123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- #include "dragonstub/elfloader.h"
- #include "dragonstub/printk.h"
- #include "efidef.h"
- #include <dragonstub/dragonstub.h>
- #include <libfdt.h>
- #include <libfdt_internal.h>
- struct exit_boot_struct {
- struct efi_boot_memmap *boot_memmap;
- efi_memory_desc_t *runtime_map;
- int runtime_entry_count;
- void *new_fdt_addr;
- };
- #define EFI_DT_ADDR_CELLS_DEFAULT 2
- #define EFI_DT_SIZE_CELLS_DEFAULT 2
- static void fdt_update_cell_size(void *fdt)
- {
- int offset;
- offset = fdt_path_offset(fdt, "/");
- /* Set the #address-cells and #size-cells values for an empty tree */
- fdt_setprop_u32(fdt, offset, "#address-cells",
- EFI_DT_ADDR_CELLS_DEFAULT);
- fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
- }
- static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
- {
- int node = fdt_path_offset(fdt, "/chosen");
- u64 fdt_val64;
- u32 fdt_val32;
- int err;
- if (node < 0)
- return EFI_LOAD_ERROR;
- fdt_val64 = cpu_to_fdt64((unsigned long)map->map);
- err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start",
- fdt_val64);
- if (err)
- return EFI_LOAD_ERROR;
- fdt_val32 = cpu_to_fdt32(map->map_size);
- err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size",
- fdt_val32);
- if (err)
- return EFI_LOAD_ERROR;
- fdt_val32 = cpu_to_fdt32(map->desc_size);
- err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size",
- fdt_val32);
- if (err)
- return EFI_LOAD_ERROR;
- fdt_val32 = cpu_to_fdt32(map->desc_ver);
- err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver",
- fdt_val32);
- if (err)
- return EFI_LOAD_ERROR;
- return EFI_SUCCESS;
- }
- static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
- void *fdt, int new_fdt_size, char *cmdline_ptr)
- {
- int node, num_rsv;
- int status;
- u32 fdt_val32;
- u64 fdt_val64;
- /* Do some checks on provided FDT, if it exists: */
- if (orig_fdt) {
- if (fdt_check_header(orig_fdt)) {
- efi_err("Device Tree header not valid!\n");
- return EFI_LOAD_ERROR;
- }
- /*
- * We don't get the size of the FDT if we get if from a
- * configuration table:
- */
- if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
- efi_err("Truncated device tree! foo!\n");
- return EFI_LOAD_ERROR;
- }
- }
- if (orig_fdt) {
- status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
- } else {
- status = fdt_create_empty_tree(fdt, new_fdt_size);
- if (status == 0) {
- /*
- * Any failure from the following function is
- * non-critical:
- */
- fdt_update_cell_size(fdt);
- }
- }
- if (status != 0)
- goto fdt_set_fail;
- /*
- * Delete all memory reserve map entries. When booting via UEFI,
- * kernel will use the UEFI memory map to find reserved regions.
- */
- num_rsv = fdt_num_mem_rsv(fdt);
- while (num_rsv-- > 0)
- fdt_del_mem_rsv(fdt, num_rsv);
- node = fdt_subnode_offset(fdt, 0, "chosen");
- if (node < 0) {
- node = fdt_add_subnode(fdt, 0, "chosen");
- if (node < 0) {
- /* 'node' is an error code when negative: */
- status = node;
- goto fdt_set_fail;
- }
- }
- if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
- status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
- strlen(cmdline_ptr) + 1);
- if (status)
- goto fdt_set_fail;
- }
- /* Add FDT entries for EFI runtime services in chosen node. */
- node = fdt_subnode_offset(fdt, 0, "chosen");
- fdt_val64 = cpu_to_fdt64((u64)(unsigned long)ST);
- status = fdt_setprop_var(fdt, node, "linux,uefi-system-table",
- fdt_val64);
- if (status)
- goto fdt_set_fail;
- fdt_val64 = UINT64_MAX; /* placeholder */
- status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
- if (status)
- goto fdt_set_fail;
- fdt_val32 = UINT32_MAX; /* placeholder */
- status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
- if (status)
- goto fdt_set_fail;
- status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size",
- fdt_val32);
- if (status)
- goto fdt_set_fail;
- status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver",
- fdt_val32);
- if (status)
- goto fdt_set_fail;
- bool enalbed_ramdomize_base = false;
- #ifdef CONFIG_RANDOMIZE_BASE
- enalbed_ramdomize_base = true;
- #endif
- if (enalbed_ramdomize_base && !efi_nokaslr) {
- efi_status_t efi_status;
- efi_status = efi_get_random_bytes(sizeof(fdt_val64),
- (u8 *)&fdt_val64);
- if (efi_status == EFI_SUCCESS) {
- status = fdt_setprop_var(fdt, node, "kaslr-seed",
- fdt_val64);
- if (status)
- goto fdt_set_fail;
- }
- }
- /* Shrink the FDT back to its minimum size: */
- fdt_pack(fdt);
- return EFI_SUCCESS;
- fdt_set_fail:
- if (status == -FDT_ERR_NOSPACE)
- return EFI_BUFFER_TOO_SMALL;
- return EFI_LOAD_ERROR;
- }
- static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
- {
- struct exit_boot_struct *p = priv;
- p->boot_memmap = map;
- /*
- * Update the memory map with virtual addresses. The function will also
- * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
- * entries so that we can pass it straight to SetVirtualAddressMap()
- */
- efi_get_virtmap(map->map, map->map_size, map->desc_size, p->runtime_map,
- &p->runtime_entry_count);
- return update_fdt_memmap(p->new_fdt_addr, map);
- }
- /*
- * Allocate memory for a new FDT, then add EFI and commandline related fields
- * to the FDT. This routine increases the FDT allocation size until the
- * allocated memory is large enough. EFI allocations are in EFI_PAGE_SIZE
- * granules, which are fixed at 4K bytes, so in most cases the first allocation
- * should succeed. EFI boot services are exited at the end of this function.
- * There must be no allocations between the get_memory_map() call and the
- * exit_boot_services() call, so the exiting of boot services is very tightly
- * tied to the creation of the FDT with the final memory map in it.
- */
- static efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
- efi_loaded_image_t *image,
- unsigned long *new_fdt_addr,
- char *cmdline_ptr)
- {
- unsigned long desc_size;
- u32 desc_ver;
- efi_status_t status;
- struct exit_boot_struct priv = { 0 };
- unsigned long fdt_addr = 0;
- unsigned long fdt_size = 0;
- if (!efi_novamap) {
- status = efi_alloc_virtmap(&priv.runtime_map, &desc_size,
- &desc_ver);
- if (status != EFI_SUCCESS) {
- efi_err("Unable to retrieve UEFI memory map.\n");
- return status;
- }
- }
- /*
- * Unauthenticated device tree data is a security hazard, so ignore
- * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
- * boot is enabled if we can't determine its state.
- */
- bool config_efi_armstub_dtb_loader = false;
- #ifdef CONFIG_EFI_ARMSTUB_DTB_LOADER
- config_efi_armstub_dtb_loader = true;
- #endif
- print_efi_secureboot_mode(efi_get_secureboot());
- if (!config_efi_armstub_dtb_loader ||
- efi_get_secureboot() != efi_secureboot_mode_disabled) {
- if (strstr(cmdline_ptr, "dtb="))
- efi_err("Ignoring DTB from command line.\n");
- } else {
- efi_todo("Load DTB from command line\n");
- // status = efi_load_dtb(image, &fdt_addr, &fdt_size);
- // if (status != EFI_SUCCESS && status != EFI_NOT_READY) {
- // efi_err("Failed to load device tree!\n");
- // goto fail;
- // }
- }
- if (fdt_addr) {
- efi_info("Using DTB from command line\n");
- } else {
- /* Look for a device tree configuration table entry. */
- fdt_addr = (uintptr_t)get_fdt(&fdt_size);
- if (fdt_addr)
- efi_info("Using DTB from configuration table\n");
- }
- if (!fdt_addr)
- efi_info("Generating empty DTB\n");
- status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
- if (status != EFI_SUCCESS) {
- efi_err("Unable to allocate memory for new device tree.\n");
- goto fail;
- }
- efi_debug("New FDT address: 0x%lx\n", *new_fdt_addr);
- efi_info("Generating new FDT...\n");
- status = update_fdt((void *)fdt_addr, fdt_size, (void *)*new_fdt_addr,
- MAX_FDT_SIZE, cmdline_ptr);
- if (status != EFI_SUCCESS) {
- efi_err("Unable to construct new device tree.\n");
- goto fail_free_new_fdt;
- }
- priv.new_fdt_addr = (void *)*new_fdt_addr;
- efi_info("Exiting boot services...\n");
- status = efi_exit_boot_services(handle, &priv, exit_boot_func);
- if (status == EFI_SUCCESS) {
- efi_set_virtual_address_map_t *svam;
- if (efi_novamap)
- return EFI_SUCCESS;
- /* Install the new virtual address map */
- svam = ST->RuntimeServices->SetVirtualAddressMap;
- status = svam(priv.runtime_entry_count * desc_size, desc_size,
- desc_ver, priv.runtime_map);
- /*
- * We are beyond the point of no return here, so if the call to
- * SetVirtualAddressMap() failed, we need to signal that to the
- * incoming kernel but proceed normally otherwise.
- */
- if (status != EFI_SUCCESS) {
- efi_memory_desc_t *p;
- int l;
- /*
- * Set the virtual address field of all
- * EFI_MEMORY_RUNTIME entries to U64_MAX. This will
- * signal the incoming kernel that no virtual
- * translation has been installed.
- */
- for (l = 0; l < priv.boot_memmap->map_size;
- l += priv.boot_memmap->desc_size) {
- p = (void *)priv.boot_memmap->map + l;
- if (p->Attribute & EFI_MEMORY_RUNTIME)
- p->VirtualStart = UINT64_MAX;
- }
- }
- return EFI_SUCCESS;
- }
- efi_err("Exit boot services failed.\n");
- fail_free_new_fdt:
- efi_free(MAX_FDT_SIZE, *new_fdt_addr);
- fail:
- efi_free(fdt_size, fdt_addr);
- efi_bs_call(FreePool, priv.runtime_map);
- return EFI_LOAD_ERROR;
- }
- efi_status_t efi_boot_kernel(efi_handle_t handle,
- efi_loaded_image_t *loaded_image,
- struct payload_info *payload_info,
- char *cmdline_ptr)
- {
- unsigned long fdt_addr;
- efi_status_t status;
- efi_info("Loading ELF payload...\n");
- // 加载ELF
- status = load_elf(payload_info);
- if (status != EFI_SUCCESS) {
- efi_err("Failed to load ELF payload, efi error code: %d\n",
- status);
- return status;
- }
- efi_debug("kernel entry point: 0x%lx\n", payload_info->kernel_entry);
- status = allocate_new_fdt_and_exit_boot(handle, loaded_image, &fdt_addr,
- cmdline_ptr);
- if (status != EFI_SUCCESS) {
- efi_err("Failed to update FDT and exit boot services\n");
- return status;
- }
- #ifdef CONFIG_ARM
- efi_handle_post_ebs_state();
- #endif
- efi_enter_kernel(payload_info, fdt_addr,
- fdt_totalsize((void *)fdt_addr));
- /* not reached */
- }
- void *get_fdt(unsigned long *fdt_size)
- {
- void *fdt;
- fdt = get_efi_config_table(DEVICE_TREE_GUID);
- if (!fdt)
- return NULL;
- if (fdt_check_header(fdt) != 0) {
- efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
- return NULL;
- }
- *fdt_size = fdt_totalsize(fdt);
- return fdt;
- }
|