mod.rs 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. use core::{
  2. arch::asm,
  3. intrinsics::unlikely,
  4. mem::ManuallyDrop,
  5. sync::atomic::{compiler_fence, Ordering},
  6. };
  7. use alloc::sync::{Arc, Weak};
  8. use kdepends::memoffset::offset_of;
  9. use log::{error, warn};
  10. use system_error::SystemError;
  11. use x86::{controlregs::Cr4, segmentation::SegmentSelector};
  12. use crate::{
  13. arch::process::table::TSSManager,
  14. exception::InterruptArch,
  15. libs::spinlock::SpinLockGuard,
  16. mm::VirtAddr,
  17. process::{
  18. fork::{CloneFlags, KernelCloneArgs},
  19. KernelStack, ProcessControlBlock, ProcessFlags, ProcessManager, PROCESS_SWITCH_RESULT,
  20. },
  21. syscall::Syscall,
  22. };
  23. use self::{
  24. kthread::kernel_thread_bootstrap_stage1,
  25. syscall::ARCH_SET_FS,
  26. table::{switch_fs_and_gs, KERNEL_DS, USER_DS},
  27. };
  28. use super::{fpu::FpState, interrupt::TrapFrame, syscall::X86_64GSData, CurrentIrqArch};
  29. pub mod idle;
  30. pub mod kthread;
  31. pub mod syscall;
  32. pub mod table;
  33. extern "C" {
  34. /// 从中断返回
  35. fn ret_from_intr();
  36. }
  37. #[allow(dead_code)]
  38. #[repr(align(32768))]
  39. union InitProcUnion {
  40. /// 用于存放idle进程的内核栈
  41. idle_stack: [u8; 32768],
  42. }
  43. #[link_section = ".data.init_proc_union"]
  44. #[no_mangle]
  45. static BSP_IDLE_STACK_SPACE: InitProcUnion = InitProcUnion {
  46. idle_stack: [0; 32768],
  47. };
  48. /// PCB中与架构相关的信息
  49. #[derive(Debug)]
  50. #[allow(dead_code)]
  51. pub struct ArchPCBInfo {
  52. rflags: usize,
  53. rbx: usize,
  54. r12: usize,
  55. r13: usize,
  56. r14: usize,
  57. r15: usize,
  58. rbp: usize,
  59. rsp: usize,
  60. rip: usize,
  61. cr2: usize,
  62. fsbase: usize,
  63. gsbase: usize,
  64. fs: SegmentSelector,
  65. gs: SegmentSelector,
  66. /// 存储PCB系统调用栈以及在syscall过程中暂存用户态rsp的结构体
  67. gsdata: X86_64GSData,
  68. /// 浮点寄存器的状态
  69. fp_state: Option<FpState>,
  70. }
  71. #[allow(dead_code)]
  72. impl ArchPCBInfo {
  73. /// 创建一个新的ArchPCBInfo
  74. ///
  75. /// ## 参数
  76. ///
  77. /// - `kstack`:内核栈的引用,如果为None,则不会设置rsp和rbp。如果为Some,则会设置rsp和rbp为内核栈的最高地址。
  78. ///
  79. /// ## 返回值
  80. ///
  81. /// 返回一个新的ArchPCBInfo
  82. #[inline(never)]
  83. pub fn new(kstack: &KernelStack) -> Self {
  84. let mut r = Self {
  85. rflags: 0,
  86. rbx: 0,
  87. r12: 0,
  88. r13: 0,
  89. r14: 0,
  90. r15: 0,
  91. rbp: 0,
  92. rsp: 0,
  93. rip: 0,
  94. cr2: 0,
  95. fsbase: 0,
  96. gsbase: 0,
  97. gsdata: X86_64GSData {
  98. kaddr: VirtAddr::new(0),
  99. uaddr: VirtAddr::new(0),
  100. },
  101. fs: KERNEL_DS,
  102. gs: KERNEL_DS,
  103. fp_state: None,
  104. };
  105. r.rsp = kstack.stack_max_address().data() - 8;
  106. r.rbp = kstack.stack_max_address().data();
  107. return r;
  108. }
  109. pub fn set_stack(&mut self, stack: VirtAddr) {
  110. self.rsp = stack.data();
  111. }
  112. pub fn set_stack_base(&mut self, stack_base: VirtAddr) {
  113. self.rbp = stack_base.data();
  114. }
  115. pub fn rbp(&self) -> usize {
  116. self.rbp
  117. }
  118. pub unsafe fn push_to_stack(&mut self, value: usize) {
  119. self.rsp -= core::mem::size_of::<usize>();
  120. *(self.rsp as *mut usize) = value;
  121. }
  122. pub unsafe fn pop_from_stack(&mut self) -> usize {
  123. let value = *(self.rsp as *const usize);
  124. self.rsp += core::mem::size_of::<usize>();
  125. value
  126. }
  127. pub fn save_fp_state(&mut self) {
  128. if self.fp_state.is_none() {
  129. self.fp_state = Some(FpState::new());
  130. }
  131. self.fp_state.as_mut().unwrap().save();
  132. }
  133. pub fn restore_fp_state(&mut self) {
  134. if unlikely(self.fp_state.is_none()) {
  135. return;
  136. }
  137. self.fp_state.as_mut().unwrap().restore();
  138. }
  139. /// 返回浮点寄存器结构体的副本
  140. pub fn fp_state(&self) -> &Option<FpState> {
  141. &self.fp_state
  142. }
  143. // 清空浮点寄存器
  144. pub fn clear_fp_state(&mut self) {
  145. if unlikely(self.fp_state.is_none()) {
  146. warn!("fp_state is none");
  147. return;
  148. }
  149. self.fp_state.as_mut().unwrap().clear();
  150. }
  151. pub unsafe fn save_fsbase(&mut self) {
  152. if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
  153. self.fsbase = x86::current::segmentation::rdfsbase() as usize;
  154. } else {
  155. self.fsbase = x86::msr::rdmsr(x86::msr::IA32_FS_BASE) as usize;
  156. }
  157. }
  158. pub unsafe fn save_gsbase(&mut self) {
  159. if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
  160. self.gsbase = x86::current::segmentation::rdgsbase() as usize;
  161. } else {
  162. self.gsbase = x86::msr::rdmsr(x86::msr::IA32_GS_BASE) as usize;
  163. }
  164. }
  165. pub unsafe fn restore_fsbase(&mut self) {
  166. if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
  167. x86::current::segmentation::wrfsbase(self.fsbase as u64);
  168. } else {
  169. x86::msr::wrmsr(x86::msr::IA32_FS_BASE, self.fsbase as u64);
  170. }
  171. }
  172. pub unsafe fn restore_gsbase(&mut self) {
  173. if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
  174. x86::current::segmentation::wrgsbase(self.gsbase as u64);
  175. } else {
  176. x86::msr::wrmsr(x86::msr::IA32_GS_BASE, self.gsbase as u64);
  177. }
  178. }
  179. /// 将gsdata写入KernelGsbase寄存器
  180. pub unsafe fn store_kernel_gsbase(&self) {
  181. x86::msr::wrmsr(
  182. x86::msr::IA32_KERNEL_GSBASE,
  183. &self.gsdata as *const X86_64GSData as u64,
  184. );
  185. }
  186. /// ### 初始化系统调用栈,不得与PCB内核栈冲突(即传入的应该是一个新的栈,避免栈损坏)
  187. pub fn init_syscall_stack(&mut self, stack: &KernelStack) {
  188. self.gsdata.set_kstack(stack.stack_max_address() - 8);
  189. }
  190. pub fn fsbase(&self) -> usize {
  191. self.fsbase
  192. }
  193. pub fn gsbase(&self) -> usize {
  194. self.gsbase
  195. }
  196. pub fn cr2_mut(&mut self) -> &mut usize {
  197. &mut self.cr2
  198. }
  199. pub fn fp_state_mut(&mut self) -> &mut Option<FpState> {
  200. &mut self.fp_state
  201. }
  202. /// ### 克隆ArchPCBInfo,需要注意gsdata也是对应clone的
  203. pub fn clone_all(&self) -> Self {
  204. Self {
  205. rflags: self.rflags,
  206. rbx: self.rbx,
  207. r12: self.r12,
  208. r13: self.r13,
  209. r14: self.r14,
  210. r15: self.r15,
  211. rbp: self.rbp,
  212. rsp: self.rsp,
  213. rip: self.rip,
  214. cr2: self.cr2,
  215. fsbase: self.fsbase,
  216. gsbase: self.gsbase,
  217. fs: self.fs,
  218. gs: self.gs,
  219. gsdata: self.gsdata.clone(),
  220. fp_state: self.fp_state,
  221. }
  222. }
  223. // ### 从另一个ArchPCBInfo处clone,gsdata会被保留
  224. pub fn clone_from(&mut self, from: &Self) {
  225. let gsdata = self.gsdata.clone();
  226. *self = from.clone_all();
  227. self.gsdata = gsdata;
  228. }
  229. }
  230. impl ProcessControlBlock {
  231. /// 获取当前进程的pcb
  232. pub fn arch_current_pcb() -> Arc<Self> {
  233. // 获取栈指针
  234. let ptr = VirtAddr::new(x86::current::registers::rsp() as usize);
  235. let stack_base = VirtAddr::new(ptr.data() & (!(KernelStack::ALIGN - 1)));
  236. // 从内核栈的最低地址处取出pcb的地址
  237. let p = stack_base.data() as *const *const ProcessControlBlock;
  238. if unlikely((unsafe { *p }).is_null()) {
  239. error!("p={:p}", p);
  240. panic!("current_pcb is null");
  241. }
  242. unsafe {
  243. // 为了防止内核栈的pcb weak 指针被释放,这里需要将其包装一下
  244. let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
  245. ManuallyDrop::new(Weak::from_raw(*p));
  246. let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade().unwrap();
  247. return new_arc;
  248. }
  249. }
  250. }
  251. impl ProcessManager {
  252. pub fn arch_init() {
  253. // do nothing
  254. }
  255. /// fork的过程中复制线程
  256. ///
  257. /// 由于这个过程与具体的架构相关,所以放在这里
  258. pub fn copy_thread(
  259. current_pcb: &Arc<ProcessControlBlock>,
  260. new_pcb: &Arc<ProcessControlBlock>,
  261. clone_args: &KernelCloneArgs,
  262. current_trapframe: &TrapFrame,
  263. ) -> Result<(), SystemError> {
  264. let clone_flags = clone_args.flags;
  265. let mut child_trapframe = *current_trapframe;
  266. // 子进程的返回值为0
  267. child_trapframe.set_return_value(0);
  268. // 设置子进程的栈基址(开始执行中断返回流程时的栈基址)
  269. let mut new_arch_guard = unsafe { new_pcb.arch_info() };
  270. let kernel_stack_guard = new_pcb.kernel_stack();
  271. // 设置子进程在内核态开始执行时的rsp、rbp
  272. new_arch_guard.set_stack_base(kernel_stack_guard.stack_max_address());
  273. let trap_frame_vaddr: VirtAddr =
  274. kernel_stack_guard.stack_max_address() - core::mem::size_of::<TrapFrame>();
  275. new_arch_guard.set_stack(trap_frame_vaddr);
  276. // 拷贝栈帧
  277. unsafe {
  278. let usp = clone_args.stack;
  279. if usp != 0 {
  280. child_trapframe.rsp = usp as u64;
  281. }
  282. let trap_frame_ptr = trap_frame_vaddr.data() as *mut TrapFrame;
  283. *trap_frame_ptr = child_trapframe;
  284. }
  285. let current_arch_guard = current_pcb.arch_info_irqsave();
  286. new_arch_guard.fsbase = current_arch_guard.fsbase;
  287. new_arch_guard.gsbase = current_arch_guard.gsbase;
  288. new_arch_guard.fs = current_arch_guard.fs;
  289. new_arch_guard.gs = current_arch_guard.gs;
  290. new_arch_guard.fp_state = current_arch_guard.fp_state;
  291. // 拷贝浮点寄存器的状态
  292. if let Some(fp_state) = current_arch_guard.fp_state.as_ref() {
  293. new_arch_guard.fp_state = Some(*fp_state);
  294. }
  295. drop(current_arch_guard);
  296. // 设置返回地址(子进程开始执行的指令地址)
  297. if new_pcb.flags().contains(ProcessFlags::KTHREAD) {
  298. let kthread_bootstrap_stage1_func_addr = kernel_thread_bootstrap_stage1 as usize;
  299. new_arch_guard.rip = kthread_bootstrap_stage1_func_addr;
  300. } else {
  301. new_arch_guard.rip = ret_from_intr as usize;
  302. }
  303. // 设置tls
  304. if clone_flags.contains(CloneFlags::CLONE_SETTLS) {
  305. drop(new_arch_guard);
  306. Syscall::do_arch_prctl_64(new_pcb, ARCH_SET_FS, clone_args.tls, true)?;
  307. }
  308. return Ok(());
  309. }
  310. /// 切换进程
  311. ///
  312. /// ## 参数
  313. ///
  314. /// - `prev`:上一个进程的pcb
  315. /// - `next`:下一个进程的pcb
  316. pub unsafe fn switch_process(prev: Arc<ProcessControlBlock>, next: Arc<ProcessControlBlock>) {
  317. assert!(!CurrentIrqArch::is_irq_enabled());
  318. // 保存浮点寄存器
  319. prev.arch_info_irqsave().save_fp_state();
  320. // 切换浮点寄存器
  321. next.arch_info_irqsave().restore_fp_state();
  322. // 切换fsbase
  323. prev.arch_info_irqsave().save_fsbase();
  324. next.arch_info_irqsave().restore_fsbase();
  325. // 切换gsbase
  326. Self::switch_gsbase(&prev, &next);
  327. // 切换地址空间
  328. let next_addr_space = next.basic().user_vm().as_ref().unwrap().clone();
  329. compiler_fence(Ordering::SeqCst);
  330. next_addr_space.read().user_mapper.utable.make_current();
  331. drop(next_addr_space);
  332. compiler_fence(Ordering::SeqCst);
  333. // 切换内核栈
  334. // 获取arch info的锁,并强制泄露其守卫(切换上下文后,在switch_finish_hook中会释放锁)
  335. let next_arch = SpinLockGuard::leak(next.arch_info_irqsave()) as *mut ArchPCBInfo;
  336. let prev_arch = SpinLockGuard::leak(prev.arch_info_irqsave()) as *mut ArchPCBInfo;
  337. (*prev_arch).rip = switch_back as usize;
  338. // 恢复当前的 preempt count*2
  339. ProcessManager::current_pcb().preempt_enable();
  340. ProcessManager::current_pcb().preempt_enable();
  341. // 切换tss
  342. TSSManager::current_tss().set_rsp(
  343. x86::Ring::Ring0,
  344. next.kernel_stack().stack_max_address().data() as u64,
  345. );
  346. PROCESS_SWITCH_RESULT.as_mut().unwrap().get_mut().prev_pcb = Some(prev);
  347. PROCESS_SWITCH_RESULT.as_mut().unwrap().get_mut().next_pcb = Some(next);
  348. // debug!("switch tss ok");
  349. compiler_fence(Ordering::SeqCst);
  350. // 正式切换上下文
  351. switch_to_inner(prev_arch, next_arch);
  352. }
  353. unsafe fn switch_gsbase(prev: &Arc<ProcessControlBlock>, next: &Arc<ProcessControlBlock>) {
  354. asm!("swapgs", options(nostack, preserves_flags));
  355. prev.arch_info_irqsave().save_gsbase();
  356. next.arch_info_irqsave().restore_gsbase();
  357. // 将下一个进程的kstack写入kernel_gsbase
  358. next.arch_info_irqsave().store_kernel_gsbase();
  359. asm!("swapgs", options(nostack, preserves_flags));
  360. }
  361. }
  362. /// 保存上下文,然后切换进程,接着jmp到`switch_finish_hook`钩子函数
  363. #[naked]
  364. unsafe extern "sysv64" fn switch_to_inner(prev: *mut ArchPCBInfo, next: *mut ArchPCBInfo) {
  365. core::arch::naked_asm!(
  366. // As a quick reminder for those who are unfamiliar with the System V ABI (extern "C"):
  367. //
  368. // - the current parameters are passed in the registers `rdi`, `rsi`,
  369. // - we can modify scratch registers, e.g. rax
  370. // - we cannot change callee-preserved registers arbitrarily, e.g. rbx, which is why we
  371. // store them here in the first place.
  372. concat!("
  373. // Save old registers, and load new ones
  374. mov [rdi + {off_rbx}], rbx
  375. mov rbx, [rsi + {off_rbx}]
  376. mov [rdi + {off_r12}], r12
  377. mov r12, [rsi + {off_r12}]
  378. mov [rdi + {off_r13}], r13
  379. mov r13, [rsi + {off_r13}]
  380. mov [rdi + {off_r14}], r14
  381. mov r14, [rsi + {off_r14}]
  382. mov [rdi + {off_r15}], r15
  383. mov r15, [rsi + {off_r15}]
  384. // switch segment registers (这些寄存器只能通过接下来的switch_hook的return来切换)
  385. mov [rdi + {off_fs}], fs
  386. mov [rdi + {off_gs}], gs
  387. // mov fs, [rsi + {off_fs}]
  388. // mov gs, [rsi + {off_gs}]
  389. mov [rdi + {off_rbp}], rbp
  390. mov rbp, [rsi + {off_rbp}]
  391. mov [rdi + {off_rsp}], rsp
  392. mov rsp, [rsi + {off_rsp}]
  393. // // push RFLAGS (can only be modified via stack)
  394. pushfq
  395. // // pop RFLAGS into `self.rflags`
  396. pop QWORD PTR [rdi + {off_rflags}]
  397. // // push `next.rflags`
  398. push QWORD PTR [rsi + {off_rflags}]
  399. // // pop into RFLAGS
  400. popfq
  401. // push next rip to stack
  402. push QWORD PTR [rsi + {off_rip}]
  403. // When we return, we cannot even guarantee that the return address on the stack, points to
  404. // the calling function. Thus, we have to execute this Rust hook by
  405. // ourselves, which will unlock the contexts before the later switch.
  406. // Note that switch_finish_hook will be responsible for executing `ret`.
  407. jmp {switch_hook}
  408. "),
  409. off_rflags = const(offset_of!(ArchPCBInfo, rflags)),
  410. off_rbx = const(offset_of!(ArchPCBInfo, rbx)),
  411. off_r12 = const(offset_of!(ArchPCBInfo, r12)),
  412. off_r13 = const(offset_of!(ArchPCBInfo, r13)),
  413. off_r14 = const(offset_of!(ArchPCBInfo, r14)),
  414. off_rbp = const(offset_of!(ArchPCBInfo, rbp)),
  415. off_rsp = const(offset_of!(ArchPCBInfo, rsp)),
  416. off_r15 = const(offset_of!(ArchPCBInfo, r15)),
  417. off_rip = const(offset_of!(ArchPCBInfo, rip)),
  418. off_fs = const(offset_of!(ArchPCBInfo, fs)),
  419. off_gs = const(offset_of!(ArchPCBInfo, gs)),
  420. switch_hook = sym crate::process::switch_finish_hook,
  421. );
  422. }
  423. #[naked]
  424. unsafe extern "sysv64" fn switch_back() -> ! {
  425. core::arch::naked_asm!("ret");
  426. }
  427. pub unsafe fn arch_switch_to_user(trap_frame: TrapFrame) -> ! {
  428. // 以下代码不能发生中断
  429. CurrentIrqArch::interrupt_disable();
  430. let current_pcb = ProcessManager::current_pcb();
  431. let trap_frame_vaddr = VirtAddr::new(
  432. current_pcb.kernel_stack().stack_max_address().data() - core::mem::size_of::<TrapFrame>(),
  433. );
  434. // debug!("trap_frame_vaddr: {:?}", trap_frame_vaddr);
  435. assert!(
  436. (x86::current::registers::rsp() as usize) < trap_frame_vaddr.data(),
  437. "arch_switch_to_user(): current_rsp >= fake trap
  438. frame vaddr, this may cause some illegal access to memory!
  439. rsp: {:#x}, trap_frame_vaddr: {:#x}",
  440. x86::current::registers::rsp() as usize,
  441. trap_frame_vaddr.data()
  442. );
  443. let new_rip = VirtAddr::new(ret_from_intr as usize);
  444. let mut arch_guard = current_pcb.arch_info_irqsave();
  445. arch_guard.rsp = trap_frame_vaddr.data();
  446. arch_guard.fs = USER_DS;
  447. arch_guard.gs = USER_DS;
  448. // 将内核gs数据压进cpu
  449. arch_guard.store_kernel_gsbase();
  450. switch_fs_and_gs(
  451. SegmentSelector::from_bits_truncate(arch_guard.fs.bits()),
  452. SegmentSelector::from_bits_truncate(arch_guard.gs.bits()),
  453. );
  454. arch_guard.rip = new_rip.data();
  455. drop(arch_guard);
  456. drop(current_pcb);
  457. compiler_fence(Ordering::SeqCst);
  458. // 重要!在这里之后,一定要保证上面的引用计数变量、动态申请的变量、锁的守卫都被drop了,否则可能导致内存安全问题!
  459. compiler_fence(Ordering::SeqCst);
  460. ready_to_switch_to_user(trap_frame, trap_frame_vaddr.data(), new_rip.data());
  461. }
  462. /// 由于需要依赖ret来切换到用户态,所以不能inline
  463. #[inline(never)]
  464. unsafe extern "sysv64" fn ready_to_switch_to_user(
  465. trap_frame: TrapFrame,
  466. trapframe_vaddr: usize,
  467. new_rip: usize,
  468. ) -> ! {
  469. *(trapframe_vaddr as *mut TrapFrame) = trap_frame;
  470. compiler_fence(Ordering::SeqCst);
  471. asm!(
  472. "swapgs",
  473. "mov rsp, {trapframe_vaddr}",
  474. "push {new_rip}",
  475. "ret",
  476. trapframe_vaddr = in(reg) trapframe_vaddr,
  477. new_rip = in(reg) new_rip
  478. );
  479. unreachable!()
  480. }
  481. // bitflags! {
  482. // pub struct ProcessThreadFlags: u32 {
  483. // /*
  484. // * thread information flags
  485. // * - these are process state flags that various assembly files
  486. // * may need to access
  487. // */
  488. // const TIF_NOTIFY_RESUME = 1 << 1; /* callback before returning to user */
  489. // const TIF_SIGPENDING = 1 << 2; /* signal pending */
  490. // const TIF_NEED_RESCHED = 1 << 3; /* rescheduling necessary */
  491. // const TIF_SINGLESTEP = 1 << 4; /* reenable singlestep on user return*/
  492. // const TIF_SSBD = 1 << 5; /* Speculative store bypass disable */
  493. // const TIF_SPEC_IB = 1 << 9; /* Indirect branch speculation mitigation */
  494. // const TIF_SPEC_L1D_FLUSH = 1 << 10; /* Flush L1D on mm switches (processes) */
  495. // const TIF_USER_RETURN_NOTIFY = 1 << 11; /* notify kernel of userspace return */
  496. // const TIF_UPROBE = 1 << 12; /* breakpointed or singlestepping */
  497. // const TIF_PATCH_PENDING = 1 << 13; /* pending live patching update */
  498. // const TIF_NEED_FPU_LOAD = 1 << 14; /* load FPU on return to userspace */
  499. // const TIF_NOCPUID = 1 << 15; /* CPUID is not accessible in userland */
  500. // const TIF_NOTSC = 1 << 16; /* TSC is not accessible in userland */
  501. // const TIF_NOTIFY_SIGNAL = 1 << 17; /* signal notifications exist */
  502. // const TIF_MEMDIE = 1 << 20; /* is terminating due to OOM killer */
  503. // const TIF_POLLING_NRFLAG = 1 << 21; /* idle is polling for TIF_NEED_RESCHED */
  504. // const TIF_IO_BITMAP = 1 << 22; /* uses I/O bitmap */
  505. // const TIF_SPEC_FORCE_UPDATE = 1 << 23; /* Force speculation MSR update in context switch */
  506. // const TIF_FORCED_TF = 1 << 24; /* true if TF in eflags artificially */
  507. // const TIF_BLOCKSTEP = 1 << 25; /* set when we want DEBUGCTLMSR_BTF */
  508. // const TIF_LAZY_MMU_UPDATES = 1 << 27; /* task is updating the mmu lazily */
  509. // const TIF_ADDR32 = 1 << 29; /* 32-bit address space on 64 bits */
  510. // }
  511. // }