct slab_obj* 创建好的slab_obj
  356. */
  357. struct slab_obj *kmalloc_create_slab_obj(ul size)
  358. {
  359. struct Page *page = alloc_pages(ZONE_NORMAL, 1, 0);
  360. // BUG
  361. if (page == NULL)
  362. {
  363. kBUG("kmalloc_create()->alloc_pages()=>page == NULL");
  364. return NULL;
  365. }
  366. page_init(page, PAGE_KERNEL);
  367. ul *vaddr = NULL;
  368. ul struct_size = 0;
  369. struct slab_obj *slab_obj_ptr;
  370. // 根据size大小,选择不同的分支来处理
  371. // 之所以选择512byte为分界点,是因为,此时bmp大小刚好为512byte。显而易见,选择过小的话会导致kmalloc函数与当前函数反复互相调用,最终导致栈溢出
  372. switch (size)
  373. {
  374. // ============ 对于size<=512byte的内存池对象,将slab_obj结构体和bmp放置在物理页的内部 ========
  375. // 由于这些对象的特征是,bmp占的空间大,而内存块的空间小,这样做的目的是避免再去申请一块内存来存储bmp,减少浪费。
  376. case 32:
  377. case 64:
  378. case 128:
  379. case 256:
  380. case 512:
  381. vaddr = phys_2_virt(page->addr_phys);
  382. // slab_obj结构体的大小 (本身的大小+bmp的大小)
  383. struct_size = sizeof(struct slab_obj) + PAGE_2M_SIZE / size / 8;
  384. // 将slab_obj放置到物理页的末尾
  385. slab_obj_ptr = (struct slab_obj *)((unsigned char *)vaddr + PAGE_2M_SIZE - struct_size);
  386. slab_obj_ptr->bmp = (void *)slab_obj_ptr + sizeof(struct slab_obj);
  387. slab_obj_ptr->count_free = (PAGE_2M_SIZE - struct_size) / size;
  388. slab_obj_ptr->count_using = 0;
  389. slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
  390. slab_obj_ptr->vaddr = vaddr;
  391. slab_obj_ptr->page = page;
  392. list_init(&slab_obj_ptr->list);
  393. slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  394. // @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
  395. memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
  396. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  397. *(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
  398. break;
  399. // ================= 较大的size时,slab_obj和bmp不再放置于当前物理页内部 ============
  400. // 因为在这种情况下,bmp很短,继续放置在当前物理页内部则会造成可分配的对象少,加剧了内存空间的浪费
  401. case 1024: // 1KB
  402. case 2048:
  403. case 4096: // 4KB
  404. case 8192:
  405. case 16384:
  406. case 32768:
  407. case 65536:
  408. case 131072: // 128KB
  409. case 262144:
  410. case 524288:
  411. case 1048576: // 1MB
  412. slab_obj_ptr = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
  413. slab_obj_ptr->count_free = PAGE_2M_SIZE / size;
  414. slab_obj_ptr->count_using = 0;
  415. slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
  416. slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  417. slab_obj_ptr->bmp = (ul *)kmalloc(slab_obj_ptr->bmp_len, 0);
  418. // @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
  419. memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
  420. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  421. *(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
  422. slab_obj_ptr->vaddr = phys_2_virt(page->addr_phys);
  423. slab_obj_ptr->page = page;
  424. list_init(&slab_obj_ptr->list);
  425. break;
  426. // size 错误
  427. default:
  428. kerror("kamlloc_create(): Wrong size%d", size);
  429. free_pages(page, 1);
  430. return NULL;
  431. break;
  432. }
  433. return slab_obj_ptr;
  434. }
  435. /**
  436. * @brief 通用内存分配函数
  437. *
  438. * @param size 要分配的内存大小
  439. * @param flags 内存的flag
  440. * @return void* 内核内存虚拟地址
  441. */
  442. void *kmalloc(unsigned long size, unsigned long flags)
  443. {
  444. if (size > 1048576)
  445. {
  446. kwarn("kmalloc(): Can't alloc such memory: %ld bytes, because it is too large.", size);
  447. return NULL;
  448. }
  449. int index;
  450. for (int i = 0; i < 16; ++i)
  451. {
  452. if (kmalloc_cache_group[i].size >= size)
  453. {
  454. index = i;
  455. break;
  456. }
  457. }
  458. // 对当前内存池加锁
  459. spin_lock(&kmalloc_cache_group[index].lock);
  460. struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool_entry;
  461. // 内存池没有可用的内存对象,需要进行扩容
  462. if (unlikely(kmalloc_cache_group[index].count_total_free == 0))
  463. {
  464. // 创建slab_obj
  465. slab_obj_ptr = kmalloc_create_slab_obj(kmalloc_cache_group[index].size);
  466. // BUG
  467. if (unlikely(slab_obj_ptr == NULL))
  468. {
  469. kBUG("kmalloc()->kmalloc_create_slab_obj()=>slab == NULL");
  470. goto failed;
  471. }
  472. kmalloc_cache_group[index].count_total_free += slab_obj_ptr->count_free;
  473. list_add(&kmalloc_cache_group[index].cache_pool_entry->list, &slab_obj_ptr->list);
  474. }
  475. else // 内存对象充足
  476. {
  477. do
  478. {
  479. // 跳转到下一个内存池对象
  480. if (slab_obj_ptr->count_free == 0)
  481. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  482. else
  483. break;
  484. } while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool_entry);
  485. }
  486. // 寻找一块可用的内存对象
  487. int md;
  488. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  489. {
  490. // 当前bmp全部被使用
  491. if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
  492. {
  493. i += 63;
  494. continue;
  495. }
  496. md = i % 64;
  497. // 找到相应的内存对象
  498. if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << md)) == 0)
  499. {
  500. *(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << md);
  501. ++(slab_obj_ptr->count_using);
  502. --(slab_obj_ptr->count_free);
  503. --kmalloc_cache_group[index].count_total_free;
  504. ++kmalloc_cache_group[index].count_total_using;
  505. // 放锁
  506. spin_unlock(&kmalloc_cache_group[index].lock);
  507. // 返回内存对象
  508. return (void *)((char *)slab_obj_ptr->vaddr + kmalloc_cache_group[index].size * i);
  509. }
  510. }
  511. failed:;
  512. spin_unlock(&kmalloc_cache_group[index].lock);
  513. kerror("kmalloc(): Cannot alloc more memory: %d bytes", size);
  514. return NULL;
  515. }
  516. /**
  517. * @brief 通用内存释放函数
  518. *
  519. * @param address 要释放的内存线性地址
  520. * @return unsigned long
  521. */
  522. unsigned long kfree(void *address)
  523. {
  524. if (unlikely(address == NULL))
  525. return 0;
  526. struct slab_obj *slab_obj_ptr = NULL;
  527. // 将线性地址按照2M物理页对齐, 获得所在物理页的起始线性地址
  528. void *page_base_addr = (void *)((ul)address & PAGE_2M_MASK);
  529. int index;
  530. for (int i = 0; i < 16; ++i)
  531. {
  532. slab_obj_ptr = kmalloc_cache_group[i].cache_pool_entry;
  533. do
  534. {
  535. // 不属于当前slab_obj的管理范围
  536. if (likely(slab_obj_ptr->vaddr != page_base_addr))
  537. {
  538. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  539. }
  540. else
  541. {
  542. // 对当前内存池加锁
  543. spin_lock(&kmalloc_cache_group[i].lock);
  544. // 计算地址属于哪一个内存对象
  545. index = (address - slab_obj_ptr->vaddr) / kmalloc_cache_group[i].size;
  546. // 复位bmp
  547. *(slab_obj_ptr->bmp + (index >> 6)) ^= 1UL << (index % 64);
  548. ++(slab_obj_ptr->count_free);
  549. --(slab_obj_ptr->count_using);
  550. ++kmalloc_cache_group[i].count_total_free;
  551. --kmalloc_cache_group[i].count_total_using;
  552. // 回收空闲的slab_obj
  553. // 条件:当前slab_obj_ptr的使用为0、总空闲内存对象>=当前slab_obj的总对象的2倍 且当前slab_pool不为起始slab_obj
  554. if ((slab_obj_ptr->count_using == 0) && (kmalloc_cache_group[i].count_total_free >= ((slab_obj_ptr->bmp_count) << 1)) && (kmalloc_cache_group[i].cache_pool_entry != slab_obj_ptr))
  555. {
  556. switch (kmalloc_cache_group[i].size)
  557. {
  558. case 32:
  559. case 64:
  560. case 128:
  561. case 256:
  562. case 512:
  563. // 在这种情况下,slab_obj是被安放在page内部的
  564. list_del(&slab_obj_ptr->list);
  565. kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
  566. page_clean(slab_obj_ptr->page);
  567. free_pages(slab_obj_ptr->page, 1);
  568. break;
  569. default:
  570. // 在这种情况下,slab_obj是被安放在额外获取的内存对象中的
  571. list_del(&slab_obj_ptr->list);
  572. kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
  573. kfree(slab_obj_ptr->bmp);
  574. page_clean(slab_obj_ptr->page);
  575. free_pages(slab_obj_ptr->page, 1);
  576. kfree(slab_obj_ptr);
  577. break;
  578. }
  579. }
  580. // 放锁
  581. spin_unlock(&kmalloc_cache_group[i].lock);
  582. return 0;
  583. }
  584. } while (slab_obj_ptr != kmalloc_cache_group[i].cache_pool_entry);
  585. }
  586. kBUG("kfree(): Can't free memory.");
  587. return ECANNOT_FREE_MEM;
  588. }
  589. #pragma GCC pop_options