use crate::{ name_object::{name_seg, name_string, AmlName}, opcode::{self, ext_opcode, opcode}, parser::{ choice, comment_scope, comment_scope_verbose, make_parser_concrete, take, take_to_end_of_pkglength, take_u16, take_u32, take_u64, ParseResult, Parser, }, pkg_length::{pkg_length, PkgLength}, type1::type1_opcode, type2::type2_opcode, value::{AmlValue, FieldFlags, MethodFlags, RegionSpace}, AmlContext, AmlError, }; use alloc::{string::String, vec::Vec}; use core::str; /// `TermList`s are usually found within explicit-length objects (so they have a `PkgLength` /// elsewhere in the structure), so this takes a number of bytes to parse. pub fn term_list<'a, 'c>(list_length: PkgLength) -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * TermList := Nothing | */ move |mut input: &'a [u8], mut context: &'c mut AmlContext| { while list_length.still_parsing(input) { // TODO: currently, we ignore the value of the expression. We may need to propagate // this. let (new_input, new_context, _) = term_object().parse(input, context)?; input = new_input; context = new_context; } Ok((input, context, ())) } } pub fn term_object<'a, 'c>() -> impl Parser<'a, 'c, Option> where 'c: 'a, { /* * TermObj := NamespaceModifierObj | NamedObj | Type1Opcode | Type2Opcode */ comment_scope_verbose( "TermObj", choice!( namespace_modifier().map(|()| Ok(None)), named_obj().map(|()| Ok(None)), type1_opcode().map(|()| Ok(None)), type2_opcode().map(|value| Ok(Some(value))) ), ) } pub fn namespace_modifier<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * NamespaceModifierObj := DefAlias | DefName | DefScope */ choice!(def_name(), def_scope()) } pub fn named_obj<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * NamedObj := DefBankField | DefCreateBitField | DefCreateByteField | DefCreateDWordField | * DefCreateField | DefCreateQWordField | DefCreateWordField | DefDataRegion | * DefExternal | DefOpRegion | DefPowerRes | DefProcessor | DefThermalZone | * DefMethod | DefMutex * * XXX: DefMethod and DefMutex (at least) are not included in any rule in the AML grammar, * but are defined in the NamedObj section so we assume they're part of NamedObj */ comment_scope_verbose( "NamedObj", choice!(def_op_region(), def_field(), def_method(), def_device(), def_processor(), def_mutex()), ) } pub fn def_name<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefName := 0x08 NameString DataRefObject */ opcode(opcode::DEF_NAME_OP) .then(comment_scope( "DefName", name_string().then(data_ref_object()).map_with_context(|(name, data_ref_object), context| { context.add_to_namespace(name, AmlValue::Name(box data_ref_object)); (Ok(()), context) }), )) .discard_result() } pub fn def_scope<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefScope := 0x10 PkgLength NameString TermList */ opcode(opcode::DEF_SCOPE_OP) .then(comment_scope( "DefScope", pkg_length() .then(name_string()) .map_with_context(|(length, name), context| { let previous_scope = context.current_scope.clone(); context.current_scope = context.resolve_path(&name); (Ok((length, name, previous_scope)), context) }) .feed(|(pkg_length, name, previous_scope)| { term_list(pkg_length).map(move |_| Ok((name.clone(), previous_scope.clone()))) }) .map_with_context(|(name, previous_scope), context| { context.current_scope = previous_scope; (Ok(()), context) }), )) .discard_result() } pub fn def_op_region<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefOpRegion := ExtOpPrefix 0x80 NameString RegionSpace RegionOffset RegionLen * RegionSpace := ByteData (where 0x00 = SystemMemory * 0x01 = SystemIO * 0x02 = PciConfig * 0x03 = EmbeddedControl * 0x04 = SMBus * 0x05 = SystemCMOS * 0x06 = PciBarTarget * 0x07 = IPMI * 0x08 = GeneralPurposeIO * 0x09 = GenericSerialBus * 0x80-0xff = OEM Defined) * ByteData := 0x00 - 0xff * RegionOffset := TermArg => Integer * RegionLen := TermArg => Integer */ ext_opcode(opcode::EXT_DEF_OP_REGION_OP) .then(comment_scope( "DefOpRegion", name_string().then(take()).then(term_arg()).then(term_arg()).map_with_context( |(((name, space), offset), length), context| { let region = match space { 0x00 => RegionSpace::SystemMemory, 0x01 => RegionSpace::SystemIo, 0x02 => RegionSpace::PciConfig, 0x03 => RegionSpace::EmbeddedControl, 0x04 => RegionSpace::SMBus, 0x05 => RegionSpace::SystemCmos, 0x06 => RegionSpace::PciBarTarget, 0x07 => RegionSpace::IPMI, 0x08 => RegionSpace::GeneralPurposeIo, 0x09 => RegionSpace::GenericSerialBus, space @ 0x80..=0xff => RegionSpace::OemDefined(space), byte => return (Err(AmlError::InvalidRegionSpace(byte)), context), }; let offset = match offset.as_integer() { Ok(offset) => offset, Err(err) => return (Err(err), context), }; let length = match length.as_integer() { Ok(length) => length, Err(err) => return (Err(err), context), }; context.add_to_namespace(name, AmlValue::OpRegion { region, offset, length }); (Ok(()), context) }, ), )) .discard_result() } pub fn def_field<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefField = ExtOpPrefix 0x81 PkgLength NameString FieldFlags FieldList * FieldFlags := ByteData */ ext_opcode(opcode::EXT_DEF_FIELD_OP) .then(comment_scope( "DefField", pkg_length().then(name_string()).then(take()).feed(|((list_length, region_name), flags)| { move |mut input: &'a [u8], mut context: &'c mut AmlContext| -> ParseResult<'a, 'c, ()> { /* * FieldList := Nothing | */ // TODO: can this pattern be expressed as a combinator let mut current_offset = 0; while list_length.still_parsing(input) { let (new_input, new_context, field_length) = field_element(region_name.clone(), FieldFlags::new(flags), current_offset) .parse(input, context)?; input = new_input; context = new_context; current_offset += field_length; } Ok((input, context, ())) } }), )) .discard_result() } /// Parses a `FieldElement`. Takes the current offset within the field list, and returns the length /// of the field element parsed. pub fn field_element<'a, 'c>( region_name: AmlName, flags: FieldFlags, current_offset: u64, ) -> impl Parser<'a, 'c, u64> where 'c: 'a, { /* * FieldElement := NamedField | ReservedField | AccessField | ExtendedAccessField | * ConnectField * NamedField := NameSeg PkgLength * ReservedField := 0x00 PkgLength * AccessField := 0x01 AccessType AccessAttrib * ConnectField := <0x02 NameString> | <0x02 BufferData> * ExtendedAccessField := 0x03 AccessType ExtendedAccessAttrib AccessLength * * AccessType := ByteData * AccessAttrib := ByteData * * XXX: The spec says a ConnectField can be <0x02 BufferData>, but BufferData isn't an AML * object (it seems to be defined in ASL). We treat BufferData as if it was encoded like * DefBuffer, and this seems to work so far. */ // TODO: parse ConnectField and ExtendedAccessField /* * Reserved fields shouldn't actually be added to the namespace; they seem to show gaps in * the operation region that aren't used for anything. */ let reserved_field = opcode(opcode::RESERVED_FIELD).then(pkg_length()).map(|((), length)| Ok(length.raw_length as u64)); // TODO: work out what to do with an access field // let access_field = opcode(opcode::ACCESS_FIELD) // .then(take()) // .then(take()) // .map_with_context(|(((), access_type), access_attrib), context| (Ok( , context)); let named_field = name_seg().then(pkg_length()).map_with_context(move |(name_seg, length), context| { context.add_to_namespace( AmlName::from_name_seg(name_seg), AmlValue::Field { region: region_name.clone(), flags, offset: current_offset, length: length.raw_length as u64, }, ); (Ok(length.raw_length as u64), context) }); choice!(reserved_field, named_field) } pub fn def_method<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefMethod := 0x14 PkgLength NameString MethodFlags TermList * MethodFlags := ByteData (where bits 0-2: ArgCount (0 to 7) * bit 3: SerializeFlag (0 = Not Serialized, 1 = Serialized) * bits 4-7: SyncLevel (0x00 to 0x0f)) */ opcode(opcode::DEF_METHOD_OP) .then(comment_scope( "DefMethod", pkg_length() .then(name_string()) .then(take()) .feed(|((length, name), flags)| { take_to_end_of_pkglength(length).map(move |code| Ok((name.clone(), flags, code))) }) .map_with_context(|(name, flags, code), context| { context.add_to_namespace( name, AmlValue::Method { flags: MethodFlags::new(flags), code: code.to_vec() }, ); (Ok(()), context) }), )) .discard_result() } pub fn def_device<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefDevice := ExtOpPrefix 0x82 PkgLength NameString TermList */ ext_opcode(opcode::EXT_DEF_DEVICE_OP) .then(comment_scope( "DefDevice", pkg_length() .then(name_string()) .map_with_context(|(length, name), context| { context.add_to_namespace(name.clone(), AmlValue::Device); let previous_scope = context.current_scope.clone(); context.current_scope = context.resolve_path(&name); (Ok((length, previous_scope)), context) }) .feed(|(length, previous_scope)| term_list(length).map(move |_| Ok(previous_scope.clone()))) .map_with_context(|previous_scope, context| { context.current_scope = previous_scope; (Ok(()), context) }), )) .discard_result() } pub fn def_processor<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefProcessor := ExtOpPrefix 0x83 PkgLength NameString ProcID PblkAddress PblkLen TermList * ProcID := ByteData * PblkAddress := DWordData * PblkLen := ByteData */ ext_opcode(opcode::EXT_DEF_PROCESSOR_OP) .then(comment_scope( "DefProcessor", pkg_length() .then(name_string()) .then(take()) .then(take_u32()) .then(take()) .feed(|((((pkg_length, name), proc_id), pblk_address), pblk_len)| { term_list(pkg_length).map(move |_| Ok((name.clone(), proc_id, pblk_address, pblk_len))) }) .map_with_context(|(name, id, pblk_address, pblk_len), context| { context.add_to_namespace(name, AmlValue::Processor { id, pblk_address, pblk_len }); (Ok(()), context) }), )) .discard_result() } pub fn def_mutex<'a, 'c>() -> impl Parser<'a, 'c, ()> where 'c: 'a, { /* * DefMutex := ExtOpPrefix 0x01 NameString SyncFlags * SyncFlags := ByteData (where bits 0-3: SyncLevel * bits 4-7: Reserved) */ ext_opcode(opcode::EXT_DEF_MUTEX_OP) .then(comment_scope( "DefMutex", name_string().then(take()).map_with_context(|(name, sync_level), context| { context.add_to_namespace(name, AmlValue::Mutex { sync_level }); (Ok(()), context) }), )) .discard_result() } pub fn def_buffer<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { /* * DefBuffer := 0x11 PkgLength BufferSize ByteList * BufferSize := TermArg => Integer * * XXX: The spec says that zero-length buffers (e.g. the PkgLength is 0) are illegal, but * we've encountered them in QEMU-generated tables, so we return an empty buffer in these * cases. */ opcode(opcode::DEF_BUFFER_OP) .then(comment_scope( "DefBuffer", pkg_length().then(term_arg()).feed(|(pkg_length, buffer_size)| { take_to_end_of_pkglength(pkg_length) .map(move |bytes| Ok((bytes.to_vec(), buffer_size.as_integer()?))) }), )) .map(|((), (bytes, buffer_size))| Ok(AmlValue::Buffer { bytes, size: buffer_size })) } pub fn def_package<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { /* * DefPackage := 0x12 PkgLength NumElements PackageElementList * NumElements := ByteData * PackageElementList := Nothing | * PackageElement := DataRefObject | NameString */ opcode(opcode::DEF_PACKAGE_OP) .then(comment_scope( "DefPackage", pkg_length().then(take()).feed(|(pkg_length, num_elements)| { move |mut input, mut context| { let mut package_contents = Vec::new(); while pkg_length.still_parsing(input) { let (new_input, new_context, value) = package_element().parse(input, context)?; input = new_input; context = new_context; package_contents.push(value); } assert_eq!(package_contents.len(), num_elements as usize); Ok((input, context, AmlValue::Package(package_contents))) } }), )) .map(|((), package)| Ok(package)) } pub fn package_element<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { choice!(data_ref_object(), name_string().map(|string| Ok(AmlValue::String(string.as_string())))) } pub fn term_arg<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { /* * TermArg := Type2Opcode | DataObject | ArgObj | LocalObj */ // TODO: this doesn't yet parse ArgObj, or LocalObj comment_scope_verbose("TermArg", choice!(data_object(), make_parser_concrete!(type2_opcode()))) } pub fn data_ref_object<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { /* * DataRefObject := DataObject | ObjectReference | DDBHandle */ comment_scope_verbose("DataRefObject", choice!(data_object())) } pub fn data_object<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { /* * DataObject := DefPackage | DefVarPackage | ComputationalData * * The order of the parsers are important here, as DefPackage and DefVarPackage can be * accidently parsed as ComputationalDatas. */ // TODO: this doesn't yet parse DefVarPackage comment_scope_verbose("DataObject", choice!(def_package(), computational_data())) } pub fn computational_data<'a, 'c>() -> impl Parser<'a, 'c, AmlValue> where 'c: 'a, { /* * ComputationalData := ByteConst | WordConst | DWordConst | QWordConst | String | * ConstObj | RevisionOp | DefBuffer * ByteConst := 0x0a ByteData * WordConst := 0x0b WordData * DWordConst := 0x0c DWordData * QWordConst := 0x0e QWordData * String := 0x0d AsciiCharList NullChar * ConstObj := ZeroOp(0x00) | OneOp(0x01) | OnesOp(0xff) * RevisionOp := ExtOpPrefix(0x5b) 0x30 */ let const_parser = |input: &'a [u8], context: &'c mut AmlContext| { let string_parser = |input: &'a [u8], context| -> ParseResult<'a, 'c, AmlValue> { /* * Using `position` isn't very efficient here, but is probably fine because the * strings are usually quite short. */ let nul_position = match input.iter().position(|&c| c == b'\0') { Some(position) => position, None => return Err((input, context, AmlError::UnterminatedStringConstant)), }; let string = String::from(match str::from_utf8(&input[0..nul_position]) { Ok(string) => string, Err(_) => return Err((input, context, AmlError::InvalidStringConstant)), }); Ok((&input[(nul_position + 1)..], context, AmlValue::String(string))) }; let (new_input, context, op) = take().parse(input, context)?; match op { opcode::BYTE_CONST => { take().map(|value| Ok(AmlValue::Integer(value as u64))).parse(new_input, context) } opcode::WORD_CONST => { take_u16().map(|value| Ok(AmlValue::Integer(value as u64))).parse(new_input, context) } opcode::DWORD_CONST => { take_u32().map(|value| Ok(AmlValue::Integer(value as u64))).parse(new_input, context) } opcode::QWORD_CONST => { take_u64().map(|value| Ok(AmlValue::Integer(value))).parse(new_input, context) } opcode::STRING_PREFIX => string_parser.parse(new_input, context), opcode::ZERO_OP => Ok((new_input, context, AmlValue::Integer(0))), opcode::ONE_OP => Ok((new_input, context, AmlValue::Integer(1))), opcode::ONES_OP => Ok((new_input, context, AmlValue::Integer(u64::max_value()))), _ => Err((input, context, AmlError::UnexpectedByte(op))), } }; comment_scope_verbose( "ComputationalData", choice!( ext_opcode(opcode::EXT_REVISION_OP) .map(|_| Ok(AmlValue::Integer(crate::AML_INTERPRETER_REVISION))), const_parser, make_parser_concrete!(def_buffer()) ), ) } #[cfg(test)] mod test { use super::*; use crate::test_utils::*; #[test] fn test_computational_data() { let mut context = AmlContext::new(); check_ok!( computational_data().parse(&[0x00, 0x34, 0x12], &mut context), AmlValue::Integer(0), &[0x34, 0x12] ); check_ok!( computational_data().parse(&[0x01, 0x18, 0xf3], &mut context), AmlValue::Integer(1), &[0x18, 0xf3] ); check_ok!( computational_data().parse(&[0xff, 0x98, 0xc3], &mut context), AmlValue::Integer(u64::max_value()), &[0x98, 0xc3] ); check_ok!( computational_data().parse(&[0x5b, 0x30], &mut context), AmlValue::Integer(crate::AML_INTERPRETER_REVISION), &[] ); check_ok!( computational_data().parse(&[0x0a, 0xf3, 0x35], &mut context), AmlValue::Integer(0xf3), &[0x35] ); check_ok!( computational_data().parse(&[0x0b, 0xf3, 0x35], &mut context), AmlValue::Integer(0x35f3), &[] ); check_ok!( computational_data().parse(&[0x0c, 0xf3, 0x35, 0x12, 0x65, 0xff, 0x00], &mut context), AmlValue::Integer(0x651235f3), &[0xff, 0x00] ); check_ok!( computational_data() .parse(&[0x0e, 0xf3, 0x35, 0x12, 0x65, 0xff, 0x00, 0x67, 0xde, 0x28], &mut context), AmlValue::Integer(0xde6700ff651235f3), &[0x28] ); check_ok!( computational_data().parse(&[0x0d, b'A', b'B', b'C', b'D', b'\0', 0xff, 0xf5], &mut context), AmlValue::String(String::from("ABCD")), &[0xff, 0xf5] ); } }