malloc.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. #include <libc/stdlib.h>
  2. #include <libsystem/syscall.h>
  3. #include <libc/stddef.h>
  4. #include <libc/unistd.h>
  5. #include <libc/errno.h>
  6. #include <libc/stdio.h>
  7. /**
  8. * @brief 显式链表的结点
  9. *
  10. */
  11. typedef struct malloc_mem_chunk_t
  12. {
  13. uint64_t length; // 整个块所占用的内存区域的大小
  14. struct malloc_mem_chunk_t *prev; // 上一个结点的指针
  15. struct malloc_mem_chunk_t *next; // 下一个结点的指针
  16. } malloc_mem_chunk_t;
  17. static uint64_t brk_base_addr = 0; // 堆区域的内存基地址
  18. static uint64_t brk_max_addr = 0; // 堆区域的内存最大地址
  19. static uint64_t brk_managed_addr = 0; // 堆区域已经被管理的地址
  20. // 空闲链表
  21. // 按start_addr升序排序
  22. static malloc_mem_chunk_t *malloc_free_list = NULL;
  23. /**
  24. * @brief 获取一块堆内存(不尝试扩大堆内存)
  25. *
  26. * @param size
  27. * @return void* 内存的地址指针,获取失败时返回-ENOMEM
  28. */
  29. static void *malloc_no_enlarge(ssize_t size);
  30. /**
  31. * @brief 将块插入空闲链表
  32. *
  33. * @param ck 待插入的块
  34. */
  35. static void malloc_insert_free_list(malloc_mem_chunk_t *ck);
  36. /**
  37. * @brief 在链表中检索符合要求的空闲块(best fit)
  38. *
  39. * @param size 块的大小
  40. * @return malloc_mem_chunk_t*
  41. */
  42. static malloc_mem_chunk_t *malloc_query_free_chunk_bf(uint64_t size)
  43. {
  44. // 在满足best fit的前提下,尽可能的使分配的内存在低地址
  45. // 使得总的堆内存可以更快被释放
  46. if (malloc_free_list == NULL)
  47. {
  48. printf("free list is none.\n");
  49. return NULL;
  50. }
  51. malloc_mem_chunk_t *ptr = malloc_free_list;
  52. malloc_mem_chunk_t *best = NULL;
  53. printf("query size=%d", size);
  54. while (ptr != NULL)
  55. {
  56. printf("ptr->length=%#010lx\n", ptr->length);
  57. if (ptr->length == size)
  58. {
  59. best = ptr;
  60. break;
  61. }
  62. if (ptr->length > size)
  63. {
  64. printf("676767\n");
  65. if (best == NULL)
  66. best = ptr;
  67. else if (best->length > ptr->length)
  68. best = ptr;
  69. printf("6rdf\n");
  70. }
  71. printf("ptr->next=%#018lx\n", ptr->next);
  72. ptr = ptr->next;
  73. }
  74. printf("return best=%#018lx\n", (uint64_t)best);
  75. return best;
  76. }
  77. /**
  78. * @brief 在链表中检索符合要求的空闲块(first fit)
  79. *
  80. * @param size
  81. * @return malloc_mem_chunk_t*
  82. */
  83. static malloc_mem_chunk_t *malloc_query_free_chunk_ff(uint64_t size)
  84. {
  85. if (malloc_free_list == NULL)
  86. return NULL;
  87. malloc_mem_chunk_t *ptr = malloc_free_list;
  88. while (ptr)
  89. {
  90. if (ptr->length >= size)
  91. {
  92. return ptr;
  93. }
  94. ptr = ptr->next;
  95. }
  96. return NULL;
  97. }
  98. /**
  99. * @brief 扩容malloc管理的内存区域
  100. *
  101. * @param size 扩大的内存大小
  102. */
  103. static int malloc_enlarge(int32_t size)
  104. {
  105. if (brk_base_addr == 0) // 第一次调用,需要初始化
  106. {
  107. brk_base_addr = brk(-1);
  108. printf("brk_base_addr=%#018lx\n", brk_base_addr);
  109. brk_managed_addr = brk_base_addr;
  110. brk_max_addr = brk(-2);
  111. }
  112. int64_t tmp = brk_managed_addr + size - brk_max_addr;
  113. if (tmp > 0) // 现有堆空间不足
  114. {
  115. if (sbrk(tmp) != (void *)(-1))
  116. brk_max_addr = brk((-2));
  117. else
  118. {
  119. put_string("malloc_enlarge(): no_mem\n", COLOR_YELLOW, COLOR_BLACK);
  120. return -ENOMEM;
  121. }
  122. }
  123. // 扩展管理的堆空间
  124. // 在新分配的内存的底部放置header
  125. malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)brk_managed_addr;
  126. new_ck->length = brk_max_addr - brk_managed_addr;
  127. printf("new_ck->start_addr=%#018lx\tbrk_max_addr=%#018lx\tbrk_managed_addr=%#018lx\n", (uint64_t)new_ck, brk_max_addr, brk_managed_addr);
  128. new_ck->prev = new_ck->next = NULL;
  129. brk_managed_addr = brk_max_addr;
  130. malloc_insert_free_list(new_ck);
  131. return 0;
  132. }
  133. /**
  134. * @brief 合并空闲块
  135. *
  136. */
  137. static void malloc_merge_free_chunk()
  138. {
  139. if (malloc_free_list == NULL)
  140. return;
  141. malloc_mem_chunk_t *ptr = malloc_free_list->next;
  142. while (ptr)
  143. {
  144. // 内存块连续
  145. if (((uint64_t)(ptr->prev) + ptr->prev->length == (uint64_t)ptr))
  146. {
  147. // 将ptr与前面的空闲块合并
  148. ptr->prev->length += ptr->length;
  149. ptr->prev->next = ptr->next;
  150. // 由于内存组成结构的原因,不需要free掉header
  151. ptr = ptr->prev;
  152. }
  153. ptr = ptr->next;
  154. }
  155. }
  156. /**
  157. * @brief 将块插入空闲链表
  158. *
  159. * @param ck 待插入的块
  160. */
  161. static void malloc_insert_free_list(malloc_mem_chunk_t *ck)
  162. {
  163. if (malloc_free_list == NULL) // 空闲链表为空
  164. {
  165. malloc_free_list = ck;
  166. ck->prev = ck->next = NULL;
  167. return;
  168. }
  169. else
  170. {
  171. uint64_t ck_end = (uint64_t)ck + ck->length;
  172. malloc_mem_chunk_t *ptr = malloc_free_list;
  173. while (ptr)
  174. {
  175. if ((uint64_t)ptr < (uint64_t)ck)
  176. {
  177. if (ptr->next == NULL) // 当前是最后一个项
  178. {
  179. ptr->next = ck;
  180. ck->next = NULL;
  181. ck->prev = ptr;
  182. break;
  183. }
  184. else if ((uint64_t)(ptr->next) > (uint64_t)ck)
  185. {
  186. ck->prev = ptr;
  187. ck->next = ptr->next;
  188. ck->prev->next = ck;
  189. ck->next->prev = ck;
  190. break;
  191. }
  192. }
  193. else // 在ptr之前插入
  194. {
  195. if (ptr->prev == NULL) // 是第一个项
  196. {
  197. malloc_free_list = ck;
  198. ck->prev = NULL;
  199. ck->next = ptr;
  200. ptr->prev = ck;
  201. break;
  202. }
  203. else
  204. {
  205. ck->prev = ptr->prev;
  206. ck->next = ptr;
  207. ck->prev->next = ck;
  208. ptr->prev = ck;
  209. break;
  210. }
  211. }
  212. ptr = ptr->next;
  213. }
  214. }
  215. }
  216. /**
  217. * @brief 获取一块堆内存(不尝试扩大堆内存)
  218. *
  219. * @param size
  220. * @return void* 内存的地址指针,获取失败时返回-ENOMEM
  221. */
  222. static void *malloc_no_enlarge(ssize_t size)
  223. {
  224. // 加上header的大小
  225. size += sizeof(malloc_mem_chunk_t);
  226. // 采用best fit
  227. malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
  228. if (ck == NULL) // 没有空闲块
  229. {
  230. // 尝试合并空闲块
  231. malloc_merge_free_chunk();
  232. ck = malloc_query_free_chunk_bf(size);
  233. // 找到了合适的块
  234. if (ck)
  235. goto found;
  236. else
  237. return -ENOMEM; // 内存不足
  238. }
  239. found:;
  240. // 分配空闲块
  241. // 从空闲链表取出
  242. if (ck->prev == NULL) // 当前是链表的第一个块
  243. {
  244. malloc_free_list = ck->next;
  245. }
  246. else
  247. ck->prev->next = ck->next;
  248. if (ck->next != NULL) // 当前不是最后一个块
  249. ck->next->prev = ck->prev;
  250. // 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
  251. if (ck->length - size > sizeof(malloc_mem_chunk_t))
  252. {
  253. printf("new_ck = %#018lx\n", ((uint64_t)ck) + size);
  254. malloc_mem_chunk_t *new_ck = ((uint64_t)ck) + size;
  255. new_ck->length = ck->length - size;
  256. new_ck->prev = new_ck->next = NULL;
  257. ck->length = size;
  258. malloc_insert_free_list(new_ck);
  259. }
  260. printf("12121212\n");
  261. return (void *)((uint64_t)ck+ sizeof(malloc_mem_chunk_t));
  262. }
  263. /**
  264. * @brief 获取一块堆内存
  265. *
  266. * @param size 内存大小
  267. * @return void* 内存空间的指针
  268. */
  269. void *malloc(ssize_t size)
  270. {
  271. // 加上header的大小
  272. size += sizeof(malloc_mem_chunk_t);
  273. // 采用best fit
  274. malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
  275. if (ck == NULL) // 没有空闲块
  276. {
  277. // 尝试合并空闲块
  278. printf("merge\n");
  279. malloc_merge_free_chunk();
  280. ck = malloc_query_free_chunk_bf(size);
  281. // 找到了合适的块
  282. if (ck)
  283. goto found;
  284. // 找不到合适的块,扩容堆区域
  285. printf("enlarge\n");
  286. if (malloc_enlarge(size) == -ENOMEM)
  287. return -ENOMEM; // 内存不足
  288. // 扩容后再次尝试获取
  289. printf("query\n");
  290. ck = malloc_query_free_chunk_bf(size);
  291. }
  292. found:;
  293. printf("ck = %#018lx\n", (uint64_t)ck);
  294. if (ck == NULL)
  295. return -ENOMEM;
  296. // 分配空闲块
  297. // 从空闲链表取出
  298. if (ck->prev == NULL) // 当前是链表的第一个块
  299. {
  300. malloc_free_list = ck->next;
  301. }
  302. else
  303. ck->prev->next = ck->next;
  304. if (ck->next != NULL) // 当前不是最后一个块
  305. ck->next->prev = ck->prev;
  306. // 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
  307. if (ck->length - size > sizeof(malloc_mem_chunk_t))
  308. {
  309. malloc_mem_chunk_t *new_ck = ((uint64_t)ck) + size;
  310. new_ck->length = ck->length - size;
  311. new_ck->prev = new_ck->next = NULL;
  312. printf("new_ck=%#018lx, new_ck->length=%#010lx\n", (uint64_t)new_ck, new_ck->length);
  313. ck->length = size;
  314. malloc_insert_free_list(new_ck);
  315. }
  316. printf("ck=%lld\n", (uint64_t)ck);
  317. return (void *)((uint64_t)ck + sizeof(malloc_mem_chunk_t));
  318. }
  319. /**
  320. * @brief 释放一块堆内存
  321. *
  322. * @param ptr 堆内存的指针
  323. */
  324. void free(void *ptr)
  325. {
  326. }