process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. /**
  10. * @brief 切换进程
  11. *
  12. * @param prev 上一个进程的pcb
  13. * @param next 将要切换到的进程的pcb
  14. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  15. * 这里切换fs和gs寄存器
  16. */
  17. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  18. {
  19. initial_tss[0].rsp0 = next->thread->rbp;
  20. kdebug("phys_2_virt(TSS64_Table)=%#018lx", phys_2_virt(TSS64_Table));
  21. set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  22. initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  23. kdebug("prev->thread=%#018lx", prev->thread);
  24. kdebug("next->thread=%#018lx", next->thread);
  25. __asm__ __volatile__("movq %%fs, %0 \n\t"
  26. : "=a"(prev->thread->fs)::"memory");
  27. __asm__ __volatile__("movq %%gs, %0 \n\t"
  28. : "=a"(prev->thread->gs)::"memory");
  29. kdebug("&next->thread->fs=%#018lx", &(next->thread->fs));
  30. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs)
  31. : "memory");
  32. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs)
  33. : "memory");
  34. kdebug("prev->thread->rsp0:%#018lx\n", prev->thread->rbp);
  35. kdebug("next->thread->rsp0:%#018lx\n", next->thread->rbp);
  36. }
  37. /**
  38. * @brief 这是一个用户态的程序
  39. *
  40. */
  41. void user_level_function()
  42. {
  43. // kinfo("Program (user_level_function) is runing...");
  44. // kinfo("Try to enter syscall id 15...");
  45. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  46. hlt();
  47. enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  48. kinfo("Return from syscall id 15...");
  49. while (1)
  50. ;
  51. }
  52. /**
  53. * @brief 使当前进程去执行新的代码
  54. *
  55. * @param regs 当前进程的寄存器
  56. * @return ul 错误码
  57. */
  58. ul do_execve(struct pt_regs *regs)
  59. {
  60. // 选择这两个寄存器是对应了sysexit指令的需要
  61. regs->rdx = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  62. regs->rcx = 0xa00000; // rsp 应用层程序的栈顶地址
  63. regs->rax = 1;
  64. regs->ds = 0;
  65. regs->es = 0;
  66. kdebug("do_execve is running...");
  67. // 映射起始页面
  68. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  69. uint64_t addr = 0x800000UL;
  70. unsigned long * tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + (( addr>> PAGE_GDT_SHIFT) & 0x1ff));
  71. unsigned long * virtual = kmalloc(PAGE_4K_SIZE, 0);
  72. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  73. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  74. virtual = kmalloc(PAGE_4K_SIZE, 0);
  75. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  76. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  77. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  78. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  79. flush_tlb();
  80. /*
  81. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  82. */ if (!(current_pcb->flags & PF_KTHREAD))
  83. current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
  84. // 将程序代码拷贝到对应的内存中
  85. memcpy((void *)0x800000, user_level_function, 1024);
  86. kdebug("program copied!");
  87. return 0;
  88. }
  89. /**
  90. * @brief 内核init进程
  91. *
  92. * @param arg
  93. * @return ul 参数
  94. */
  95. ul initial_kernel_thread(ul arg)
  96. {
  97. kinfo("initial proc running...\targ:%#018lx", arg);
  98. struct pt_regs *regs;
  99. current_pcb->thread->rip = (ul)ret_from_system_call;
  100. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  101. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  102. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  103. regs = (struct pt_regs *)current_pcb->thread->rsp;
  104. current_pcb->flags = 0;
  105. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  106. __asm__ __volatile__("movq %1, %%rsp \n\t"
  107. "pushq %2 \n\t"
  108. "jmp do_execve \n\t" ::"D"(regs),
  109. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  110. : "memory");
  111. return 1;
  112. }
  113. /**
  114. * @brief 进程退出时执行的函数
  115. *
  116. * @param code 返回码
  117. * @return ul
  118. */
  119. ul process_thread_do_exit(ul code)
  120. {
  121. kinfo("thread_exiting..., code is %#018lx.", code);
  122. while (1)
  123. ;
  124. }
  125. /**
  126. * @brief 导出内核线程的执行引导程序
  127. * 目的是还原执行现场(在kernel_thread中伪造的)
  128. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  129. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  130. */
  131. extern void kernel_thread_func(void);
  132. __asm__(
  133. "kernel_thread_func: \n\t"
  134. " popq %r15 \n\t"
  135. " popq %r14 \n\t"
  136. " popq %r13 \n\t"
  137. " popq %r12 \n\t"
  138. " popq %r11 \n\t"
  139. " popq %r10 \n\t"
  140. " popq %r9 \n\t"
  141. " popq %r8 \n\t"
  142. " popq %rbx \n\t"
  143. " popq %rcx \n\t"
  144. " popq %rdx \n\t"
  145. " popq %rsi \n\t"
  146. " popq %rdi \n\t"
  147. " popq %rbp \n\t"
  148. " popq %rax \n\t"
  149. " movq %rax, %ds \n\t"
  150. " popq %rax \n\t"
  151. " movq %rax, %es \n\t"
  152. " popq %rax \n\t"
  153. " addq $0x38, %rsp \n\t"
  154. /////////////////////////////////
  155. " movq %rdx, %rdi \n\t"
  156. " callq *%rbx \n\t"
  157. " movq %rax, %rdi \n\t"
  158. " callq process_thread_do_exit \n\t");
  159. /**
  160. * @brief 初始化内核进程
  161. *
  162. * @param fn 目标程序的地址
  163. * @param arg 向目标程序传入的参数
  164. * @param flags
  165. * @return int
  166. */
  167. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  168. {
  169. struct pt_regs regs;
  170. memset(&regs, 0, sizeof(regs));
  171. // 在rbx寄存器中保存进程的入口地址
  172. regs.rbx = (ul)fn;
  173. // 在rdx寄存器中保存传入的参数
  174. regs.rdx = (ul)arg;
  175. regs.ds = KERNEL_DS;
  176. regs.es = KERNEL_DS;
  177. regs.cs = KERNEL_CS;
  178. regs.ss = KERNEL_DS;
  179. // 置位中断使能标志位
  180. regs.rflags = (1 << 9);
  181. // rip寄存器指向内核线程的引导程序
  182. regs.rip = (ul)kernel_thread_func;
  183. return do_fork(&regs, flags, 0, 0);
  184. }
  185. /**
  186. * @brief 初始化进程模块
  187. * ☆前置条件:已完成系统调用模块的初始化
  188. */
  189. void process_init()
  190. {
  191. kinfo("Initializing process...");
  192. initial_mm.pgd = (pml4t_t *)global_CR3;
  193. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  194. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  195. initial_mm.data_addr_start = (ul)&_data;
  196. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  197. initial_mm.rodata_addr_start = (ul)&_rodata;
  198. initial_mm.rodata_addr_end = (ul)&_erodata;
  199. initial_mm.brk_start = 0;
  200. initial_mm.brk_end = memory_management_struct.kernel_end;
  201. initial_mm.stack_start = *(ul *)phys_2_virt(&_stack_start);
  202. // 初始化进程和tss
  203. set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  204. initial_tss[0].rsp0 = initial_thread.rbp;
  205. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  206. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  207. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  208. // 初始化进程的循环链表
  209. list_init(&initial_proc_union.pcb.list);
  210. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  211. initial_proc_union.pcb.state = PROC_RUNNING;
  212. // 获取新的进程的pcb
  213. struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  214. kdebug("Ready to switch...");
  215. // 切换到新的内核线程
  216. switch_proc(current_pcb, p);
  217. }
  218. /**
  219. * @brief fork当前进程
  220. *
  221. * @param regs 新的寄存器值
  222. * @param clone_flags 克隆标志
  223. * @param stack_start 堆栈开始地址
  224. * @param stack_size 堆栈大小
  225. * @return unsigned long
  226. */
  227. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  228. {
  229. struct process_control_block *tsk = NULL;
  230. // 获取一个物理页并在这个物理页内初始化pcb
  231. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  232. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  233. memset(tsk, 0, sizeof(struct process_control_block));
  234. // 将当前进程的pcb复制到新的pcb内
  235. *tsk = *current_pcb;
  236. // 将进程加入循环链表
  237. list_init(&tsk->list);
  238. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  239. tsk->priority = 2;
  240. ++(tsk->pid);
  241. tsk->state = PROC_UNINTERRUPTIBLE;
  242. // 将线程结构体放置在pcb的后面
  243. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  244. tsk->thread = thd;
  245. // 将寄存器信息存储到进程的内核栈空间的顶部
  246. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  247. // 设置进程的内核栈
  248. thd->rbp = (ul)tsk + STACK_SIZE;
  249. thd->rip = regs->rip;
  250. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  251. thd->fs = KERNEL_DS;
  252. thd->gs = KERNEL_DS;
  253. // 若进程不是内核层的进程,则跳转到ret from system call
  254. if (!(tsk->flags & PF_KTHREAD))
  255. thd->rip = regs->rip = (ul)ret_from_system_call;
  256. tsk->state = PROC_RUNNING;
  257. sched_cfs_enqueue(tsk);
  258. return 0;
  259. }