fs.rs 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007
  1. use alloc::string::ToString;
  2. use core::cmp::Ordering;
  3. use core::intrinsics::unlikely;
  4. use core::{any::Any, fmt::Debug};
  5. use hashbrown::HashMap;
  6. use log::error;
  7. use system_error::SystemError;
  8. use alloc::{
  9. string::String,
  10. sync::{Arc, Weak},
  11. vec::Vec,
  12. };
  13. use crate::driver::base::block::gendisk::GenDisk;
  14. use crate::driver::base::device::device_number::DeviceNumber;
  15. use crate::filesystem::page_cache::PageCache;
  16. use crate::filesystem::vfs::utils::DName;
  17. use crate::filesystem::vfs::{Magic, SpecialNodeData, SuperBlock};
  18. use crate::ipc::pipe::LockedPipeInode;
  19. use crate::mm::fault::{PageFaultHandler, PageFaultMessage};
  20. use crate::mm::VmFaultReason;
  21. use crate::{
  22. driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom},
  23. filesystem::vfs::{
  24. file::{FileMode, FilePrivateData},
  25. syscall::ModeType,
  26. vcore::generate_inode_id,
  27. FileSystem, FileType, IndexNode, InodeId, Metadata,
  28. },
  29. libs::{
  30. spinlock::{SpinLock, SpinLockGuard},
  31. vec_cursor::VecCursor,
  32. },
  33. time::PosixTimeSpec,
  34. };
  35. use super::entry::FATFile;
  36. use super::utils::{to_search_name, to_search_name_string};
  37. use super::{
  38. bpb::{BiosParameterBlock, FATType},
  39. entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
  40. utils::RESERVED_CLUSTERS,
  41. };
  42. const FAT_MAX_NAMELEN: u64 = 255;
  43. /// FAT32文件系统的最大的文件大小
  44. pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
  45. /// @brief 表示当前簇和上一个簇的关系的结构体
  46. /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
  47. #[allow(dead_code)]
  48. #[derive(Debug, Clone, Copy, Default)]
  49. pub struct Cluster {
  50. pub cluster_num: u64,
  51. pub parent_cluster: u64,
  52. }
  53. impl PartialOrd for Cluster {
  54. /// @brief 根据当前簇号比较大小
  55. fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
  56. return self.cluster_num.partial_cmp(&other.cluster_num);
  57. }
  58. }
  59. impl PartialEq for Cluster {
  60. /// @brief 根据当前簇号比较是否相等
  61. fn eq(&self, other: &Self) -> bool {
  62. self.cluster_num == other.cluster_num
  63. }
  64. }
  65. impl Eq for Cluster {}
  66. #[derive(Debug)]
  67. pub struct FATFileSystem {
  68. /// 当前文件系统所在的分区
  69. pub gendisk: Arc<GenDisk>,
  70. /// 当前文件系统的BOPB
  71. pub bpb: BiosParameterBlock,
  72. /// 当前文件系统的第一个数据扇区(相对分区开始位置)
  73. pub first_data_sector: u64,
  74. /// 文件系统信息结构体
  75. pub fs_info: Arc<LockedFATFsInfo>,
  76. /// 文件系统的根inode
  77. root_inode: Arc<LockedFATInode>,
  78. }
  79. /// FAT文件系统的Inode
  80. #[derive(Debug)]
  81. pub struct LockedFATInode(SpinLock<FATInode>);
  82. #[derive(Debug)]
  83. pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
  84. impl LockedFATFsInfo {
  85. #[inline]
  86. pub fn new(fs_info: FATFsInfo) -> Self {
  87. return Self(SpinLock::new(fs_info));
  88. }
  89. }
  90. #[derive(Debug)]
  91. pub struct FATInode {
  92. /// 指向父Inode的弱引用
  93. parent: Weak<LockedFATInode>,
  94. /// 指向自身的弱引用
  95. self_ref: Weak<LockedFATInode>,
  96. /// 子Inode的map. 该数据结构用作缓存区。其中,它的key表示inode的名称。
  97. /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
  98. children: HashMap<String, Arc<LockedFATInode>>,
  99. /// 当前inode的元数据
  100. metadata: Metadata,
  101. /// 指向inode所在的文件系统对象的指针
  102. fs: Weak<FATFileSystem>,
  103. /// 根据不同的Inode类型,创建不同的私有字段
  104. inode_type: FATDirEntry,
  105. /// 若该节点是特殊文件节点,该字段则为真正的文件节点
  106. special_node: Option<SpecialNodeData>,
  107. /// 目录名
  108. dname: DName,
  109. /// 页缓存
  110. page_cache: Option<Arc<PageCache>>,
  111. }
  112. impl FATInode {
  113. /// 将inode的元数据与磁盘同步
  114. pub fn synchronize_metadata(&mut self) {
  115. match &self.inode_type {
  116. FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
  117. self.metadata.size = f.size() as i64;
  118. }
  119. FATDirEntry::Dir(d) => {
  120. self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
  121. }
  122. FATDirEntry::UnInit => {
  123. error!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
  124. return;
  125. }
  126. };
  127. }
  128. /// 更新inode的元数据
  129. pub fn update_metadata(&mut self, size: Option<i64>) {
  130. if let Some(new_size) = size {
  131. self.metadata.size = new_size;
  132. }
  133. self.update_time();
  134. }
  135. /// 更新访问时间
  136. pub fn update_time(&mut self) {
  137. // log::warn!("update_time has not yet been implemented");
  138. }
  139. fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> {
  140. match &self.inode_type {
  141. FATDirEntry::Dir(d) => {
  142. let search_name = to_search_name(name);
  143. // 尝试在缓存区查找
  144. if let Some(entry) = self.children.get(&search_name) {
  145. return Ok(entry.clone());
  146. }
  147. // 在缓存区找不到
  148. // 在磁盘查找
  149. let fat_entry: FATDirEntry =
  150. d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
  151. let dname = DName::from(name);
  152. // 创建新的inode
  153. let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
  154. dname,
  155. self.fs.upgrade().unwrap(),
  156. self.self_ref.clone(),
  157. fat_entry,
  158. );
  159. // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
  160. self.children.insert(search_name, entry_inode.clone());
  161. return Ok(entry_inode);
  162. }
  163. FATDirEntry::UnInit => {
  164. panic!(
  165. "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
  166. self.fs
  167. )
  168. }
  169. _ => {
  170. return Err(SystemError::ENOTDIR);
  171. }
  172. }
  173. }
  174. }
  175. impl LockedFATInode {
  176. pub fn new(
  177. dname: DName,
  178. fs: Arc<FATFileSystem>,
  179. parent: Weak<LockedFATInode>,
  180. inode_type: FATDirEntry,
  181. ) -> Arc<LockedFATInode> {
  182. let file_type = if let FATDirEntry::Dir(_) = inode_type {
  183. FileType::Dir
  184. } else {
  185. FileType::File
  186. };
  187. let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
  188. parent,
  189. self_ref: Weak::default(),
  190. children: HashMap::new(),
  191. fs: Arc::downgrade(&fs),
  192. inode_type,
  193. metadata: Metadata {
  194. dev_id: 0,
  195. inode_id: generate_inode_id(),
  196. size: 0,
  197. blk_size: fs.bpb.bytes_per_sector as usize,
  198. blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
  199. fs.bpb.total_sectors_32 as usize
  200. } else {
  201. fs.bpb.total_sectors_16 as usize
  202. },
  203. atime: PosixTimeSpec::default(),
  204. mtime: PosixTimeSpec::default(),
  205. ctime: PosixTimeSpec::default(),
  206. btime: PosixTimeSpec::default(),
  207. file_type,
  208. mode: ModeType::from_bits_truncate(0o777),
  209. nlinks: 1,
  210. uid: 0,
  211. gid: 0,
  212. raw_dev: DeviceNumber::default(),
  213. },
  214. special_node: None,
  215. dname,
  216. page_cache: None,
  217. })));
  218. if !inode.0.lock().inode_type.is_dir() {
  219. let page_cache = PageCache::new(Some(Arc::downgrade(&inode) as Weak<dyn IndexNode>));
  220. inode.0.lock().page_cache = Some(page_cache);
  221. }
  222. inode.0.lock().self_ref = Arc::downgrade(&inode);
  223. inode.0.lock().synchronize_metadata();
  224. return inode;
  225. }
  226. #[inline(never)]
  227. fn rename_file_in_current_dir(
  228. &self,
  229. old_name: &str,
  230. new_name: &str,
  231. ) -> Result<(), SystemError> {
  232. let mut guard = self.0.lock();
  233. let old_inode: Arc<LockedFATInode> = guard.find(old_name)?;
  234. // 对目标inode上锁,以防更改
  235. let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
  236. let fs = old_inode_guard.fs.upgrade().unwrap();
  237. // 从缓存删除
  238. let old_dir = match &guard.inode_type {
  239. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  240. return Err(SystemError::ENOTDIR);
  241. }
  242. FATDirEntry::Dir(d) => d,
  243. FATDirEntry::UnInit => {
  244. error!("FATFS: param: Inode_type uninitialized.");
  245. return Err(SystemError::EROFS);
  246. }
  247. };
  248. // 检查文件是否存在
  249. // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?;
  250. old_dir.rename(fs, old_name, new_name)?;
  251. let _nod = guard.children.remove(&to_search_name(old_name));
  252. Ok(())
  253. }
  254. #[inline(never)]
  255. fn move_to_another_dir(
  256. &self,
  257. old_name: &str,
  258. new_name: &str,
  259. target: &Arc<dyn IndexNode>,
  260. ) -> Result<(), SystemError> {
  261. let mut old_guard = self.0.lock();
  262. let other: &LockedFATInode = target
  263. .downcast_ref::<LockedFATInode>()
  264. .ok_or(SystemError::EPERM)?;
  265. let new_guard = other.0.lock();
  266. let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?;
  267. // 对目标inode上锁,以防更改
  268. let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
  269. let fs = old_inode_guard.fs.upgrade().unwrap();
  270. let old_dir = match &old_guard.inode_type {
  271. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  272. return Err(SystemError::ENOTDIR);
  273. }
  274. FATDirEntry::Dir(d) => d,
  275. FATDirEntry::UnInit => {
  276. error!("FATFS: param: Inode_type uninitialized.");
  277. return Err(SystemError::EROFS);
  278. }
  279. };
  280. let new_dir = match &new_guard.inode_type {
  281. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  282. return Err(SystemError::ENOTDIR);
  283. }
  284. FATDirEntry::Dir(d) => d,
  285. FATDirEntry::UnInit => {
  286. error!("FATFA: param: Inode_type uninitialized.");
  287. return Err(SystemError::EROFS);
  288. }
  289. };
  290. // 检查文件是否存在
  291. old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?;
  292. old_dir.rename_across(fs, new_dir, old_name, new_name)?;
  293. // 从缓存删除
  294. let _nod = old_guard.children.remove(&to_search_name(old_name));
  295. Ok(())
  296. }
  297. }
  298. /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
  299. #[derive(Debug)]
  300. pub struct FATFsInfo {
  301. /// Lead Signature - must equal 0x41615252
  302. lead_sig: u32,
  303. /// Value must equal 0x61417272
  304. struc_sig: u32,
  305. /// 空闲簇数目
  306. free_count: u32,
  307. /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
  308. next_free: u32,
  309. /// 0xAA550000
  310. trail_sig: u32,
  311. /// Dirty flag to flush to disk
  312. dirty: bool,
  313. /// FsInfo Structure 在磁盘上的字节偏移量
  314. /// Not present for FAT12 and FAT16
  315. offset: Option<u64>,
  316. }
  317. impl FileSystem for FATFileSystem {
  318. fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
  319. return self.root_inode.clone();
  320. }
  321. fn info(&self) -> crate::filesystem::vfs::FsInfo {
  322. todo!()
  323. }
  324. /// @brief 本函数用于实现动态转换。
  325. /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
  326. fn as_any_ref(&self) -> &dyn Any {
  327. self
  328. }
  329. fn name(&self) -> &str {
  330. "fat"
  331. }
  332. fn super_block(&self) -> SuperBlock {
  333. SuperBlock::new(
  334. Magic::FAT_MAGIC,
  335. self.bpb.bytes_per_sector.into(),
  336. FAT_MAX_NAMELEN,
  337. )
  338. }
  339. unsafe fn fault(&self, pfm: &mut PageFaultMessage) -> VmFaultReason {
  340. PageFaultHandler::filemap_fault(pfm)
  341. }
  342. unsafe fn map_pages(
  343. &self,
  344. pfm: &mut PageFaultMessage,
  345. start_pgoff: usize,
  346. end_pgoff: usize,
  347. ) -> VmFaultReason {
  348. PageFaultHandler::filemap_map_pages(pfm, start_pgoff, end_pgoff)
  349. }
  350. }
  351. impl FATFileSystem {
  352. /// FAT12允许的最大簇号
  353. pub const FAT12_MAX_CLUSTER: u32 = 0xFF5;
  354. /// FAT16允许的最大簇号
  355. pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5;
  356. /// FAT32允许的最大簇号
  357. pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7;
  358. pub fn new(gendisk: Arc<GenDisk>) -> Result<Arc<FATFileSystem>, SystemError> {
  359. let bpb = BiosParameterBlock::new(&gendisk)?;
  360. // 从磁盘上读取FAT32文件系统的FsInfo结构体
  361. let fs_info: FATFsInfo = match bpb.fat_type {
  362. FATType::FAT32(bpb32) => {
  363. let fs_info_in_gendisk_bytes_offset =
  364. bpb32.fs_info as usize * bpb.bytes_per_sector as usize;
  365. FATFsInfo::new(
  366. &gendisk,
  367. fs_info_in_gendisk_bytes_offset,
  368. bpb.bytes_per_sector as usize,
  369. )?
  370. }
  371. _ => FATFsInfo::default(),
  372. };
  373. // 根目录项占用的扇区数(向上取整)
  374. let root_dir_sectors: u64 =
  375. (bpb.root_entries_cnt as u64 * 32).div_ceil(bpb.bytes_per_sector as u64);
  376. // FAT表大小(单位:扇区)
  377. let fat_size = if bpb.fat_size_16 != 0 {
  378. bpb.fat_size_16 as u64
  379. } else {
  380. match bpb.fat_type {
  381. FATType::FAT32(x) => x.fat_size_32 as u64,
  382. _ => {
  383. error!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
  384. return Err(SystemError::EINVAL);
  385. }
  386. }
  387. };
  388. let first_data_sector =
  389. bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
  390. // 创建文件系统的根节点
  391. let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
  392. parent: Weak::default(),
  393. self_ref: Weak::default(),
  394. children: HashMap::new(),
  395. fs: Weak::default(),
  396. inode_type: FATDirEntry::UnInit,
  397. metadata: Metadata {
  398. dev_id: 0,
  399. inode_id: generate_inode_id(),
  400. size: 0,
  401. blk_size: bpb.bytes_per_sector as usize,
  402. blocks: if let FATType::FAT32(_) = bpb.fat_type {
  403. bpb.total_sectors_32 as usize
  404. } else {
  405. bpb.total_sectors_16 as usize
  406. },
  407. atime: PosixTimeSpec::default(),
  408. mtime: PosixTimeSpec::default(),
  409. ctime: PosixTimeSpec::default(),
  410. btime: PosixTimeSpec::default(),
  411. file_type: FileType::Dir,
  412. mode: ModeType::from_bits_truncate(0o777),
  413. nlinks: 1,
  414. uid: 0,
  415. gid: 0,
  416. raw_dev: DeviceNumber::default(),
  417. },
  418. special_node: None,
  419. dname: DName::default(),
  420. page_cache: None,
  421. })));
  422. let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
  423. gendisk,
  424. bpb,
  425. first_data_sector,
  426. fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
  427. root_inode,
  428. });
  429. // 对root inode加锁,并继续完成初始化工作
  430. let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
  431. root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
  432. root_guard.parent = Arc::downgrade(&result.root_inode);
  433. root_guard.self_ref = Arc::downgrade(&result.root_inode);
  434. root_guard.fs = Arc::downgrade(&result);
  435. // 释放锁
  436. drop(root_guard);
  437. return Ok(result);
  438. }
  439. /// @brief 计算每个簇有多少个字节
  440. #[inline]
  441. pub fn bytes_per_cluster(&self) -> u64 {
  442. return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
  443. }
  444. /// @brief 读取当前簇在FAT表中存储的信息
  445. ///
  446. /// @param cluster 当前簇
  447. ///
  448. /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
  449. /// @return Err(SystemError) 错误码
  450. pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> {
  451. let current_cluster = cluster.cluster_num;
  452. if current_cluster < 2 {
  453. // 0号簇和1号簇是保留簇,不允许用户使用
  454. return Err(SystemError::EINVAL);
  455. }
  456. let fat_type: FATType = self.bpb.fat_type;
  457. // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
  458. let fat_start_sector = self.fat_start_sector();
  459. let bytes_per_sec = self.bpb.bytes_per_sector as u64;
  460. // cluster对应的FAT表项在分区内的字节偏移量
  461. let fat_bytes_offset =
  462. fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
  463. // FAT表项所在的分区内LBA地址
  464. let fat_ent_lba = fat_bytes_offset / LBA_SIZE as u64;
  465. // FAT表项在逻辑块内的字节偏移量
  466. let blk_offset = self.get_in_block_offset(fat_bytes_offset);
  467. let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
  468. self.gendisk.read_at(&mut v, fat_ent_lba as usize)?;
  469. let mut cursor = VecCursor::new(v);
  470. cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
  471. let res: FATEntry = match self.bpb.fat_type {
  472. FATType::FAT12(_) => {
  473. let mut entry = cursor.read_u16()?;
  474. // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
  475. if (current_cluster & 1) > 0 {
  476. entry >>= 4;
  477. } else {
  478. entry &= 0x0fff;
  479. }
  480. if entry == 0 {
  481. FATEntry::Unused
  482. } else if entry == 0x0ff7 {
  483. FATEntry::Bad
  484. } else if entry >= 0x0ff8 {
  485. FATEntry::EndOfChain
  486. } else {
  487. FATEntry::Next(Cluster {
  488. cluster_num: entry as u64,
  489. parent_cluster: current_cluster,
  490. })
  491. }
  492. }
  493. FATType::FAT16(_) => {
  494. let entry = cursor.read_u16()?;
  495. if entry == 0 {
  496. FATEntry::Unused
  497. } else if entry == 0xfff7 {
  498. FATEntry::Bad
  499. } else if entry >= 0xfff8 {
  500. FATEntry::EndOfChain
  501. } else {
  502. FATEntry::Next(Cluster {
  503. cluster_num: entry as u64,
  504. parent_cluster: current_cluster,
  505. })
  506. }
  507. }
  508. FATType::FAT32(_) => {
  509. let entry = cursor.read_u32()? & 0x0fffffff;
  510. match entry {
  511. _n if (0x0ffffff7..=0x0fffffff).contains(&current_cluster) => {
  512. // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
  513. error!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
  514. FATEntry::Bad
  515. }
  516. 0 => FATEntry::Unused,
  517. 0x0ffffff7 => FATEntry::Bad,
  518. 0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
  519. _n => FATEntry::Next(Cluster {
  520. cluster_num: entry as u64,
  521. parent_cluster: current_cluster,
  522. }),
  523. }
  524. }
  525. };
  526. return Ok(res);
  527. }
  528. /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
  529. ///
  530. /// @param cluster 当前簇
  531. ///
  532. /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
  533. /// @return Err(SystemError) 错误码
  534. pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> {
  535. let current_cluster = cluster.cluster_num;
  536. let fat_type: FATType = self.bpb.fat_type;
  537. // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
  538. let fat_start_sector = self.fat_start_sector();
  539. let bytes_per_sec = self.bpb.bytes_per_sector as u64;
  540. // cluster对应的FAT表项在分区内的字节偏移量
  541. let fat_bytes_offset =
  542. fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
  543. // FAT表项所在的分区内LBA地址
  544. let fat_ent_lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
  545. // FAT表项在逻辑块内的字节偏移量
  546. let blk_offset = self.get_in_block_offset(fat_bytes_offset);
  547. let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
  548. self.gendisk.read_at(&mut v, fat_ent_lba)?;
  549. let mut cursor = VecCursor::new(v);
  550. cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
  551. let res = match self.bpb.fat_type {
  552. FATType::FAT12(_) => {
  553. let mut entry = cursor.read_u16()?;
  554. entry = if (current_cluster & 0x0001) > 0 {
  555. entry >> 4
  556. } else {
  557. entry & 0x0fff
  558. };
  559. entry as u64
  560. }
  561. FATType::FAT16(_) => {
  562. let entry = (cursor.read_u16()?) as u64;
  563. entry
  564. }
  565. FATType::FAT32(_) => {
  566. let entry = cursor.read_u32()? & 0x0fff_ffff;
  567. entry as u64
  568. }
  569. };
  570. return Ok(res);
  571. }
  572. /// @brief 获取当前文件系统的root inode,在分区内的字节偏移量
  573. pub fn root_dir_bytes_offset(&self) -> u64 {
  574. match self.bpb.fat_type {
  575. FATType::FAT32(s) => {
  576. let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
  577. * (self.bpb.sector_per_cluster as u64)
  578. + self.first_data_sector;
  579. return (self.gendisk_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
  580. }
  581. _ => {
  582. let root_sec = (self.bpb.rsvd_sec_cnt as u64)
  583. + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
  584. return (self.gendisk_lba_from_offset(root_sec) * LBA_SIZE) as u64;
  585. }
  586. }
  587. }
  588. /// @brief 获取当前文件系统的根目录项区域的结束位置,在分区内的字节偏移量。
  589. /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
  590. pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
  591. match self.bpb.fat_type {
  592. FATType::FAT12(_) | FATType::FAT16(_) => {
  593. return Some(
  594. self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
  595. );
  596. }
  597. _ => {
  598. return None;
  599. }
  600. }
  601. }
  602. /// 获取簇在分区内的字节偏移量
  603. pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
  604. if cluster.cluster_num >= 2 {
  605. // 指定簇的第一个扇区号
  606. let first_sec_of_cluster = (cluster.cluster_num - 2)
  607. * (self.bpb.sector_per_cluster as u64)
  608. + self.first_data_sector;
  609. return first_sec_of_cluster * (self.bpb.bytes_per_sector as u64);
  610. } else {
  611. return 0;
  612. }
  613. }
  614. /// @brief 获取一个空闲簇
  615. ///
  616. /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
  617. ///
  618. /// @return Ok(Cluster) 新获取的空闲簇
  619. /// @return Err(SystemError) 错误码
  620. pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> {
  621. let end_cluster: Cluster = self.max_cluster_number();
  622. let start_cluster: Cluster = match self.bpb.fat_type {
  623. FATType::FAT32(_) => {
  624. let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff);
  625. if next_free < end_cluster.cluster_num {
  626. Cluster::new(next_free)
  627. } else {
  628. Cluster::new(RESERVED_CLUSTERS as u64)
  629. }
  630. }
  631. _ => Cluster::new(RESERVED_CLUSTERS as u64),
  632. };
  633. // 寻找一个空的簇
  634. let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
  635. Ok(c) => c,
  636. Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
  637. self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
  638. }
  639. Err(e) => return Err(e),
  640. };
  641. self.set_entry(free_cluster, FATEntry::EndOfChain)?;
  642. // 减少空闲簇计数
  643. self.fs_info.0.lock().update_free_count_delta(-1);
  644. // 更新搜索空闲簇的参考量
  645. self.fs_info
  646. .0
  647. .lock()
  648. .update_next_free((free_cluster.cluster_num + 1) as u32);
  649. // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
  650. if let Some(prev_cluster) = prev_cluster {
  651. // debug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
  652. self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
  653. }
  654. // 清空新获取的这个簇
  655. self.zero_cluster(free_cluster)?;
  656. return Ok(free_cluster);
  657. }
  658. /// @brief 释放簇链上的所有簇
  659. ///
  660. /// @param start_cluster 簇链的第一个簇
  661. pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> {
  662. let clusters: Vec<Cluster> = self.clusters(start_cluster);
  663. for c in clusters {
  664. self.deallocate_cluster(c)?;
  665. }
  666. return Ok(());
  667. }
  668. /// @brief 释放簇
  669. ///
  670. /// @param 要释放的簇
  671. pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
  672. let entry: FATEntry = self.get_fat_entry(cluster)?;
  673. // 如果不是坏簇
  674. if entry != FATEntry::Bad {
  675. self.set_entry(cluster, FATEntry::Unused)?;
  676. self.fs_info.0.lock().update_free_count_delta(1);
  677. // 安全选项:清空被释放的簇
  678. #[cfg(feature = "fatfs-secure")]
  679. self.zero_cluster(cluster)?;
  680. return Ok(());
  681. } else {
  682. // 不能释放坏簇
  683. error!("Bad clusters cannot be freed.");
  684. return Err(SystemError::EFAULT);
  685. }
  686. }
  687. /// @brief 获取文件系统的根目录项
  688. pub fn root_dir(&self) -> FATDir {
  689. match self.bpb.fat_type {
  690. FATType::FAT32(s) => {
  691. return FATDir {
  692. first_cluster: Cluster::new(s.root_cluster as u64),
  693. dir_name: String::from("/"),
  694. root_offset: None,
  695. short_dir_entry: None,
  696. loc: None,
  697. };
  698. }
  699. _ => FATDir {
  700. first_cluster: Cluster::new(0),
  701. dir_name: String::from("/"),
  702. root_offset: Some(self.root_dir_bytes_offset()),
  703. short_dir_entry: None,
  704. loc: None,
  705. },
  706. }
  707. }
  708. /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
  709. pub fn fat_start_sector(&self) -> u64 {
  710. let active_fat = self.active_fat();
  711. let fat_size = self.fat_size();
  712. return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
  713. }
  714. /// @brief 获取当前活动的FAT表
  715. pub fn active_fat(&self) -> u64 {
  716. if self.mirroring_enabled() {
  717. return 0;
  718. } else {
  719. match self.bpb.fat_type {
  720. FATType::FAT32(bpb32) => {
  721. return (bpb32.ext_flags & 0x0f) as u64;
  722. }
  723. _ => {
  724. return 0;
  725. }
  726. }
  727. }
  728. }
  729. /// @brief 获取当前文件系统的每个FAT表的大小
  730. pub fn fat_size(&self) -> u64 {
  731. if self.bpb.fat_size_16 != 0 {
  732. return self.bpb.fat_size_16 as u64;
  733. } else {
  734. match self.bpb.fat_type {
  735. FATType::FAT32(bpb32) => {
  736. return bpb32.fat_size_32 as u64;
  737. }
  738. _ => {
  739. panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
  740. }
  741. }
  742. }
  743. }
  744. /// @brief 判断当前文件系统是否启用了FAT表镜像
  745. pub fn mirroring_enabled(&self) -> bool {
  746. match self.bpb.fat_type {
  747. FATType::FAT32(bpb32) => {
  748. return (bpb32.ext_flags & 0x80) == 0;
  749. }
  750. _ => {
  751. return false;
  752. }
  753. }
  754. }
  755. /// 获取分区内的扇区偏移量
  756. #[inline]
  757. pub fn gendisk_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
  758. return (in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
  759. as usize;
  760. }
  761. /// @brief 获取每个扇区占用多少个LBA
  762. #[inline]
  763. pub fn lba_per_sector(&self) -> usize {
  764. return self.bpb.bytes_per_sector as usize / LBA_SIZE;
  765. }
  766. /// @brief 将分区内字节偏移量转换为扇区偏移量
  767. #[inline]
  768. pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
  769. return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
  770. }
  771. /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
  772. #[inline]
  773. pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
  774. return bytes_offset % LBA_SIZE as u64;
  775. }
  776. /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
  777. ///
  778. /// @param start_cluster 整个FAT链的起始簇号
  779. pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
  780. return self.cluster_iter(start_cluster).collect();
  781. }
  782. /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
  783. ///
  784. /// @param start_cluster 整个FAT链的起始簇号
  785. pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
  786. return self
  787. .cluster_iter(start_cluster)
  788. .fold(0, |size, _cluster| size + 1);
  789. }
  790. /// @brief 获取一个簇迭代器对象
  791. ///
  792. /// @param start_cluster 整个FAT链的起始簇号
  793. fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
  794. return ClusterIter {
  795. current_cluster: Some(start_cluster),
  796. fs: self,
  797. };
  798. }
  799. /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
  800. #[inline]
  801. pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
  802. return self.cluster_iter(start_cluster).nth(n);
  803. }
  804. /// @brief 获取整个簇链的最后一个簇
  805. #[inline]
  806. pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
  807. return self.cluster_iter(start_cluster).last();
  808. }
  809. /// @brief 判断FAT文件系统的shut bit是否正常。
  810. /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
  811. /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
  812. ///
  813. /// @return Ok(true) 正常
  814. /// @return Ok(false) 不正常
  815. /// @return Err(SystemError) 在判断时发生错误
  816. #[allow(dead_code)]
  817. pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> {
  818. match self.bpb.fat_type {
  819. FATType::FAT32(_) => {
  820. // 对于FAT32, error bit位于第一个扇区的第8字节。
  821. let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
  822. return Ok(bit > 0);
  823. }
  824. FATType::FAT16(_) => {
  825. let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
  826. return Ok(bit > 0);
  827. }
  828. _ => return Ok(true),
  829. }
  830. }
  831. /// @brief 判断FAT文件系统的hard error bit是否正常。
  832. /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
  833. /// 卷上的某些扇区可能已损坏。
  834. /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
  835. ///
  836. /// @return Ok(true) 正常
  837. /// @return Ok(false) 不正常
  838. /// @return Err(SystemError) 在判断时发生错误
  839. #[allow(dead_code)]
  840. pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> {
  841. match self.bpb.fat_type {
  842. FATType::FAT32(_) => {
  843. let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
  844. return Ok(bit > 0);
  845. }
  846. FATType::FAT16(_) => {
  847. let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
  848. return Ok(bit > 0);
  849. }
  850. _ => return Ok(true),
  851. }
  852. }
  853. /// @brief 设置文件系统的shut bit为正常状态
  854. /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
  855. ///
  856. /// @return Ok(()) 设置成功
  857. /// @return Err(SystemError) 在设置过程中,出现错误
  858. pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> {
  859. match self.bpb.fat_type {
  860. FATType::FAT32(_) => {
  861. let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
  862. self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
  863. return Ok(());
  864. }
  865. FATType::FAT16(_) => {
  866. let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
  867. self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
  868. return Ok(());
  869. }
  870. _ => return Ok(()),
  871. }
  872. }
  873. /// @brief 设置文件系统的hard error bit为正常状态
  874. /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
  875. ///
  876. /// @return Ok(()) 设置成功
  877. /// @return Err(SystemError) 在设置过程中,出现错误
  878. pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> {
  879. match self.bpb.fat_type {
  880. FATType::FAT32(_) => {
  881. let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
  882. self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
  883. return Ok(());
  884. }
  885. FATType::FAT16(_) => {
  886. let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
  887. self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
  888. return Ok(());
  889. }
  890. _ => return Ok(()),
  891. }
  892. }
  893. /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
  894. pub fn umount(&mut self) -> Result<(), SystemError> {
  895. self.fs_info.0.lock().flush(&self.gendisk)?;
  896. self.set_shut_bit_ok()?;
  897. self.set_hard_error_bit_ok()?;
  898. self.gendisk.sync()?;
  899. return Ok(());
  900. }
  901. /// @brief 获取文件系统的最大簇号
  902. pub fn max_cluster_number(&self) -> Cluster {
  903. match self.bpb.fat_type {
  904. FATType::FAT32(s) => {
  905. // FAT32
  906. // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
  907. let data_sec: u64 = self.bpb.total_sectors_32 as u64
  908. - (self.bpb.rsvd_sec_cnt as u64
  909. + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
  910. // 数据区的簇数量
  911. let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
  912. // 返回最大的簇号
  913. return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
  914. }
  915. _ => {
  916. // FAT12 / FAT16
  917. let root_dir_sectors: u64 = ((self.bpb.root_entries_cnt as u64) * 32)
  918. .div_ceil(self.bpb.bytes_per_sector as u64);
  919. // 数据区扇区数
  920. let data_sec: u64 = self.bpb.total_sectors_16 as u64
  921. - (self.bpb.rsvd_sec_cnt as u64
  922. + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
  923. + root_dir_sectors);
  924. let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
  925. return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
  926. }
  927. }
  928. }
  929. /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
  930. ///
  931. /// @param start_cluster 起始簇号
  932. /// @param end_cluster 终止簇号(不包含)
  933. ///
  934. /// @return Ok(Cluster) 寻找到的空闲簇
  935. /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
  936. pub fn get_free_cluster(
  937. &self,
  938. start_cluster: Cluster,
  939. end_cluster: Cluster,
  940. ) -> Result<Cluster, SystemError> {
  941. let max_cluster: Cluster = self.max_cluster_number();
  942. let mut cluster: u64 = start_cluster.cluster_num;
  943. let fat_type: FATType = self.bpb.fat_type;
  944. let fat_start_sector: u64 = self.fat_start_sector();
  945. let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
  946. match fat_type {
  947. FATType::FAT12(_) => {
  948. let part_bytes_offset: u64 =
  949. fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
  950. let in_block_offset = self.get_in_block_offset(part_bytes_offset);
  951. let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
  952. // 由于FAT12的FAT表不大于6K,因此直接读取6K
  953. let num_lba = (6 * 1024) / LBA_SIZE;
  954. let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE];
  955. self.gendisk.read_at(&mut v, lba)?;
  956. let mut cursor: VecCursor = VecCursor::new(v);
  957. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  958. let mut packed_val: u16 = cursor.read_u16()?;
  959. loop {
  960. let val = if (cluster & 0x1) > 0 {
  961. packed_val >> 4
  962. } else {
  963. packed_val & 0x0fff
  964. };
  965. if val == 0 {
  966. return Ok(Cluster::new(cluster));
  967. }
  968. cluster += 1;
  969. // 磁盘无剩余空间,或者簇号达到给定的最大值
  970. if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
  971. return Err(SystemError::ENOSPC);
  972. }
  973. packed_val = match cluster & 1 {
  974. 0 => cursor.read_u16()?,
  975. _ => {
  976. let next_byte = cursor.read_u8()? as u16;
  977. (packed_val >> 8) | (next_byte << 8)
  978. }
  979. };
  980. }
  981. }
  982. FATType::FAT16(_) => {
  983. // todo: 优化这里,减少读取磁盘的次数。
  984. while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
  985. let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
  986. Cluster::new(cluster),
  987. fat_start_sector,
  988. bytes_per_sec,
  989. );
  990. let in_block_offset = self.get_in_block_offset(part_bytes_offset);
  991. let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
  992. let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
  993. self.gendisk.read_at(&mut v, lba)?;
  994. let mut cursor: VecCursor = VecCursor::new(v);
  995. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  996. let val = cursor.read_u16()?;
  997. // 找到空闲簇
  998. if val == 0 {
  999. return Ok(Cluster::new(val as u64));
  1000. }
  1001. cluster += 1;
  1002. }
  1003. // 磁盘无剩余空间,或者簇号达到给定的最大值
  1004. return Err(SystemError::ENOSPC);
  1005. }
  1006. FATType::FAT32(_) => {
  1007. // todo: 优化这里,减少读取磁盘的次数。
  1008. while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
  1009. let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
  1010. Cluster::new(cluster),
  1011. fat_start_sector,
  1012. bytes_per_sec,
  1013. );
  1014. let in_block_offset = self.get_in_block_offset(part_bytes_offset);
  1015. let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
  1016. let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
  1017. self.gendisk.read_at(&mut v, lba)?;
  1018. let mut cursor: VecCursor = VecCursor::new(v);
  1019. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1020. let val = cursor.read_u32()? & 0x0fffffff;
  1021. if val == 0 {
  1022. return Ok(Cluster::new(cluster));
  1023. }
  1024. cluster += 1;
  1025. }
  1026. // 磁盘无剩余空间,或者簇号达到给定的最大值
  1027. return Err(SystemError::ENOSPC);
  1028. }
  1029. }
  1030. }
  1031. /// @brief 在FAT表中,设置指定的簇的信息。
  1032. ///
  1033. /// @param cluster 目标簇
  1034. /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
  1035. pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> {
  1036. // fat表项在分区上的字节偏移量
  1037. let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
  1038. cluster,
  1039. self.fat_start_sector(),
  1040. self.bpb.bytes_per_sector as u64,
  1041. );
  1042. match self.bpb.fat_type {
  1043. FATType::FAT12(_) => {
  1044. // 计算要写入的值
  1045. let raw_val: u16 = match fat_entry {
  1046. FATEntry::Unused => 0,
  1047. FATEntry::Bad => 0xff7,
  1048. FATEntry::EndOfChain => 0xfff,
  1049. FATEntry::Next(c) => c.cluster_num as u16,
  1050. };
  1051. let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
  1052. let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
  1053. let mut v: Vec<u8> = vec![0; LBA_SIZE];
  1054. self.gendisk.read_at(&mut v, lba)?;
  1055. let mut cursor: VecCursor = VecCursor::new(v);
  1056. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1057. let old_val: u16 = cursor.read_u16()?;
  1058. let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
  1059. (old_val & 0x000f) | (raw_val << 4)
  1060. } else {
  1061. (old_val & 0xf000) | raw_val
  1062. };
  1063. // 写回数据到磁盘上
  1064. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1065. cursor.write_u16(new_val)?;
  1066. self.gendisk.write_at(cursor.as_slice(), lba)?;
  1067. return Ok(());
  1068. }
  1069. FATType::FAT16(_) => {
  1070. // 计算要写入的值
  1071. let raw_val: u16 = match fat_entry {
  1072. FATEntry::Unused => 0,
  1073. FATEntry::Bad => 0xfff7,
  1074. FATEntry::EndOfChain => 0xfdff,
  1075. FATEntry::Next(c) => c.cluster_num as u16,
  1076. };
  1077. let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
  1078. let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
  1079. let mut v: Vec<u8> = vec![0; LBA_SIZE];
  1080. self.gendisk.read_at(&mut v, lba)?;
  1081. let mut cursor: VecCursor = VecCursor::new(v);
  1082. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1083. cursor.write_u16(raw_val)?;
  1084. self.gendisk.write_at(cursor.as_slice(), lba)?;
  1085. return Ok(());
  1086. }
  1087. FATType::FAT32(_) => {
  1088. let fat_size: u64 = self.fat_size();
  1089. let bound: u64 = if self.mirroring_enabled() {
  1090. 1
  1091. } else {
  1092. self.bpb.num_fats as u64
  1093. };
  1094. // debug!("set entry, bound={bound}, fat_size={fat_size}");
  1095. for i in 0..bound {
  1096. // 当前操作的FAT表在磁盘上的字节偏移量
  1097. let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
  1098. let in_block_offset: u64 = self.get_in_block_offset(f_offset);
  1099. let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(f_offset));
  1100. // debug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
  1101. let mut v: Vec<u8> = vec![0; LBA_SIZE];
  1102. self.gendisk.read_at(&mut v, lba)?;
  1103. let mut cursor: VecCursor = VecCursor::new(v);
  1104. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1105. // FAT32的高4位保留
  1106. let old_bits = cursor.read_u32()? & 0xf0000000;
  1107. if fat_entry == FATEntry::Unused
  1108. && cluster.cluster_num >= 0x0ffffff7
  1109. && cluster.cluster_num <= 0x0fffffff
  1110. {
  1111. error!(
  1112. "FAT32: Reserved Cluster {:?} cannot be marked as free",
  1113. cluster
  1114. );
  1115. return Err(SystemError::EPERM);
  1116. }
  1117. // 计算要写入的值
  1118. let mut raw_val: u32 = match fat_entry {
  1119. FATEntry::Unused => 0,
  1120. FATEntry::Bad => 0x0FFFFFF7,
  1121. FATEntry::EndOfChain => 0x0FFFFFFF,
  1122. FATEntry::Next(c) => c.cluster_num as u32,
  1123. };
  1124. // 恢复保留位
  1125. raw_val |= old_bits;
  1126. // debug!("sent entry, raw_val={raw_val}");
  1127. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1128. cursor.write_u32(raw_val)?;
  1129. self.gendisk.write_at(cursor.as_slice(), lba)?;
  1130. }
  1131. return Ok(());
  1132. }
  1133. }
  1134. }
  1135. /// # 清空指定的簇
  1136. ///
  1137. /// # 参数
  1138. /// - cluster 要被清空的簇
  1139. pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
  1140. // 准备数据,用于写入
  1141. let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
  1142. let offset = self.cluster_bytes_offset(cluster) as usize;
  1143. self.gendisk.write_at_bytes(&zeros, offset)?;
  1144. return Ok(());
  1145. }
  1146. }
  1147. impl Drop for FATFileSystem {
  1148. fn drop(&mut self) {
  1149. let r = self.umount();
  1150. if r.is_err() {
  1151. error!(
  1152. "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}",
  1153. r.as_ref().unwrap_err()
  1154. );
  1155. }
  1156. }
  1157. }
  1158. impl FATFsInfo {
  1159. const LEAD_SIG: u32 = 0x41615252;
  1160. const STRUC_SIG: u32 = 0x61417272;
  1161. const TRAIL_SIG: u32 = 0xAA550000;
  1162. #[allow(dead_code)]
  1163. const FS_INFO_SIZE: u64 = 512;
  1164. /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
  1165. ///
  1166. /// @param partition 磁盘分区
  1167. /// @param in_gendisk_fs_info_offset FSInfo扇区在gendisk内的字节偏移量(单位:字节)
  1168. /// @param bytes_per_sec 每扇区字节数
  1169. pub fn new(
  1170. gendisk: &Arc<GenDisk>,
  1171. in_gendisk_fs_info_offset: usize,
  1172. bytes_per_sec: usize,
  1173. ) -> Result<Self, SystemError> {
  1174. let mut v = vec![0; bytes_per_sec];
  1175. // 读取磁盘上的FsInfo扇区
  1176. gendisk.read_at_bytes(&mut v, in_gendisk_fs_info_offset)?;
  1177. let mut cursor = VecCursor::new(v);
  1178. let mut fsinfo = FATFsInfo {
  1179. lead_sig: cursor.read_u32()?,
  1180. ..Default::default()
  1181. };
  1182. cursor.seek(SeekFrom::SeekCurrent(480))?;
  1183. fsinfo.struc_sig = cursor.read_u32()?;
  1184. fsinfo.free_count = cursor.read_u32()?;
  1185. fsinfo.next_free = cursor.read_u32()?;
  1186. cursor.seek(SeekFrom::SeekCurrent(12))?;
  1187. fsinfo.trail_sig = cursor.read_u32()?;
  1188. fsinfo.dirty = false;
  1189. fsinfo.offset = Some(gendisk.disk_bytes_offset(in_gendisk_fs_info_offset) as u64);
  1190. if fsinfo.is_valid() {
  1191. return Ok(fsinfo);
  1192. } else {
  1193. error!("Error occurred while parsing FATFsInfo.");
  1194. return Err(SystemError::EINVAL);
  1195. }
  1196. }
  1197. /// @brief 判断是否为正确的FsInfo结构体
  1198. fn is_valid(&self) -> bool {
  1199. self.lead_sig == Self::LEAD_SIG
  1200. && self.struc_sig == Self::STRUC_SIG
  1201. && self.trail_sig == Self::TRAIL_SIG
  1202. }
  1203. /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
  1204. ///
  1205. /// @param 当前文件系统的最大簇号
  1206. #[allow(dead_code)]
  1207. pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
  1208. let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
  1209. // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
  1210. if self.free_count as u64 > count_clusters {
  1211. return None;
  1212. } else {
  1213. match self.free_count {
  1214. // free count字段不可用
  1215. 0xffffffff => return None,
  1216. // 返回FsInfo中存储的数据
  1217. n => return Some(n as u64),
  1218. }
  1219. }
  1220. }
  1221. /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
  1222. ///
  1223. /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
  1224. #[allow(dead_code)]
  1225. pub fn update_free_count_abs(&mut self, new_count: u32) {
  1226. self.free_count = new_count;
  1227. }
  1228. /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
  1229. ///
  1230. /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
  1231. #[allow(dead_code)]
  1232. pub fn update_free_count_delta(&mut self, delta: i32) {
  1233. self.free_count = (self.free_count as i32 + delta) as u32;
  1234. }
  1235. /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
  1236. ///
  1237. /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
  1238. pub fn update_next_free(&mut self, next_free: u32) {
  1239. // 这个值是参考量,不一定要准确,仅供加速查找
  1240. self.next_free = next_free;
  1241. }
  1242. /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
  1243. pub fn next_free(&self) -> Option<u64> {
  1244. match self.next_free {
  1245. 0xffffffff => return None,
  1246. 0 | 1 => return None,
  1247. n => return Some(n as u64),
  1248. };
  1249. }
  1250. /// @brief 把fs info刷入磁盘
  1251. ///
  1252. /// @param partition fs info所在的分区
  1253. pub fn flush(&self, gendisk: &Arc<GenDisk>) -> Result<(), SystemError> {
  1254. if let Some(off) = self.offset {
  1255. let in_block_offset = off % LBA_SIZE as u64;
  1256. let lba = off as usize / LBA_SIZE;
  1257. let mut v: Vec<u8> = vec![0; LBA_SIZE];
  1258. gendisk.read_at(&mut v, lba)?;
  1259. let mut cursor: VecCursor = VecCursor::new(v);
  1260. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1261. cursor.write_u32(self.lead_sig)?;
  1262. cursor.seek(SeekFrom::SeekCurrent(480))?;
  1263. cursor.write_u32(self.struc_sig)?;
  1264. cursor.write_u32(self.free_count)?;
  1265. cursor.write_u32(self.next_free)?;
  1266. cursor.seek(SeekFrom::SeekCurrent(12))?;
  1267. cursor.write_u32(self.trail_sig)?;
  1268. gendisk.write_at(cursor.as_slice(), lba)?;
  1269. }
  1270. return Ok(());
  1271. }
  1272. /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
  1273. ///
  1274. /// @param partition fs info所在的分区
  1275. #[allow(dead_code)]
  1276. pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> {
  1277. if let Some(off) = self.offset {
  1278. let in_block_offset = off % LBA_SIZE as u64;
  1279. let lba = off as usize / LBA_SIZE;
  1280. let mut v: Vec<u8> = vec![0; LBA_SIZE];
  1281. partition.disk().read_at(lba, 1, &mut v)?;
  1282. let mut cursor: VecCursor = VecCursor::new(v);
  1283. cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
  1284. self.lead_sig = cursor.read_u32()?;
  1285. cursor.seek(SeekFrom::SeekCurrent(480))?;
  1286. self.struc_sig = cursor.read_u32()?;
  1287. self.free_count = cursor.read_u32()?;
  1288. self.next_free = cursor.read_u32()?;
  1289. cursor.seek(SeekFrom::SeekCurrent(12))?;
  1290. self.trail_sig = cursor.read_u32()?;
  1291. }
  1292. return Ok(());
  1293. }
  1294. }
  1295. impl IndexNode for LockedFATInode {
  1296. fn read_sync(&self, offset: usize, buf: &mut [u8]) -> Result<usize, SystemError> {
  1297. let guard: SpinLockGuard<FATInode> = self.0.lock();
  1298. match &guard.inode_type {
  1299. FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
  1300. let r = f.read(&guard.fs.upgrade().unwrap(), buf, offset as u64);
  1301. return r;
  1302. }
  1303. FATDirEntry::Dir(_) => {
  1304. return Err(SystemError::EISDIR);
  1305. }
  1306. FATDirEntry::UnInit => {
  1307. error!("FATFS: param: Inode_type uninitialized.");
  1308. return Err(SystemError::EROFS);
  1309. }
  1310. }
  1311. }
  1312. fn write_sync(&self, offset: usize, buf: &[u8]) -> Result<usize, SystemError> {
  1313. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1314. let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
  1315. match &mut guard.inode_type {
  1316. FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
  1317. let r = f.write(fs, buf, offset as u64);
  1318. return r;
  1319. }
  1320. FATDirEntry::Dir(_) => {
  1321. return Err(SystemError::EISDIR);
  1322. }
  1323. FATDirEntry::UnInit => {
  1324. error!("FATFS: param: Inode_type uninitialized.");
  1325. return Err(SystemError::EROFS);
  1326. }
  1327. }
  1328. }
  1329. fn read_at(
  1330. &self,
  1331. offset: usize,
  1332. len: usize,
  1333. buf: &mut [u8],
  1334. data: SpinLockGuard<FilePrivateData>,
  1335. ) -> Result<usize, SystemError> {
  1336. let len = core::cmp::min(len, buf.len());
  1337. let buf = &mut buf[0..len];
  1338. let page_cache = self.0.lock().page_cache.clone();
  1339. if let Some(page_cache) = page_cache {
  1340. let r = page_cache.lock_irqsave().read(offset, &mut buf[0..len]);
  1341. return r;
  1342. } else {
  1343. return self.read_direct(offset, len, buf, data);
  1344. }
  1345. }
  1346. fn write_at(
  1347. &self,
  1348. offset: usize,
  1349. len: usize,
  1350. buf: &[u8],
  1351. data: SpinLockGuard<FilePrivateData>,
  1352. ) -> Result<usize, SystemError> {
  1353. let len = core::cmp::min(len, buf.len());
  1354. let buf = &buf[0..len];
  1355. let page_cache = self.0.lock().page_cache.clone();
  1356. if let Some(page_cache) = page_cache {
  1357. let write_len = page_cache.lock_irqsave().write(offset, buf)?;
  1358. let mut guard = self.0.lock();
  1359. let old_size = guard.metadata.size;
  1360. guard.update_metadata(Some(core::cmp::max(old_size, (offset + write_len) as i64)));
  1361. return Ok(write_len);
  1362. } else {
  1363. return self.write_direct(offset, len, buf, data);
  1364. }
  1365. }
  1366. fn read_direct(
  1367. &self,
  1368. offset: usize,
  1369. len: usize,
  1370. buf: &mut [u8],
  1371. _data: SpinLockGuard<FilePrivateData>,
  1372. ) -> Result<usize, SystemError> {
  1373. let len = core::cmp::min(len, buf.len());
  1374. let r = self.read_sync(offset, &mut buf[0..len]);
  1375. // self.0.lock_irqsave().update_metadata();
  1376. return r;
  1377. }
  1378. fn write_direct(
  1379. &self,
  1380. offset: usize,
  1381. len: usize,
  1382. buf: &[u8],
  1383. _data: SpinLockGuard<FilePrivateData>,
  1384. ) -> Result<usize, SystemError> {
  1385. let len = core::cmp::min(len, buf.len());
  1386. let r = self.write_sync(offset, &buf[0..len]);
  1387. // self.0.lock_irqsave().update_metadata();
  1388. return r;
  1389. }
  1390. fn create(
  1391. &self,
  1392. name: &str,
  1393. file_type: FileType,
  1394. _mode: ModeType,
  1395. ) -> Result<Arc<dyn IndexNode>, SystemError> {
  1396. // 由于FAT32不支持文件权限的功能,因此忽略mode参数
  1397. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1398. let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
  1399. match &mut guard.inode_type {
  1400. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  1401. return Err(SystemError::ENOTDIR);
  1402. }
  1403. FATDirEntry::Dir(d) => match file_type {
  1404. FileType::File => {
  1405. d.create_file(name, fs)?;
  1406. return Ok(guard.find(name)?);
  1407. }
  1408. FileType::Dir => {
  1409. d.create_dir(name, fs)?;
  1410. return Ok(guard.find(name)?);
  1411. }
  1412. FileType::SymLink => return Err(SystemError::ENOSYS),
  1413. _ => return Err(SystemError::EINVAL),
  1414. },
  1415. FATDirEntry::UnInit => {
  1416. error!("FATFS: param: Inode_type uninitialized.");
  1417. return Err(SystemError::EROFS);
  1418. }
  1419. }
  1420. }
  1421. fn fs(&self) -> Arc<dyn FileSystem> {
  1422. return self.0.lock().fs.upgrade().unwrap();
  1423. }
  1424. fn as_any_ref(&self) -> &dyn core::any::Any {
  1425. return self;
  1426. }
  1427. fn metadata(&self) -> Result<Metadata, SystemError> {
  1428. return Ok(self.0.lock().metadata.clone());
  1429. }
  1430. fn set_metadata(&self, metadata: &Metadata) -> Result<(), SystemError> {
  1431. let inode = &mut self.0.lock();
  1432. inode.metadata.atime = metadata.atime;
  1433. inode.metadata.mtime = metadata.mtime;
  1434. inode.metadata.ctime = metadata.ctime;
  1435. inode.metadata.mode = metadata.mode;
  1436. inode.metadata.uid = metadata.uid;
  1437. inode.metadata.gid = metadata.gid;
  1438. Ok(())
  1439. }
  1440. fn resize(&self, len: usize) -> Result<(), SystemError> {
  1441. if let Some(page_cache) = self.page_cache() {
  1442. return page_cache.lock_irqsave().resize(len);
  1443. }
  1444. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1445. let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
  1446. let old_size = guard.metadata.size as usize;
  1447. match &mut guard.inode_type {
  1448. FATDirEntry::File(file) | FATDirEntry::VolId(file) => {
  1449. // 如果新的长度和旧的长度相同,那么就直接返回
  1450. match len.cmp(&old_size) {
  1451. Ordering::Equal => {
  1452. return Ok(());
  1453. }
  1454. Ordering::Greater => {
  1455. // 如果新的长度比旧的长度大,那么就在文件末尾添加空白
  1456. let mut buf: Vec<u8> = Vec::new();
  1457. let mut remain_size = len - old_size;
  1458. let buf_size = remain_size;
  1459. // let buf_size = core::cmp::min(remain_size, 512 * 1024);
  1460. buf.resize(buf_size, 0);
  1461. let mut offset = old_size;
  1462. while remain_size > 0 {
  1463. let write_size = core::cmp::min(remain_size, buf_size);
  1464. file.write(fs, &buf[0..write_size], offset as u64)?;
  1465. remain_size -= write_size;
  1466. offset += write_size;
  1467. }
  1468. }
  1469. Ordering::Less => {
  1470. file.truncate(fs, len as u64)?;
  1471. }
  1472. }
  1473. guard.synchronize_metadata();
  1474. return Ok(());
  1475. }
  1476. FATDirEntry::Dir(_) => return Err(SystemError::ENOSYS),
  1477. FATDirEntry::UnInit => {
  1478. error!("FATFS: param: Inode_type uninitialized.");
  1479. return Err(SystemError::EROFS);
  1480. }
  1481. }
  1482. }
  1483. fn truncate(&self, len: usize) -> Result<(), SystemError> {
  1484. let guard: SpinLockGuard<FATInode> = self.0.lock();
  1485. let old_size = guard.metadata.size as usize;
  1486. if len < old_size {
  1487. drop(guard);
  1488. self.resize(len)
  1489. } else {
  1490. Ok(())
  1491. }
  1492. }
  1493. fn list(&self) -> Result<Vec<String>, SystemError> {
  1494. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1495. let fatent: &FATDirEntry = &guard.inode_type;
  1496. match fatent {
  1497. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  1498. return Err(SystemError::ENOTDIR);
  1499. }
  1500. FATDirEntry::Dir(dir) => {
  1501. // 获取当前目录下的所有目录项
  1502. let mut ret: Vec<String> = Vec::new();
  1503. let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
  1504. for ent in dir_iter {
  1505. ret.push(ent.name());
  1506. // ====== 生成inode缓存
  1507. let search_name = to_search_name_string(ent.name());
  1508. // debug!("name={name}");
  1509. if !guard.children.contains_key(&search_name)
  1510. && search_name != "."
  1511. && search_name != ".."
  1512. {
  1513. let name = DName::from(ent.name());
  1514. // 创建新的inode
  1515. let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
  1516. name.clone(),
  1517. guard.fs.upgrade().unwrap(),
  1518. guard.self_ref.clone(),
  1519. ent,
  1520. );
  1521. // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
  1522. guard.children.insert(search_name, entry_inode.clone());
  1523. }
  1524. }
  1525. return Ok(ret);
  1526. }
  1527. FATDirEntry::UnInit => {
  1528. error!("FATFS: param: Inode_type uninitialized.");
  1529. return Err(SystemError::EROFS);
  1530. }
  1531. }
  1532. }
  1533. fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
  1534. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1535. let target = guard.find(name)?;
  1536. return Ok(target);
  1537. }
  1538. fn open(
  1539. &self,
  1540. _data: SpinLockGuard<FilePrivateData>,
  1541. _mode: &FileMode,
  1542. ) -> Result<(), SystemError> {
  1543. return Ok(());
  1544. }
  1545. fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> {
  1546. return Ok(());
  1547. }
  1548. fn unlink(&self, name: &str) -> Result<(), SystemError> {
  1549. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1550. let target: Arc<LockedFATInode> = guard.find(name)?;
  1551. // 对目标inode上锁,以防更改
  1552. let target_guard: SpinLockGuard<FATInode> = target.0.lock();
  1553. // 先从缓存删除
  1554. let nod = guard.children.remove(&to_search_name(name));
  1555. // 若删除缓存中为管道的文件,则不需要再到磁盘删除
  1556. if nod.is_some() {
  1557. let file_type = target_guard.metadata.file_type;
  1558. if file_type == FileType::Pipe {
  1559. return Ok(());
  1560. }
  1561. }
  1562. let dir = match &guard.inode_type {
  1563. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  1564. return Err(SystemError::ENOTDIR);
  1565. }
  1566. FATDirEntry::Dir(d) => d,
  1567. FATDirEntry::UnInit => {
  1568. error!("FATFS: param: Inode_type uninitialized.");
  1569. return Err(SystemError::EROFS);
  1570. }
  1571. };
  1572. // 检查文件是否存在
  1573. dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
  1574. // 再从磁盘删除
  1575. let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
  1576. drop(target_guard);
  1577. return r;
  1578. }
  1579. fn rmdir(&self, name: &str) -> Result<(), SystemError> {
  1580. let mut guard: SpinLockGuard<FATInode> = self.0.lock();
  1581. let target: Arc<LockedFATInode> = guard.find(name)?;
  1582. // 对目标inode上锁,以防更改
  1583. let target_guard: SpinLockGuard<FATInode> = target.0.lock();
  1584. // 先从缓存删除
  1585. guard.children.remove(&to_search_name(name));
  1586. let dir = match &guard.inode_type {
  1587. FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
  1588. return Err(SystemError::ENOTDIR);
  1589. }
  1590. FATDirEntry::Dir(d) => d,
  1591. FATDirEntry::UnInit => {
  1592. error!("FATFS: param: Inode_type uninitialized.");
  1593. return Err(SystemError::EROFS);
  1594. }
  1595. };
  1596. // 检查文件夹是否存在
  1597. dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
  1598. // 再从磁盘删除
  1599. let r: Result<(), SystemError> =
  1600. dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
  1601. match r {
  1602. Ok(_) => return r,
  1603. Err(r) => {
  1604. if r == SystemError::ENOTEMPTY {
  1605. // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
  1606. guard.children.insert(to_search_name(name), target.clone());
  1607. drop(target_guard);
  1608. }
  1609. return Err(r);
  1610. }
  1611. }
  1612. }
  1613. fn move_to(
  1614. &self,
  1615. old_name: &str,
  1616. target: &Arc<dyn IndexNode>,
  1617. new_name: &str,
  1618. ) -> Result<(), SystemError> {
  1619. let old_id = self.metadata().unwrap().inode_id;
  1620. let new_id = target.metadata().unwrap().inode_id;
  1621. // 若在同一父目录下
  1622. if old_id == new_id {
  1623. self.rename_file_in_current_dir(old_name, new_name)?;
  1624. } else {
  1625. self.move_to_another_dir(old_name, new_name, target)?;
  1626. }
  1627. return Ok(());
  1628. }
  1629. fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> {
  1630. let guard: SpinLockGuard<FATInode> = self.0.lock();
  1631. if guard.metadata.file_type != FileType::Dir {
  1632. return Err(SystemError::ENOTDIR);
  1633. }
  1634. match ino.into() {
  1635. 0 => {
  1636. return Ok(String::from("."));
  1637. }
  1638. 1 => {
  1639. return Ok(String::from(".."));
  1640. }
  1641. ino => {
  1642. // 暴力遍历所有的children,判断inode id是否相同
  1643. // TODO: 优化这里,这个地方性能很差!
  1644. let mut key: Vec<String> = guard
  1645. .children
  1646. .iter()
  1647. .filter_map(|(k, v)| {
  1648. if v.0.lock().metadata.inode_id.into() == ino {
  1649. Some(k.to_string())
  1650. } else {
  1651. None
  1652. }
  1653. })
  1654. .collect();
  1655. match key.len() {
  1656. 0=>{return Err(SystemError::ENOENT);}
  1657. 1=>{return Ok(key.remove(0));}
  1658. _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
  1659. }
  1660. }
  1661. }
  1662. }
  1663. fn mknod(
  1664. &self,
  1665. filename: &str,
  1666. mode: ModeType,
  1667. _dev_t: DeviceNumber,
  1668. ) -> Result<Arc<dyn IndexNode>, SystemError> {
  1669. let mut inode = self.0.lock();
  1670. if inode.metadata.file_type != FileType::Dir {
  1671. return Err(SystemError::ENOTDIR);
  1672. }
  1673. // 判断需要创建的类型
  1674. if unlikely(mode.contains(ModeType::S_IFREG)) {
  1675. // 普通文件
  1676. return self.create(filename, FileType::File, mode);
  1677. }
  1678. let dname = DName::from(filename);
  1679. let nod = LockedFATInode::new(
  1680. dname,
  1681. inode.fs.upgrade().unwrap(),
  1682. inode.self_ref.clone(),
  1683. FATDirEntry::File(FATFile::default()),
  1684. );
  1685. if mode.contains(ModeType::S_IFIFO) {
  1686. nod.0.lock().metadata.file_type = FileType::Pipe;
  1687. // 创建pipe文件
  1688. let pipe_inode = LockedPipeInode::new();
  1689. // 设置special_node
  1690. nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode));
  1691. } else if mode.contains(ModeType::S_IFBLK) {
  1692. nod.0.lock().metadata.file_type = FileType::BlockDevice;
  1693. unimplemented!()
  1694. } else if mode.contains(ModeType::S_IFCHR) {
  1695. nod.0.lock().metadata.file_type = FileType::CharDevice;
  1696. unimplemented!()
  1697. } else {
  1698. return Err(SystemError::EINVAL);
  1699. }
  1700. inode.children.insert(to_search_name(filename), nod.clone());
  1701. Ok(nod)
  1702. }
  1703. fn special_node(&self) -> Option<SpecialNodeData> {
  1704. self.0.lock().special_node.clone()
  1705. }
  1706. fn dname(&self) -> Result<DName, SystemError> {
  1707. Ok(self.0.lock().dname.clone())
  1708. }
  1709. fn parent(&self) -> Result<Arc<dyn IndexNode>, SystemError> {
  1710. self.0
  1711. .lock()
  1712. .parent
  1713. .upgrade()
  1714. .map(|item| item as Arc<dyn IndexNode>)
  1715. .ok_or(SystemError::EINVAL)
  1716. }
  1717. fn page_cache(&self) -> Option<Arc<PageCache>> {
  1718. self.0.lock().page_cache.clone()
  1719. }
  1720. }
  1721. impl Default for FATFsInfo {
  1722. fn default() -> Self {
  1723. return FATFsInfo {
  1724. lead_sig: FATFsInfo::LEAD_SIG,
  1725. struc_sig: FATFsInfo::STRUC_SIG,
  1726. free_count: 0xFFFFFFFF,
  1727. next_free: RESERVED_CLUSTERS,
  1728. trail_sig: FATFsInfo::TRAIL_SIG,
  1729. dirty: false,
  1730. offset: None,
  1731. };
  1732. }
  1733. }
  1734. impl Cluster {
  1735. pub fn new(cluster: u64) -> Self {
  1736. return Cluster {
  1737. cluster_num: cluster,
  1738. parent_cluster: 0,
  1739. };
  1740. }
  1741. }
  1742. /// @brief 用于迭代FAT表的内容的簇迭代器对象
  1743. #[derive(Debug)]
  1744. struct ClusterIter<'a> {
  1745. /// 迭代器的next要返回的簇
  1746. current_cluster: Option<Cluster>,
  1747. /// 属于的文件系统
  1748. fs: &'a FATFileSystem,
  1749. }
  1750. impl Iterator for ClusterIter<'_> {
  1751. type Item = Cluster;
  1752. fn next(&mut self) -> Option<Self::Item> {
  1753. // 当前要返回的簇
  1754. let ret: Option<Cluster> = self.current_cluster;
  1755. // 获得下一个要返回簇
  1756. let new: Option<Cluster> = match self.current_cluster {
  1757. Some(c) => {
  1758. let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
  1759. match entry {
  1760. Some(FATEntry::Next(c)) => Some(c),
  1761. _ => None,
  1762. }
  1763. }
  1764. _ => None,
  1765. };
  1766. self.current_cluster = new;
  1767. return ret;
  1768. }
  1769. }