123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696 |
- //! `aml` is a pure-Rust AML (ACPI Machine Language) parser, used for parsing the DSDT and
- //! SSDT tables from ACPI. This crate can be used by kernels to gather information about the
- //! hardware, and invoke control methods (this is not yet supported) to query and change the state
- //! of devices in a hardware-independent way.
- //!
- //! ### Using the library
- //! To use the library, you will mostly interact with the `AmlContext` type. You should create an
- //! instance of this type using `AmlContext::new()`, and then pass it tables containing AML
- //! (probably from the `acpi` crate), which you've mapped into the virtual address space. This will
- //! parse the table, populating the namespace with objects encoded by the AML. After this, you may
- //! unmap the memory the table was mapped into - all the information needed will be extracted and
- //! allocated on the heap.
- //!
- //! You can then access specific objects by name like so: e.g.
- //! ```ignore
- //! let my_aml_value = aml_context.lookup(&AmlName::from_str("\\_SB.PCI0.S08._ADR").unwrap());
- //! ```
- //!
- //! ### About the parser
- //! The parser is written using a set of custom parser combinators - the code can be confusing on
- //! first reading, but provides an extensible and type-safe way to write parsers. For an easy
- //! introduction to parser combinators and the foundations used for this library, I suggest reading
- //! [Bodil's fantastic blog post](https://bodil.lol/parser-combinators/).
- //!
- //! The actual combinators can be found in `parser.rs`. Various tricks are used to provide a nice
- //! API and work around limitations in the type system, such as the concrete types like
- //! `MapWithContext`, and the `make_parser_concrete` hack macro.
- //!
- //! The actual parsers are then grouped into categories based loosely on the AML grammar sections in
- //! the ACPI spec. Most are written in terms of combinators, but some have to be written in a more
- //! imperitive style, either because they're clearer, or because we haven't yet found good
- //! combinator patterns to express the parse.
- #![no_std]
- #![feature(decl_macro, type_ascription, box_syntax)]
- extern crate alloc;
- #[cfg(test)]
- extern crate std;
- #[cfg(test)]
- mod test_utils;
- pub(crate) mod misc;
- pub(crate) mod name_object;
- pub(crate) mod namespace;
- pub(crate) mod opcode;
- pub(crate) mod parser;
- pub mod pci_routing;
- pub(crate) mod pkg_length;
- pub mod resource;
- pub(crate) mod term_object;
- pub(crate) mod type1;
- pub(crate) mod type2;
- pub mod value;
- pub use crate::{
- namespace::{AmlHandle, AmlName, Namespace},
- value::AmlValue,
- };
- use alloc::boxed::Box;
- use core::mem;
- use log::error;
- use misc::{ArgNum, LocalNum};
- use name_object::Target;
- use namespace::LevelType;
- use parser::Parser;
- use pkg_length::PkgLength;
- use term_object::term_list;
- use value::{AmlType, Args};
- /// AML has a `RevisionOp` operator that returns the "AML interpreter revision". It's not clear
- /// what this is actually used for, but this is ours.
- pub const AML_INTERPRETER_REVISION: u64 = 0;
- /// Describes how much debug information the parser should emit. Set the "maximum" expected verbosity in
- /// the context's `debug_verbosity` - everything will be printed that is less or equal in 'verbosity'.
- #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
- pub enum DebugVerbosity {
- /// Print no debug information
- None,
- /// Print heads and tails when entering and leaving scopes of major objects, but not more minor ones.
- Scopes,
- /// Print heads and tails when entering and leaving scopes of all objects.
- AllScopes,
- /// Print heads and tails of all objects, and extra debug information as it's parsed.
- All,
- }
- struct MethodContext {
- /*
- * AML local variables. These are used when we invoke a control method. A `None` value
- * represents a null AML object.
- */
- local_0: Option<AmlValue>,
- local_1: Option<AmlValue>,
- local_2: Option<AmlValue>,
- local_3: Option<AmlValue>,
- local_4: Option<AmlValue>,
- local_5: Option<AmlValue>,
- local_6: Option<AmlValue>,
- local_7: Option<AmlValue>,
- /// If we're currently invoking a control method, this stores the arguments that were passed to
- /// it. It's `None` if we aren't invoking a method.
- args: Args,
- }
- impl MethodContext {
- fn new(args: Args) -> MethodContext {
- MethodContext {
- local_0: None,
- local_1: None,
- local_2: None,
- local_3: None,
- local_4: None,
- local_5: None,
- local_6: None,
- local_7: None,
- args,
- }
- }
- }
- pub struct AmlContext {
- /// The `Handler` passed from the library user. This is stored as a boxed trait object simply to avoid having
- /// to add a lifetime and type parameter to `AmlContext`, as they would massively complicate the parser types.
- handler: Box<dyn Handler>,
- legacy_mode: bool,
- pub namespace: Namespace,
- method_context: Option<MethodContext>,
- /*
- * These track the state of the context while it's parsing an AML table.
- */
- current_scope: AmlName,
- scope_indent: usize,
- debug_verbosity: DebugVerbosity,
- }
- impl AmlContext {
- /// Creates a new `AmlContext` - the central type in managing the AML tables. Only one of these should be
- /// created, and it should be passed the DSDT and all SSDTs defined by the hardware.
- ///
- /// ### Legacy mode
- /// If `true` is passed in `legacy_mode`, the library will try and remain compatible with a ACPI 1.0
- /// implementation. The following changes/assumptions are made:
- /// - Two extra root namespaces are predefined: `\_PR` and `_TZ`
- /// - Processors are expected to be defined with `DefProcessor`, instead of `DefDevice`
- /// - Processors are expected to be found in `\_PR`, instead of `\_SB`
- /// - Thermal zones are expected to be found in `\_TZ`, instead of `\_SB`
- pub fn new(handler: Box<dyn Handler>, legacy_mode: bool, debug_verbosity: DebugVerbosity) -> AmlContext {
- let mut context = AmlContext {
- handler,
- legacy_mode,
- namespace: Namespace::new(),
- method_context: None,
- current_scope: AmlName::root(),
- scope_indent: 0,
- debug_verbosity,
- };
- /*
- * Add the predefined root namespaces.
- */
- context.namespace.add_level(AmlName::from_str("\\_GPE").unwrap(), LevelType::Scope).unwrap();
- context.namespace.add_level(AmlName::from_str("\\_SB").unwrap(), LevelType::Scope).unwrap();
- context.namespace.add_level(AmlName::from_str("\\_SI").unwrap(), LevelType::Scope).unwrap();
- if legacy_mode {
- context.namespace.add_level(AmlName::from_str("\\_PR").unwrap(), LevelType::Scope).unwrap();
- context.namespace.add_level(AmlName::from_str("\\_TZ").unwrap(), LevelType::Scope).unwrap();
- }
- context
- }
- pub fn parse_table(&mut self, stream: &[u8]) -> Result<(), AmlError> {
- if stream.len() == 0 {
- return Err(AmlError::UnexpectedEndOfStream);
- }
- let table_length = PkgLength::from_raw_length(stream, stream.len() as u32).unwrap();
- match term_object::term_list(table_length).parse(stream, self) {
- Ok(_) => Ok(()),
- Err((_, _, err)) => {
- error!("Failed to parse AML stream. Err = {:?}", err);
- Err(err)
- }
- }
- }
- pub fn invoke_method(&mut self, path: &AmlName, args: Args) -> Result<AmlValue, AmlError> {
- match self.namespace.get_by_path(path)?.clone() {
- AmlValue::Method { flags, code } => {
- /*
- * First, set up the state we expect to enter the method with, but clearing local
- * variables to "null" and setting the arguments. Save the current method state and scope, so if we're
- * already executing another control method, we resume into it correctly.
- */
- let old_context = mem::replace(&mut self.method_context, Some(MethodContext::new(args)));
- let old_scope = mem::replace(&mut self.current_scope, path.clone());
- /*
- * Create a namespace level to store local objects created by the invocation.
- */
- self.namespace.add_level(path.clone(), LevelType::MethodLocals)?;
- let return_value = match term_list(PkgLength::from_raw_length(&code, code.len() as u32).unwrap())
- .parse(&code, self)
- {
- // If the method doesn't return a value, we implicitly return `0`
- Ok(_) => Ok(AmlValue::Integer(0)),
- Err((_, _, AmlError::Return(result))) => Ok(result),
- Err((_, _, err)) => {
- error!("Failed to execute control method: {:?}", err);
- Err(err)
- }
- };
- /*
- * Locally-created objects should be destroyed on method exit (see §5.5.2.3 of the ACPI spec). We do
- * this by simply removing the method's local object layer.
- */
- // TODO: this should also remove objects created by the method outside the method's scope, if they
- // weren't statically created. This is harder.
- self.namespace.remove_level(path.clone())?;
- /*
- * Restore the old state.
- */
- self.method_context = old_context;
- self.current_scope = old_scope;
- return_value
- }
- /*
- * AML can encode methods that don't require any computation simply as the value that would otherwise be
- * returned (e.g. a `_STA` object simply being an `AmlValue::Integer`, instead of a method that just
- * returns an integer).
- */
- value => Ok(value),
- }
- }
- pub fn initialize_objects(&mut self) -> Result<(), AmlError> {
- use name_object::NameSeg;
- use namespace::NamespaceLevel;
- use value::StatusObject;
- /*
- * If `\_SB._INI` exists, we unconditionally execute it at the beginning of device initialization.
- */
- match self.invoke_method(&AmlName::from_str("\\_SB._INI").unwrap(), Args::default()) {
- Ok(_) => (),
- Err(AmlError::ValueDoesNotExist(_)) => (),
- Err(err) => return Err(err),
- }
- /*
- * Next, we traverse the namespace, looking for devices.
- *
- * XXX: we clone the namespace here, which obviously drives up heap burden quite a bit (not as much as you
- * might first expect though - we're only duplicating the level data structure, not all the objects). The
- * issue here is that we need to access the namespace during traversal (e.g. to invoke a method), which the
- * borrow checker really doesn't like. A better solution could be a iterator-like traversal system that
- * keeps track of the namespace without keeping it borrowed. This works for now.
- */
- self.namespace.clone().traverse(|path, level: &NamespaceLevel| match level.typ {
- LevelType::Device => {
- let status = if level.values.contains_key(&NameSeg::from_str("_STA").unwrap()) {
- self.invoke_method(&AmlName::from_str("_STA").unwrap().resolve(&path)?, Args::default())?
- .as_status()?
- } else {
- StatusObject::default()
- };
- /*
- * If the device is present and has an `_INI` method, invoke it.
- */
- if status.present && level.values.contains_key(&NameSeg::from_str("_INI").unwrap()) {
- log::info!("Invoking _INI at level: {}", path);
- self.invoke_method(&AmlName::from_str("_INI").unwrap().resolve(&path)?, Args::default())?;
- }
- /*
- * We traverse the children of this device if it's present, or isn't present but is functional.
- */
- Ok(status.present || status.functional)
- }
- LevelType::Scope => Ok(true),
- // TODO: can either of these contain devices?
- LevelType::Processor => Ok(false),
- LevelType::MethodLocals => Ok(false),
- })?;
- Ok(())
- }
- /// Get the value of an argument by its argument number. Can only be executed from inside a control method.
- pub(crate) fn current_arg(&self, arg: ArgNum) -> Result<&AmlValue, AmlError> {
- self.method_context.as_ref().ok_or(AmlError::NotExecutingControlMethod)?.args.arg(arg)
- }
- /// Get the current value of a local by its local number. Can only be executed from inside a control method.
- pub(crate) fn local(&self, local: LocalNum) -> Result<&AmlValue, AmlError> {
- if let None = self.method_context {
- return Err(AmlError::NotExecutingControlMethod);
- }
- match local {
- 0 => self.method_context.as_ref().unwrap().local_0.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 1 => self.method_context.as_ref().unwrap().local_1.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 2 => self.method_context.as_ref().unwrap().local_2.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 3 => self.method_context.as_ref().unwrap().local_3.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 4 => self.method_context.as_ref().unwrap().local_4.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 5 => self.method_context.as_ref().unwrap().local_5.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 6 => self.method_context.as_ref().unwrap().local_6.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- 7 => self.method_context.as_ref().unwrap().local_7.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
- _ => Err(AmlError::InvalidLocalAccess(local)),
- }
- }
- /// Perform a store into a `Target`. This returns a value read out of the target, if neccessary, as values can
- /// be altered during a store in some circumstances. If the target is a `Name`, this also performs required
- /// implicit conversions. Stores to other targets are semantically equivalent to a `CopyObject`.
- pub(crate) fn store(&mut self, target: Target, value: AmlValue) -> Result<AmlValue, AmlError> {
- match target {
- Target::Name(ref path) => {
- let (_, handle) = self.namespace.search(path, &self.current_scope)?;
- let converted_object = match self.namespace.get(handle).unwrap().type_of() {
- /*
- * We special-case FieldUnits here because we don't have the needed information to actually do
- * the write if we try and convert using `as_type`.
- */
- AmlType::FieldUnit => {
- let mut field = self.namespace.get(handle).unwrap().clone();
- field.write_field(value, self)?;
- field.read_field(self)?
- }
- typ => value.as_type(typ, self)?,
- };
- *self.namespace.get_mut(handle)? = converted_object;
- Ok(self.namespace.get(handle)?.clone())
- }
- Target::Debug => {
- // TODO
- unimplemented!()
- }
- Target::Arg(arg_num) => {
- if let None = self.method_context {
- return Err(AmlError::NotExecutingControlMethod);
- }
- match arg_num {
- 1 => self.method_context.as_mut().unwrap().args.arg_1 = Some(value.clone()),
- 2 => self.method_context.as_mut().unwrap().args.arg_2 = Some(value.clone()),
- 3 => self.method_context.as_mut().unwrap().args.arg_3 = Some(value.clone()),
- 4 => self.method_context.as_mut().unwrap().args.arg_4 = Some(value.clone()),
- 5 => self.method_context.as_mut().unwrap().args.arg_5 = Some(value.clone()),
- 6 => self.method_context.as_mut().unwrap().args.arg_6 = Some(value.clone()),
- _ => return Err(AmlError::InvalidArgAccess(arg_num)),
- }
- Ok(value)
- }
- Target::Local(local_num) => {
- if let None = self.method_context {
- return Err(AmlError::NotExecutingControlMethod);
- }
- match local_num {
- 0 => self.method_context.as_mut().unwrap().local_0 = Some(value.clone()),
- 1 => self.method_context.as_mut().unwrap().local_1 = Some(value.clone()),
- 2 => self.method_context.as_mut().unwrap().local_2 = Some(value.clone()),
- 3 => self.method_context.as_mut().unwrap().local_3 = Some(value.clone()),
- 4 => self.method_context.as_mut().unwrap().local_4 = Some(value.clone()),
- 5 => self.method_context.as_mut().unwrap().local_5 = Some(value.clone()),
- 6 => self.method_context.as_mut().unwrap().local_6 = Some(value.clone()),
- 7 => self.method_context.as_mut().unwrap().local_7 = Some(value.clone()),
- _ => return Err(AmlError::InvalidLocalAccess(local_num)),
- }
- Ok(value)
- }
- Target::Null => Ok(value),
- }
- }
- /// Read from an operation-region, performing only standard-sized reads (supported powers-of-2 only. If a field
- /// is not one of these sizes, it may need to be masked, or multiple reads may need to be performed).
- pub(crate) fn read_region(&self, region_handle: AmlHandle, offset: u64, length: u64) -> Result<u64, AmlError> {
- use bit_field::BitField;
- use core::convert::TryInto;
- use value::RegionSpace;
- let (region_space, region_base, region_length, parent_device) = {
- if let AmlValue::OpRegion { region, offset, length, parent_device } =
- self.namespace.get(region_handle)?
- {
- (region, offset, length, parent_device)
- } else {
- return Err(AmlError::FieldRegionIsNotOpRegion);
- }
- };
- match region_space {
- RegionSpace::SystemMemory => {
- let address = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
- match length {
- 8 => Ok(self.handler.read_u8(address) as u64),
- 16 => Ok(self.handler.read_u16(address) as u64),
- 32 => Ok(self.handler.read_u32(address) as u64),
- 64 => Ok(self.handler.read_u64(address)),
- _ => Err(AmlError::FieldInvalidAccessSize),
- }
- }
- RegionSpace::SystemIo => {
- let port = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
- match length {
- 8 => Ok(self.handler.read_io_u8(port) as u64),
- 16 => Ok(self.handler.read_io_u16(port) as u64),
- 32 => Ok(self.handler.read_io_u32(port) as u64),
- _ => Err(AmlError::FieldInvalidAccessSize),
- }
- }
- RegionSpace::PciConfig => {
- /*
- * First, we need to get some extra information out of objects in the parent object. Both
- * `_SEG` and `_BBN` seem optional, with defaults that line up with legacy PCI implementations
- * (e.g. systems with a single segment group and a single root, respectively).
- */
- let parent_device = parent_device.as_ref().unwrap();
- let seg = match self.namespace.search(&AmlName::from_str("_SEG").unwrap(), parent_device) {
- Ok((_, handle)) => self
- .namespace
- .get(handle)?
- .as_integer(self)?
- .try_into()
- .map_err(|_| AmlError::FieldInvalidAddress)?,
- Err(AmlError::ValueDoesNotExist(_)) => 0,
- Err(err) => return Err(err),
- };
- let bbn = match self.namespace.search(&AmlName::from_str("_BBN").unwrap(), parent_device) {
- Ok((_, handle)) => self
- .namespace
- .get(handle)?
- .as_integer(self)?
- .try_into()
- .map_err(|_| AmlError::FieldInvalidAddress)?,
- Err(AmlError::ValueDoesNotExist(_)) => 0,
- Err(err) => return Err(err),
- };
- let adr = {
- let (_, handle) = self.namespace.search(&AmlName::from_str("_ADR").unwrap(), parent_device)?;
- self.namespace.get(handle)?.as_integer(self)?
- };
- let device = adr.get_bits(16..24) as u8;
- let function = adr.get_bits(0..8) as u8;
- let offset = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
- match length {
- 8 => Ok(self.handler.read_pci_u8(seg, bbn, device, function, offset) as u64),
- 16 => Ok(self.handler.read_pci_u16(seg, bbn, device, function, offset) as u64),
- 32 => Ok(self.handler.read_pci_u32(seg, bbn, device, function, offset) as u64),
- _ => Err(AmlError::FieldInvalidAccessSize),
- }
- }
- // TODO
- _ => unimplemented!(),
- }
- }
- pub(crate) fn write_region(
- &mut self,
- region_handle: AmlHandle,
- offset: u64,
- length: u64,
- value: u64,
- ) -> Result<(), AmlError> {
- use bit_field::BitField;
- use core::convert::TryInto;
- use value::RegionSpace;
- let (region_space, region_base, region_length, parent_device) = {
- if let AmlValue::OpRegion { region, offset, length, parent_device } =
- self.namespace.get(region_handle)?
- {
- (region, offset, length, parent_device)
- } else {
- return Err(AmlError::FieldRegionIsNotOpRegion);
- }
- };
- match region_space {
- RegionSpace::SystemMemory => {
- let address = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
- match length {
- 8 => Ok(self.handler.write_u8(address, value as u8)),
- 16 => Ok(self.handler.write_u16(address, value as u16)),
- 32 => Ok(self.handler.write_u32(address, value as u32)),
- 64 => Ok(self.handler.write_u64(address, value)),
- _ => Err(AmlError::FieldInvalidAccessSize),
- }
- }
- RegionSpace::SystemIo => {
- let port = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
- match length {
- 8 => Ok(self.handler.write_io_u8(port, value as u8)),
- 16 => Ok(self.handler.write_io_u16(port, value as u16)),
- 32 => Ok(self.handler.write_io_u32(port, value as u32)),
- _ => Err(AmlError::FieldInvalidAccessSize),
- }
- }
- RegionSpace::PciConfig => {
- /*
- * First, we need to get some extra information out of objects in the parent object. Both
- * `_SEG` and `_BBN` seem optional, with defaults that line up with legacy PCI implementations
- * (e.g. systems with a single segment group and a single root, respectively).
- */
- let parent_device = parent_device.as_ref().unwrap();
- let seg = match self.namespace.search(&AmlName::from_str("_SEG").unwrap(), parent_device) {
- Ok((_, handle)) => self
- .namespace
- .get(handle)?
- .as_integer(self)?
- .try_into()
- .map_err(|_| AmlError::FieldInvalidAddress)?,
- Err(AmlError::ValueDoesNotExist(_)) => 0,
- Err(err) => return Err(err),
- };
- let bbn = match self.namespace.search(&AmlName::from_str("_BBN").unwrap(), parent_device) {
- Ok((_, handle)) => self
- .namespace
- .get(handle)?
- .as_integer(self)?
- .try_into()
- .map_err(|_| AmlError::FieldInvalidAddress)?,
- Err(AmlError::ValueDoesNotExist(_)) => 0,
- Err(err) => return Err(err),
- };
- let adr = {
- let (_, handle) = self.namespace.search(&AmlName::from_str("_ADR").unwrap(), parent_device)?;
- self.namespace.get(handle)?.as_integer(self)?
- };
- let device = adr.get_bits(16..24) as u8;
- let function = adr.get_bits(0..8) as u8;
- let offset = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
- match length {
- 8 => Ok(self.handler.write_pci_u8(seg, bbn, device, function, offset, value as u8)),
- 16 => Ok(self.handler.write_pci_u16(seg, bbn, device, function, offset, value as u16)),
- 32 => Ok(self.handler.write_pci_u32(seg, bbn, device, function, offset, value as u32)),
- _ => Err(AmlError::FieldInvalidAccessSize),
- }
- }
- // TODO
- _ => unimplemented!(),
- }
- }
- }
- pub trait Handler {
- fn read_u8(&self, address: usize) -> u8;
- fn read_u16(&self, address: usize) -> u16;
- fn read_u32(&self, address: usize) -> u32;
- fn read_u64(&self, address: usize) -> u64;
- fn write_u8(&mut self, address: usize, value: u8);
- fn write_u16(&mut self, address: usize, value: u16);
- fn write_u32(&mut self, address: usize, value: u32);
- fn write_u64(&mut self, address: usize, value: u64);
- fn read_io_u8(&self, port: u16) -> u8;
- fn read_io_u16(&self, port: u16) -> u16;
- fn read_io_u32(&self, port: u16) -> u32;
- fn write_io_u8(&self, port: u16, value: u8);
- fn write_io_u16(&self, port: u16, value: u16);
- fn write_io_u32(&self, port: u16, value: u32);
- fn read_pci_u8(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16) -> u8;
- fn read_pci_u16(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16) -> u16;
- fn read_pci_u32(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16) -> u32;
- fn write_pci_u8(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16, value: u8);
- fn write_pci_u16(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16, value: u16);
- fn write_pci_u32(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16, value: u32);
- }
- #[derive(Clone, Debug, PartialEq, Eq)]
- pub enum AmlError {
- /*
- * Errors produced parsing the AML stream.
- */
- UnexpectedEndOfStream,
- UnexpectedByte(u8),
- InvalidNameSeg,
- InvalidPkgLength,
- InvalidFieldFlags,
- IncompatibleValueConversion,
- UnterminatedStringConstant,
- InvalidStringConstant,
- InvalidRegionSpace(u8),
- /// Produced when a `DefPackage` contains a different number of elements to the package's length.
- InvalidPackage,
- /// Produced when a `DefBuffer` contains more bytes that its size.
- MalformedBuffer,
- /// Emitted by a parser when it's clear that the stream doesn't encode the object parsed by
- /// that parser (e.g. the wrong opcode starts the stream). This is handled specially by some
- /// parsers such as `or` and `choice!`.
- WrongParser,
- /*
- * Errors produced manipulating AML names.
- */
- EmptyNamesAreInvalid,
- /// Produced when trying to normalize a path that does not point to a valid level of the
- /// namespace. E.g. `\_SB.^^PCI0` goes above the root of the namespace. The contained value is the name that
- /// normalization was attempted upon.
- InvalidNormalizedName(AmlName),
- RootHasNoParent,
- /*
- * Errors produced working with the namespace.
- */
- /// Produced when a sub-level or value is added to a level that has not yet been added to the namespace. The
- /// `AmlName` is the name of the entire sub-level/value.
- LevelDoesNotExist(AmlName),
- ValueDoesNotExist(AmlName),
- /// Produced when two values with the same name are added to the namespace.
- NameCollision(AmlName),
- TriedToRemoveRootNamespace,
- /*
- * Errors produced executing control methods.
- */
- /// Produced when AML tries to do something only possible in a control method (e.g. read from an argument)
- /// when there's no control method executing.
- NotExecutingControlMethod,
- /// Produced when a method accesses an argument it does not have (e.g. a method that takes 2
- /// arguments accesses `Arg4`). The inner value is the number of the argument accessed.
- InvalidArgAccess(ArgNum),
- /// Produced when a method accesses a local that it has not stored into.
- InvalidLocalAccess(LocalNum),
- /// This is not a real error, but is used to propagate return values from within the deep
- /// parsing call-stack. It should only be emitted when parsing a `DefReturn`. We use the
- /// error system here because the way errors are propagated matches how we want to handle
- /// return values.
- Return(AmlValue),
- /*
- * Errors produced parsing the PCI routing tables (_PRT objects).
- */
- PrtInvalidAddress,
- PrtInvalidPin,
- PrtInvalidSource,
- PrtInvalidGsi,
- /// Produced when the PRT doesn't contain an entry for the requested address + pin
- PrtNoEntry,
- /*
- * Errors produced parsing Resource Descriptors.
- */
- ReservedResourceType,
- ResourceDescriptorTooShort,
- ResourceDescriptorTooLong,
- /*
- * Errors produced working with AML values.
- */
- InvalidStatusObject,
- InvalidShiftLeft,
- InvalidShiftRight,
- FieldRegionIsNotOpRegion,
- FieldInvalidAddress,
- FieldInvalidAccessSize,
- TypeCannotBeCompared(AmlType),
- }
|