sched.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. #include "sched.h"
  2. #include <common/kprint.h>
  3. #include <driver/video/video.h>
  4. #include <common/spinlock.h>
  5. #pragma GCC push_options
  6. #pragma GCC optimize("O0")
  7. struct sched_queue_t sched_cfs_ready_queue[MAX_CPU_NUM]; // 就绪队列
  8. /**
  9. * @brief 从就绪队列中取出PCB
  10. *
  11. * @return struct process_control_block*
  12. */
  13. struct process_control_block *sched_cfs_dequeue()
  14. {
  15. if (list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list))
  16. {
  17. // kdebug("list empty, count=%d", sched_cfs_ready_queue[proc_current_cpu_id].count);
  18. return &initial_proc_union.pcb;
  19. }
  20. struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
  21. list_del(&proc->list);
  22. --sched_cfs_ready_queue[proc_current_cpu_id].count;
  23. return proc;
  24. }
  25. /**
  26. * @brief 将PCB加入就绪队列
  27. *
  28. * @param pcb
  29. */
  30. void sched_cfs_enqueue(struct process_control_block *pcb)
  31. {
  32. if (pcb == initial_proc[proc_current_cpu_id])
  33. return;
  34. struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
  35. if ((list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list)) == 0)
  36. {
  37. while (proc->virtual_runtime < pcb->virtual_runtime)
  38. {
  39. proc = container_of(list_next(&proc->list), struct process_control_block, list);
  40. }
  41. }
  42. list_append(&proc->list, &pcb->list);
  43. ++sched_cfs_ready_queue[proc_current_cpu_id].count;
  44. }
  45. /**
  46. * @brief 调度函数
  47. *
  48. */
  49. void sched_cfs()
  50. {
  51. cli();
  52. current_pcb->flags &= ~PF_NEED_SCHED;
  53. struct process_control_block *proc = sched_cfs_dequeue();
  54. // kdebug("sched_cfs_ready_queue[proc_current_cpu_id].count = %d", sched_cfs_ready_queue[proc_current_cpu_id].count);
  55. if (current_pcb->virtual_runtime >= proc->virtual_runtime || current_pcb->state != PROC_RUNNING) // 当前进程运行时间大于了下一进程的运行时间,进行切换
  56. {
  57. if (current_pcb->state == PROC_RUNNING) // 本次切换由于时间片到期引发,则再次加入就绪队列,否则交由其它功能模块进行管理
  58. sched_cfs_enqueue(current_pcb);
  59. // kdebug("proc->pid=%d, count=%d", proc->pid, sched_cfs_ready_queue[proc_current_cpu_id].count);
  60. if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
  61. {
  62. switch (proc->priority)
  63. {
  64. case 0:
  65. case 1:
  66. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
  67. break;
  68. case 2:
  69. default:
  70. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
  71. break;
  72. }
  73. }
  74. // if (proc->pid == 0)
  75. // {
  76. // kdebug("switch to pid0, current pid%ld, vrt=%ld pid0 vrt=%ld", current_pcb->pid, current_pcb->virtual_runtime, proc->virtual_runtime);
  77. // if(current_pcb->state != PROC_RUNNING)
  78. // kdebug("current_pcb->state!=PROC_RUNNING");
  79. // }
  80. process_switch_mm(proc);
  81. switch_proc(current_pcb, proc);
  82. }
  83. else // 不进行切换
  84. {
  85. // kdebug("not switch.");
  86. sched_cfs_enqueue(proc);
  87. if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
  88. {
  89. switch (proc->priority)
  90. {
  91. case 0:
  92. case 1:
  93. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
  94. // sched_cfs_ready_queue.cpu_exec_proc_jiffies = 5;
  95. break;
  96. case 2:
  97. default:
  98. // sched_cfs_ready_queue.cpu_exec_proc_jiffies = 5;
  99. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
  100. break;
  101. }
  102. }
  103. }
  104. sti();
  105. }
  106. /**
  107. * @brief 当时钟中断到达时,更新时间片
  108. *
  109. */
  110. void sched_update_jiffies()
  111. {
  112. switch (current_pcb->priority)
  113. {
  114. case 0:
  115. case 1:
  116. --sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies;
  117. ++current_pcb->virtual_runtime;
  118. break;
  119. case 2:
  120. default:
  121. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies -= 2;
  122. current_pcb->virtual_runtime += 2;
  123. break;
  124. }
  125. // 时间片耗尽,标记可调度
  126. if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
  127. current_pcb->flags |= PF_NEED_SCHED;
  128. }
  129. /**
  130. * @brief 初始化进程调度器
  131. *
  132. */
  133. void sched_init()
  134. {
  135. memset(&sched_cfs_ready_queue, 0, sizeof(struct sched_queue_t) * MAX_CPU_NUM);
  136. for (int i = 0; i < MAX_CPU_NUM; ++i)
  137. {
  138. list_init(&sched_cfs_ready_queue[i].proc_queue.list);
  139. sched_cfs_ready_queue[i].count = 1; // 因为存在IDLE进程,因此为1
  140. sched_cfs_ready_queue[i].cpu_exec_proc_jiffies = 5;
  141. sched_cfs_ready_queue[i].proc_queue.virtual_runtime = 0x7fffffffffffffff;
  142. }
  143. }
  144. #pragma GCC pop_options