process.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. #include "process.h"
  2. #include <common/compiler.h>
  3. #include <common/elf.h>
  4. #include <common/kprint.h>
  5. #include <common/kthread.h>
  6. #include <common/printk.h>
  7. #include <common/spinlock.h>
  8. #include <common/stdio.h>
  9. #include <common/string.h>
  10. #include <common/sys/wait.h>
  11. #include <common/time.h>
  12. #include <common/unistd.h>
  13. #include <debug/bug.h>
  14. #include <debug/traceback/traceback.h>
  15. #include <driver/disk/ahci/ahci.h>
  16. #include <driver/usb/usb.h>
  17. #include <driver/video/video.h>
  18. #include <exception/gate.h>
  19. #include <filesystem/devfs/devfs.h>
  20. #include <filesystem/fat32/fat32.h>
  21. #include <filesystem/rootfs/rootfs.h>
  22. #include <mm/slab.h>
  23. #include <sched/sched.h>
  24. #include <syscall/syscall.h>
  25. #include <syscall/syscall_num.h>
  26. #include <ktest/ktest.h>
  27. #include <mm/mmio.h>
  28. #include <common/lz4.h>
  29. // #pragma GCC push_options
  30. // #pragma GCC optimize("O0")
  31. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  32. long process_global_pid = 1; // 系统中最大的pid
  33. extern void system_call(void);
  34. extern void kernel_thread_func(void);
  35. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  36. extern struct mm_struct initial_mm;
  37. struct thread_struct initial_thread =
  38. {
  39. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  40. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  41. .fs = KERNEL_DS,
  42. .gs = KERNEL_DS,
  43. .cr2 = 0,
  44. .trap_num = 0,
  45. .err_code = 0};
  46. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  47. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  48. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  49. // 为每个核心初始化初始进程的tss
  50. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  51. /**
  52. * @brief 拷贝当前进程的标志位
  53. *
  54. * @param clone_flags 克隆标志位
  55. * @param pcb 新的进程的pcb
  56. * @return uint64_t
  57. */
  58. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  59. /**
  60. * @brief 拷贝当前进程的文件描述符等信息
  61. *
  62. * @param clone_flags 克隆标志位
  63. * @param pcb 新的进程的pcb
  64. * @return uint64_t
  65. */
  66. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  67. /**
  68. * @brief 回收进程的所有文件描述符
  69. *
  70. * @param pcb 要被回收的进程的pcb
  71. * @return uint64_t
  72. */
  73. uint64_t process_exit_files(struct process_control_block *pcb);
  74. /**
  75. * @brief 拷贝当前进程的内存空间分布结构体信息
  76. *
  77. * @param clone_flags 克隆标志位
  78. * @param pcb 新的进程的pcb
  79. * @return uint64_t
  80. */
  81. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  82. /**
  83. * @brief 释放进程的页表
  84. *
  85. * @param pcb 要被释放页表的进程
  86. * @return uint64_t
  87. */
  88. uint64_t process_exit_mm(struct process_control_block *pcb);
  89. /**
  90. * @brief 拷贝当前进程的线程结构体
  91. *
  92. * @param clone_flags 克隆标志位
  93. * @param pcb 新的进程的pcb
  94. * @return uint64_t
  95. */
  96. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  97. void process_exit_thread(struct process_control_block *pcb);
  98. /**
  99. * @brief 切换进程
  100. *
  101. * @param prev 上一个进程的pcb
  102. * @param next 将要切换到的进程的pcb
  103. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  104. * 这里切换fs和gs寄存器
  105. */
  106. #pragma GCC push_options
  107. #pragma GCC optimize("O0")
  108. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  109. {
  110. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  111. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  112. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  113. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  114. __asm__ __volatile__("movq %%fs, %0 \n\t"
  115. : "=a"(prev->thread->fs));
  116. __asm__ __volatile__("movq %%gs, %0 \n\t"
  117. : "=a"(prev->thread->gs));
  118. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  119. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  120. }
  121. #pragma GCC pop_options
  122. /**
  123. * @brief 打开要执行的程序文件
  124. *
  125. * @param path
  126. * @return struct vfs_file_t*
  127. */
  128. struct vfs_file_t *process_open_exec_file(char *path)
  129. {
  130. struct vfs_dir_entry_t *dentry = NULL;
  131. struct vfs_file_t *filp = NULL;
  132. dentry = vfs_path_walk(path, 0);
  133. if (dentry == NULL)
  134. return (void *)-ENOENT;
  135. if (dentry->dir_inode->attribute == VFS_IF_DIR)
  136. return (void *)-ENOTDIR;
  137. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  138. if (filp == NULL)
  139. return (void *)-ENOMEM;
  140. filp->position = 0;
  141. filp->mode = 0;
  142. filp->dEntry = dentry;
  143. filp->mode = ATTR_READ_ONLY;
  144. filp->file_ops = dentry->dir_inode->file_ops;
  145. return filp;
  146. }
  147. /**
  148. * @brief 加载elf格式的程序文件到内存中,并设置regs
  149. *
  150. * @param regs 寄存器
  151. * @param path 文件路径
  152. * @return int
  153. */
  154. static int process_load_elf_file(struct pt_regs *regs, char *path)
  155. {
  156. int retval = 0;
  157. struct vfs_file_t *filp = process_open_exec_file(path);
  158. if ((long)filp <= 0 && (long)filp >= -255)
  159. {
  160. // kdebug("(long)filp=%ld", (long)filp);
  161. return (unsigned long)filp;
  162. }
  163. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  164. memset(buf, 0, PAGE_4K_SIZE);
  165. uint64_t pos = 0;
  166. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  167. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  168. retval = 0;
  169. if (!elf_check(buf))
  170. {
  171. kerror("Not an ELF file: %s", path);
  172. retval = -ENOTSUP;
  173. goto load_elf_failed;
  174. }
  175. #if ARCH(X86_64)
  176. // 暂时只支持64位的文件
  177. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  178. {
  179. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  180. retval = -EUNSUPPORTED;
  181. goto load_elf_failed;
  182. }
  183. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  184. // 暂时只支持AMD64架构
  185. if (ehdr.e_machine != EM_AMD64)
  186. {
  187. kerror("e_machine=%d", ehdr.e_machine);
  188. retval = -EUNSUPPORTED;
  189. goto load_elf_failed;
  190. }
  191. #else
  192. #error Unsupported architecture!
  193. #endif
  194. if (ehdr.e_type != ET_EXEC)
  195. {
  196. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  197. retval = -EUNSUPPORTED;
  198. goto load_elf_failed;
  199. }
  200. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  201. regs->rip = ehdr.e_entry;
  202. current_pcb->mm->code_addr_start = ehdr.e_entry;
  203. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  204. // 将指针移动到program header处
  205. pos = ehdr.e_phoff;
  206. // 读取所有的phdr
  207. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  208. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  209. if ((unsigned long)filp <= 0)
  210. {
  211. kdebug("(unsigned long)filp=%d", (long)filp);
  212. retval = -ENOEXEC;
  213. goto load_elf_failed;
  214. }
  215. Elf64_Phdr *phdr = buf;
  216. // 将程序加载到内存中
  217. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  218. {
  219. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  220. // 不是可加载的段
  221. if (phdr->p_type != PT_LOAD)
  222. continue;
  223. int64_t remain_mem_size = phdr->p_memsz;
  224. int64_t remain_file_size = phdr->p_filesz;
  225. pos = phdr->p_offset;
  226. uint64_t virt_base = 0;
  227. uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
  228. if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
  229. virt_base = phdr->p_vaddr & PAGE_2M_MASK;
  230. else // 接下来只有4K页的映射
  231. virt_base = phdr->p_vaddr & PAGE_4K_MASK;
  232. beginning_offset = phdr->p_vaddr - virt_base;
  233. remain_mem_size += beginning_offset;
  234. while (remain_mem_size > 0)
  235. {
  236. // kdebug("loading...");
  237. int64_t map_size = 0;
  238. if (remain_mem_size >= PAGE_2M_SIZE)
  239. {
  240. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  241. struct vm_area_struct *vma = NULL;
  242. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  243. // 防止内存泄露
  244. if (ret == -EEXIST)
  245. free_pages(Phy_to_2M_Page(pa), 1);
  246. else
  247. mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
  248. // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  249. io_mfence();
  250. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  251. map_size = PAGE_2M_SIZE;
  252. }
  253. else
  254. {
  255. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  256. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  257. // 循环分配4K大小内存块
  258. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  259. {
  260. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  261. struct vm_area_struct *vma = NULL;
  262. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  263. // kdebug("virt_base=%#018lx", virt_base + off);
  264. if (val == -EEXIST)
  265. kfree(phys_2_virt(paddr));
  266. else
  267. mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
  268. // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
  269. io_mfence();
  270. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  271. }
  272. }
  273. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  274. int64_t val = 0;
  275. if (remain_file_size > 0)
  276. {
  277. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  278. val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos);
  279. }
  280. if (val < 0)
  281. goto load_elf_failed;
  282. remain_mem_size -= map_size;
  283. remain_file_size -= val;
  284. virt_base += map_size;
  285. }
  286. }
  287. // 分配2MB的栈内存空间
  288. regs->rsp = current_pcb->mm->stack_start;
  289. regs->rbp = current_pcb->mm->stack_start;
  290. {
  291. struct vm_area_struct *vma = NULL;
  292. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  293. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  294. if (val == -EEXIST)
  295. free_pages(Phy_to_2M_Page(pa), 1);
  296. else
  297. mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  298. }
  299. // 清空栈空间
  300. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  301. load_elf_failed:;
  302. if (buf != NULL)
  303. kfree(buf);
  304. return retval;
  305. }
  306. /**
  307. * @brief 使当前进程去执行新的代码
  308. *
  309. * @param regs 当前进程的寄存器
  310. * @param path 可执行程序的路径
  311. * @param argv 参数列表
  312. * @param envp 环境变量
  313. * @return ul 错误码
  314. */
  315. #pragma GCC push_options
  316. #pragma GCC optimize("O0")
  317. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  318. {
  319. // kdebug("do_execve is running...");
  320. // 当前进程正在与父进程共享地址空间,需要创建
  321. // 独立的地址空间才能使新程序正常运行
  322. if (current_pcb->flags & PF_VFORK)
  323. {
  324. // kdebug("proc:%d creating new mem space", current_pcb->pid);
  325. // 分配新的内存空间分布结构体
  326. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  327. memset(new_mms, 0, sizeof(struct mm_struct));
  328. current_pcb->mm = new_mms;
  329. // 分配顶层页表, 并设置顶层页表的物理地址
  330. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  331. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  332. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  333. // 拷贝内核空间的页表指针
  334. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  335. }
  336. // 设置用户栈和用户堆的基地址
  337. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  338. const uint64_t brk_start_addr = 0x700000000000UL;
  339. process_switch_mm(current_pcb);
  340. // 为用户态程序设置地址边界
  341. if (!(current_pcb->flags & PF_KTHREAD))
  342. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  343. current_pcb->mm->code_addr_end = 0;
  344. current_pcb->mm->data_addr_start = 0;
  345. current_pcb->mm->data_addr_end = 0;
  346. current_pcb->mm->rodata_addr_start = 0;
  347. current_pcb->mm->rodata_addr_end = 0;
  348. current_pcb->mm->bss_start = 0;
  349. current_pcb->mm->bss_end = 0;
  350. current_pcb->mm->brk_start = brk_start_addr;
  351. current_pcb->mm->brk_end = brk_start_addr;
  352. current_pcb->mm->stack_start = stack_start_addr;
  353. // 关闭之前的文件描述符
  354. process_exit_files(current_pcb);
  355. // 清除进程的vfork标志位
  356. current_pcb->flags &= ~PF_VFORK;
  357. // 加载elf格式的可执行文件
  358. int tmp = process_load_elf_file(regs, path);
  359. if (tmp < 0)
  360. goto exec_failed;
  361. // 拷贝参数列表
  362. if (argv != NULL)
  363. {
  364. int argc = 0;
  365. // 目标程序的argv基地址指针,最大8个参数
  366. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  367. uint64_t str_addr = (uint64_t)dst_argv;
  368. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  369. {
  370. if (*argv[argc] == NULL)
  371. break;
  372. // 测量参数的长度(最大1023)
  373. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  374. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  375. str_addr -= argv_len;
  376. dst_argv[argc] = (char *)str_addr;
  377. // 字符串加上结尾字符
  378. ((char *)str_addr)[argv_len] = '\0';
  379. }
  380. // 重新设定栈基址,并预留空间防止越界
  381. stack_start_addr = str_addr - 8;
  382. current_pcb->mm->stack_start = stack_start_addr;
  383. regs->rsp = regs->rbp = stack_start_addr;
  384. // 传递参数
  385. regs->rdi = argc;
  386. regs->rsi = (uint64_t)dst_argv;
  387. }
  388. // kdebug("execve ok");
  389. regs->cs = USER_CS | 3;
  390. regs->ds = USER_DS | 3;
  391. regs->ss = USER_DS | 0x3;
  392. regs->rflags = 0x200246;
  393. regs->rax = 1;
  394. regs->es = 0;
  395. return 0;
  396. exec_failed:;
  397. process_do_exit(tmp);
  398. }
  399. #pragma GCC pop_options
  400. /**
  401. * @brief 内核init进程
  402. *
  403. * @param arg
  404. * @return ul 参数
  405. */
  406. #pragma GCC push_options
  407. #pragma GCC optimize("O0")
  408. ul initial_kernel_thread(ul arg)
  409. {
  410. kinfo("initial proc running...\targ:%#018lx", arg);
  411. scm_enable_double_buffer();
  412. ahci_init();
  413. fat32_init();
  414. rootfs_umount();
  415. // 使用单独的内核线程来初始化usb驱动程序
  416. // 注释:由于目前usb驱动程序不完善,因此先将其注释掉
  417. // int usb_pid = kernel_thread(usb_init, 0, 0);
  418. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  419. // 对一些组件进行单元测试
  420. uint64_t tpid[] = {
  421. ktest_start(ktest_test_bitree, 0),
  422. ktest_start(ktest_test_kfifo, 0),
  423. ktest_start(ktest_test_mutex, 0),
  424. ktest_start(ktest_test_idr, 0),
  425. // usb_pid,
  426. };
  427. kinfo("Waiting test thread exit...");
  428. // 等待测试进程退出
  429. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  430. waitpid(tpid[i], NULL, NULL);
  431. kinfo("All test done.");
  432. // 准备切换到用户态
  433. struct pt_regs *regs;
  434. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  435. cli();
  436. current_pcb->thread->rip = (ul)ret_from_system_call;
  437. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  438. current_pcb->thread->fs = USER_DS | 0x3;
  439. barrier();
  440. current_pcb->thread->gs = USER_DS | 0x3;
  441. // 主动放弃内核线程身份
  442. current_pcb->flags &= (~PF_KTHREAD);
  443. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  444. regs = (struct pt_regs *)current_pcb->thread->rsp;
  445. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  446. current_pcb->flags = 0;
  447. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  448. // 加载用户态程序:shell.elf
  449. char init_path[] = "/shell.elf";
  450. uint64_t addr = (uint64_t)&init_path;
  451. __asm__ __volatile__("movq %1, %%rsp \n\t"
  452. "pushq %2 \n\t"
  453. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  454. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  455. : "memory");
  456. return 1;
  457. }
  458. #pragma GCC pop_options
  459. /**
  460. * @brief 当子进程退出后向父进程发送通知
  461. *
  462. */
  463. void process_exit_notify()
  464. {
  465. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  466. }
  467. /**
  468. * @brief 进程退出时执行的函数
  469. *
  470. * @param code 返回码
  471. * @return ul
  472. */
  473. ul process_do_exit(ul code)
  474. {
  475. // kinfo("process exiting..., code is %ld.", (long)code);
  476. cli();
  477. struct process_control_block *pcb = current_pcb;
  478. // 进程退出时释放资源
  479. process_exit_files(pcb);
  480. process_exit_thread(pcb);
  481. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  482. pcb->state = PROC_ZOMBIE;
  483. pcb->exit_code = code;
  484. sti();
  485. process_exit_notify();
  486. sched();
  487. while (1)
  488. pause();
  489. }
  490. /**
  491. * @brief 初始化内核进程
  492. *
  493. * @param fn 目标程序的地址
  494. * @param arg 向目标程序传入的参数
  495. * @param flags
  496. * @return int
  497. */
  498. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  499. {
  500. struct pt_regs regs;
  501. barrier();
  502. memset(&regs, 0, sizeof(regs));
  503. barrier();
  504. // 在rbx寄存器中保存进程的入口地址
  505. regs.rbx = (ul)fn;
  506. // 在rdx寄存器中保存传入的参数
  507. regs.rdx = (ul)arg;
  508. barrier();
  509. regs.ds = KERNEL_DS;
  510. barrier();
  511. regs.es = KERNEL_DS;
  512. barrier();
  513. regs.cs = KERNEL_CS;
  514. barrier();
  515. regs.ss = KERNEL_DS;
  516. barrier();
  517. // 置位中断使能标志位
  518. regs.rflags = (1 << 9);
  519. barrier();
  520. // rip寄存器指向内核线程的引导程序
  521. regs.rip = (ul)kernel_thread_func;
  522. barrier();
  523. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  524. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  525. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  526. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  527. }
  528. /**
  529. * @brief 初始化进程模块
  530. * ☆前置条件:已完成系统调用模块的初始化
  531. */
  532. void process_init()
  533. {
  534. kinfo("Initializing process...");
  535. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  536. /*
  537. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  538. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  539. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  540. */
  541. // 初始化pid的写锁
  542. spin_init(&process_global_pid_write_lock);
  543. // 初始化进程的循环链表
  544. list_init(&initial_proc_union.pcb.list);
  545. // 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
  546. current_pcb->virtual_runtime = 0;
  547. barrier();
  548. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  549. barrier();
  550. kthread_mechanism_init(); // 初始化kthread机制
  551. initial_proc_union.pcb.state = PROC_RUNNING;
  552. initial_proc_union.pcb.preempt_count = 0;
  553. initial_proc_union.pcb.cpu_id = 0;
  554. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  555. // 将IDLE进程的虚拟运行时间设置为一个很大的数值
  556. current_pcb->virtual_runtime = (1UL << 60);
  557. }
  558. /**
  559. * @brief fork当前进程
  560. *
  561. * @param regs 新的寄存器值
  562. * @param clone_flags 克隆标志
  563. * @param stack_start 堆栈开始地址
  564. * @param stack_size 堆栈大小
  565. * @return unsigned long
  566. */
  567. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  568. {
  569. int retval = 0;
  570. struct process_control_block *tsk = NULL;
  571. // 为新的进程分配栈空间,并将pcb放置在底部
  572. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  573. barrier();
  574. if (tsk == NULL)
  575. {
  576. retval = -ENOMEM;
  577. return retval;
  578. }
  579. barrier();
  580. memset(tsk, 0, sizeof(struct process_control_block));
  581. io_mfence();
  582. // 将当前进程的pcb复制到新的pcb内
  583. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  584. tsk->worker_private = NULL;
  585. io_mfence();
  586. // 初始化进程的循环链表结点
  587. list_init(&tsk->list);
  588. io_mfence();
  589. // 判断是否为内核态调用fork
  590. if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
  591. tsk->flags |= PF_KFORK;
  592. if (tsk->flags & PF_KTHREAD)
  593. {
  594. // 对于内核线程,设置其worker私有信息
  595. retval = kthread_set_worker_private(tsk);
  596. if (IS_ERR_VALUE(retval))
  597. goto copy_flags_failed;
  598. tsk->virtual_runtime = 0;
  599. }
  600. tsk->priority = 2;
  601. tsk->preempt_count = 0;
  602. // 增加全局的pid并赋值给新进程的pid
  603. spin_lock(&process_global_pid_write_lock);
  604. tsk->pid = process_global_pid++;
  605. barrier();
  606. // 加入到进程链表中
  607. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  608. barrier();
  609. initial_proc_union.pcb.next_pcb = tsk;
  610. barrier();
  611. tsk->parent_pcb = current_pcb;
  612. barrier();
  613. spin_unlock(&process_global_pid_write_lock);
  614. tsk->cpu_id = proc_current_cpu_id;
  615. tsk->state = PROC_UNINTERRUPTIBLE;
  616. tsk->parent_pcb = current_pcb;
  617. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  618. barrier();
  619. list_init(&tsk->list);
  620. retval = -ENOMEM;
  621. // 拷贝标志位
  622. if (process_copy_flags(clone_flags, tsk))
  623. goto copy_flags_failed;
  624. // 拷贝内存空间分布结构体
  625. if (process_copy_mm(clone_flags, tsk))
  626. goto copy_mm_failed;
  627. // 拷贝文件
  628. if (process_copy_files(clone_flags, tsk))
  629. goto copy_files_failed;
  630. // 拷贝线程结构体
  631. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  632. goto copy_thread_failed;
  633. // 拷贝成功
  634. retval = tsk->pid;
  635. tsk->flags &= ~PF_KFORK;
  636. // 唤醒进程
  637. process_wakeup(tsk);
  638. return retval;
  639. copy_thread_failed:;
  640. // 回收线程
  641. process_exit_thread(tsk);
  642. copy_files_failed:;
  643. // 回收文件
  644. process_exit_files(tsk);
  645. copy_mm_failed:;
  646. // 回收内存空间分布结构体
  647. process_exit_mm(tsk);
  648. copy_flags_failed:;
  649. kfree(tsk);
  650. return retval;
  651. return 0;
  652. }
  653. /**
  654. * @brief 根据pid获取进程的pcb
  655. *
  656. * @param pid
  657. * @return struct process_control_block*
  658. */
  659. struct process_control_block *process_get_pcb(long pid)
  660. {
  661. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  662. // 使用蛮力法搜索指定pid的pcb
  663. // todo: 使用哈希表来管理pcb
  664. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  665. {
  666. if (pcb->pid == pid)
  667. return pcb;
  668. }
  669. return NULL;
  670. }
  671. /**
  672. * @brief 将进程加入到调度器的就绪队列中
  673. *
  674. * @param pcb 进程的pcb
  675. */
  676. int process_wakeup(struct process_control_block *pcb)
  677. {
  678. // kdebug("pcb pid = %#018lx", pcb->pid);
  679. BUG_ON(pcb == NULL);
  680. if (pcb == current_pcb || pcb == NULL)
  681. return -EINVAL;
  682. // 如果pcb正在调度队列中,则不重复加入调度队列
  683. if (pcb->state & PROC_RUNNING)
  684. return 0;
  685. pcb->state |= PROC_RUNNING;
  686. sched_enqueue(pcb);
  687. return 0;
  688. }
  689. /**
  690. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  691. *
  692. * @param pcb 进程的pcb
  693. */
  694. int process_wakeup_immediately(struct process_control_block *pcb)
  695. {
  696. if (pcb->state & PROC_RUNNING)
  697. return 0;
  698. int retval = process_wakeup(pcb);
  699. if (retval != 0)
  700. return retval;
  701. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  702. current_pcb->flags |= PF_NEED_SCHED;
  703. }
  704. /**
  705. * @brief 拷贝当前进程的标志位
  706. *
  707. * @param clone_flags 克隆标志位
  708. * @param pcb 新的进程的pcb
  709. * @return uint64_t
  710. */
  711. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  712. {
  713. if (clone_flags & CLONE_VM)
  714. pcb->flags |= PF_VFORK;
  715. return 0;
  716. }
  717. /**
  718. * @brief 拷贝当前进程的文件描述符等信息
  719. *
  720. * @param clone_flags 克隆标志位
  721. * @param pcb 新的进程的pcb
  722. * @return uint64_t
  723. */
  724. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  725. {
  726. int retval = 0;
  727. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  728. // 文件描述符已经在复制pcb时被拷贝
  729. if (clone_flags & CLONE_FS)
  730. return retval;
  731. // 为新进程拷贝新的文件描述符
  732. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  733. {
  734. if (current_pcb->fds[i] == NULL)
  735. continue;
  736. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  737. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  738. }
  739. return retval;
  740. }
  741. /**
  742. * @brief 回收进程的所有文件描述符
  743. *
  744. * @param pcb 要被回收的进程的pcb
  745. * @return uint64_t
  746. */
  747. uint64_t process_exit_files(struct process_control_block *pcb)
  748. {
  749. // 不与父进程共享文件描述符
  750. if (!(pcb->flags & PF_VFORK))
  751. {
  752. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  753. {
  754. if (pcb->fds[i] == NULL)
  755. continue;
  756. kfree(pcb->fds[i]);
  757. }
  758. }
  759. // 清空当前进程的文件描述符列表
  760. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  761. }
  762. /**
  763. * @brief 拷贝当前进程的内存空间分布结构体信息
  764. *
  765. * @param clone_flags 克隆标志位
  766. * @param pcb 新的进程的pcb
  767. * @return uint64_t
  768. */
  769. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  770. {
  771. int retval = 0;
  772. // 与父进程共享内存空间
  773. if (clone_flags & CLONE_VM)
  774. {
  775. pcb->mm = current_pcb->mm;
  776. return retval;
  777. }
  778. // 分配新的内存空间分布结构体
  779. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  780. memset(new_mms, 0, sizeof(struct mm_struct));
  781. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  782. new_mms->vmas = NULL;
  783. pcb->mm = new_mms;
  784. // 分配顶层页表, 并设置顶层页表的物理地址
  785. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  786. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  787. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  788. // 拷贝内核空间的页表指针
  789. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  790. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  791. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  792. // 拷贝用户空间的vma
  793. struct vm_area_struct *vma = current_pcb->mm->vmas;
  794. while (vma != NULL)
  795. {
  796. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  797. {
  798. vma = vma->vm_next;
  799. continue;
  800. }
  801. int64_t vma_size = vma->vm_end - vma->vm_start;
  802. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  803. if (vma_size > PAGE_2M_SIZE / 2)
  804. {
  805. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  806. for (int i = 0; i < page_to_alloc; ++i)
  807. {
  808. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  809. struct vm_area_struct *new_vma = NULL;
  810. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  811. // 防止内存泄露
  812. if (unlikely(ret == -EEXIST))
  813. free_pages(Phy_to_2M_Page(pa), 1);
  814. else
  815. mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
  816. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  817. vma_size -= PAGE_2M_SIZE;
  818. }
  819. }
  820. else
  821. {
  822. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  823. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  824. struct vm_area_struct *new_vma = NULL;
  825. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  826. // 防止内存泄露
  827. if (unlikely(ret == -EEXIST))
  828. kfree((void *)va);
  829. else
  830. mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
  831. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  832. }
  833. vma = vma->vm_next;
  834. }
  835. return retval;
  836. }
  837. /**
  838. * @brief 释放进程的页表
  839. *
  840. * @param pcb 要被释放页表的进程
  841. * @return uint64_t
  842. */
  843. uint64_t process_exit_mm(struct process_control_block *pcb)
  844. {
  845. if (pcb->flags & CLONE_VM)
  846. return 0;
  847. if (pcb->mm == NULL)
  848. {
  849. kdebug("pcb->mm==NULL");
  850. return 0;
  851. }
  852. if (pcb->mm->pgd == NULL)
  853. {
  854. kdebug("pcb->mm->pgd==NULL");
  855. return 0;
  856. }
  857. // // 获取顶层页表
  858. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  859. // 循环释放VMA中的内存
  860. struct vm_area_struct *vma = pcb->mm->vmas;
  861. while (vma != NULL)
  862. {
  863. struct vm_area_struct *cur_vma = vma;
  864. vma = cur_vma->vm_next;
  865. uint64_t pa;
  866. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  867. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  868. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  869. // 释放内存
  870. switch (size)
  871. {
  872. case PAGE_4K_SIZE:
  873. kfree(phys_2_virt(pa));
  874. break;
  875. default:
  876. break;
  877. }
  878. vm_area_del(cur_vma);
  879. vm_area_free(cur_vma);
  880. }
  881. // 释放顶层页表
  882. kfree(current_pgd);
  883. if (unlikely(pcb->mm->vmas != NULL))
  884. {
  885. kwarn("pcb.mm.vmas!=NULL");
  886. }
  887. // 释放内存空间分布结构体
  888. kfree(pcb->mm);
  889. return 0;
  890. }
  891. /**
  892. * @brief 重写内核栈中的rbp地址
  893. *
  894. * @param new_regs 子进程的reg
  895. * @param new_pcb 子进程的pcb
  896. * @return int
  897. */
  898. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  899. {
  900. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  901. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  902. uint64_t *rbp = &new_regs->rbp;
  903. uint64_t *tmp = rbp;
  904. // 超出内核栈范围
  905. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  906. return 0;
  907. while (1)
  908. {
  909. // 计算delta
  910. uint64_t delta = old_top - *rbp;
  911. // 计算新的rbp值
  912. uint64_t newVal = new_top - delta;
  913. // 新的值不合法
  914. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  915. break;
  916. // 将新的值写入对应位置
  917. *rbp = newVal;
  918. // 跳转栈帧
  919. rbp = (uint64_t *)*rbp;
  920. }
  921. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  922. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  923. return 0;
  924. }
  925. /**
  926. * @brief 拷贝当前进程的线程结构体
  927. *
  928. * @param clone_flags 克隆标志位
  929. * @param pcb 新的进程的pcb
  930. * @return uint64_t
  931. */
  932. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  933. {
  934. // 将线程结构体放置在pcb后方
  935. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  936. memset(thd, 0, sizeof(struct thread_struct));
  937. pcb->thread = thd;
  938. struct pt_regs *child_regs = NULL;
  939. // 拷贝栈空间
  940. if (pcb->flags & PF_KFORK) // 内核态下的fork
  941. {
  942. // 内核态下则拷贝整个内核栈
  943. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  944. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  945. memcpy(child_regs, (void *)current_regs, size);
  946. barrier();
  947. // 然后重写新的栈中,每个栈帧的rbp值
  948. process_rewrite_rbp(child_regs, pcb);
  949. }
  950. else
  951. {
  952. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  953. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  954. barrier();
  955. child_regs->rsp = stack_start;
  956. }
  957. // 设置子进程的返回值为0
  958. child_regs->rax = 0;
  959. if (pcb->flags & PF_KFORK)
  960. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  961. else
  962. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  963. // 设置新的内核线程开始执行的时候的rsp
  964. thd->rsp = (uint64_t)child_regs;
  965. thd->fs = current_pcb->thread->fs;
  966. thd->gs = current_pcb->thread->gs;
  967. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  968. if (pcb->flags & PF_KFORK)
  969. thd->rip = (uint64_t)ret_from_system_call;
  970. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  971. thd->rip = (uint64_t)kernel_thread_func;
  972. else
  973. thd->rip = (uint64_t)ret_from_system_call;
  974. return 0;
  975. }
  976. /**
  977. * @brief todo: 回收线程结构体
  978. *
  979. * @param pcb
  980. */
  981. void process_exit_thread(struct process_control_block *pcb)
  982. {
  983. }
  984. /**
  985. * @brief 释放pcb
  986. *
  987. * @param pcb
  988. * @return int
  989. */
  990. int process_release_pcb(struct process_control_block *pcb)
  991. {
  992. kfree(pcb);
  993. return 0;
  994. }
  995. /**
  996. * @brief 申请可用的文件句柄
  997. *
  998. * @return int
  999. */
  1000. int process_fd_alloc(struct vfs_file_t *file)
  1001. {
  1002. int fd_num = -1;
  1003. struct vfs_file_t **f = current_pcb->fds;
  1004. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  1005. {
  1006. /* 找到指针数组中的空位 */
  1007. if (f[i] == NULL)
  1008. {
  1009. fd_num = i;
  1010. f[i] = file;
  1011. break;
  1012. }
  1013. }
  1014. return fd_num;
  1015. }