123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526 |
- use crate::{name_object::NameSeg, value::AmlValue, AmlError};
- use alloc::{
- collections::BTreeMap,
- string::{String, ToString},
- vec::Vec,
- };
- use core::fmt;
- /// A handle is used to refer to an AML value without actually borrowing it until you need to
- /// access it (this makes borrowing situation much easier as you only have to consider who's
- /// borrowing the namespace). They can also be cached to avoid expensive namespace lookups.
- ///
- /// Handles are never reused (the handle to a removed object will never be reused to point to a new
- /// object). This ensures handles cached by the library consumer will never point to an object they
- /// did not originally point to, but also means that, in theory, we can run out of handles on a
- /// very-long-running system (we are yet to see if this is a problem, practically).
- #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
- pub struct AmlHandle(u32);
- impl AmlHandle {
- pub(self) fn increment(&mut self) {
- self.0 += 1;
- }
- }
- #[derive(Clone, Copy, PartialEq, Eq, Debug)]
- pub enum LevelType {
- Scope,
- Device,
- }
- pub struct NamespaceLevel {
- typ: LevelType,
- children: BTreeMap<NameSeg, NamespaceLevel>,
- values: BTreeMap<NameSeg, AmlHandle>,
- }
- impl NamespaceLevel {
- pub(crate) fn new(typ: LevelType) -> NamespaceLevel {
- NamespaceLevel { typ, children: BTreeMap::new(), values: BTreeMap::new() }
- }
- }
- pub struct Namespace {
- /// This is a running count of ids, which are never reused. This is incremented every time we
- /// add a new object to the namespace. We can then remove objects, freeing their memory, without
- /// risking using the same id for two objects.
- next_handle: AmlHandle,
- /// This maps handles to actual values, and is used to access the actual AML values. When removing a value
- /// from the object map, care must be taken to also remove references to its handle in the level data
- /// structure, as invalid handles will cause panics.
- object_map: BTreeMap<AmlHandle, AmlValue>,
- /// Holds the first level of the namespace - containing items such as `\_SB`. Subsequent levels are held
- /// recursively inside this structure. It holds handles to references, which need to be indexed into
- /// `object_map` to acctually access the object.
- root: NamespaceLevel,
- }
- impl Namespace {
- pub fn new() -> Namespace {
- Namespace {
- next_handle: AmlHandle(0),
- object_map: BTreeMap::new(),
- root: NamespaceLevel::new(LevelType::Scope),
- }
- }
- /// Add a new level to the namespace. A "level" is a `NameSeg` that can hold objects (currently, `Scope`s
- /// and `Devices`). Once a level has been created, AML values can be added to it with `add_value`.
- ///
- /// ### Note
- /// At first glance, you might expect `DefDevice` to add a value of type `Device`. However, because all
- /// `Devices` do is hold other values, we model them as namespace levels, and so they must be created
- /// accordingly.
- pub fn add_level(&mut self, path: AmlName, typ: LevelType) -> Result<(), AmlError> {
- assert!(path.is_absolute());
- let path = path.normalize()?;
- /*
- * We need to handle a special case here: if a `Scope(\) { ... }` appears in the AML, the parser will
- * try and recreate the root scope. Instead of handling this specially in the parser, we just
- * return nicely here.
- */
- if path != AmlName::root() {
- let (level, last_seg) = self.get_level_for_path_mut(&path)?;
- /*
- * If the level has already been added, we don't need to add it again. The parser can try to add it
- * multiple times if the ASL contains multiple blocks that add to the same scope/device.
- */
- if !level.children.contains_key(&last_seg) {
- level.children.insert(last_seg, NamespaceLevel::new(typ));
- }
- }
- Ok(())
- }
- /// Add a value to the namespace at the given path, which must be a normalized, absolute AML
- /// name. If you want to add at a path relative to a given scope, use `add_at_resolved_path`
- /// instead.
- pub fn add_value(&mut self, path: AmlName, value: AmlValue) -> Result<AmlHandle, AmlError> {
- assert!(path.is_absolute());
- let path = path.normalize()?;
- let handle = self.next_handle;
- self.next_handle.increment();
- self.object_map.insert(handle, value);
- let (level, last_seg) = self.get_level_for_path_mut(&path)?;
- match level.values.insert(last_seg, handle) {
- None => Ok(handle),
- Some(_) => Err(AmlError::NameCollision(path)),
- }
- }
- /// Helper method for adding a value to the namespace at a path that is relative to the given
- /// scope. This operation involves a lot of error handling in parts of the parser, so is
- /// encapsulated here.
- pub fn add_value_at_resolved_path(
- &mut self,
- path: AmlName,
- scope: &AmlName,
- value: AmlValue,
- ) -> Result<AmlHandle, AmlError> {
- self.add_value(path.resolve(scope)?, value)
- }
- pub fn get(&self, handle: AmlHandle) -> Result<&AmlValue, AmlError> {
- Ok(self.object_map.get(&handle).unwrap())
- }
- pub fn get_mut(&mut self, handle: AmlHandle) -> Result<&mut AmlValue, AmlError> {
- Ok(self.object_map.get_mut(&handle).unwrap())
- }
- pub fn get_by_path(&self, path: &AmlName) -> Result<&AmlValue, AmlError> {
- let (level, last_seg) = self.get_level_for_path(path)?;
- let &handle = level.values.get(&last_seg).ok_or(AmlError::ValueDoesNotExist(path.clone()))?;
- Ok(self.get(handle).unwrap())
- }
- pub fn get_by_path_mut(&mut self, path: &AmlName) -> Result<&mut AmlValue, AmlError> {
- let (level, last_seg) = self.get_level_for_path(path)?;
- let &handle = level.values.get(&last_seg).ok_or(AmlError::ValueDoesNotExist(path.clone()))?;
- Ok(self.get_mut(handle).unwrap())
- }
- /// Search for an object at the given path of the namespace, applying the search rules
- /// described in §5.3 of the ACPI specification, if they are applicable. Returns the resolved name, and the
- /// handle of the first valid object, if found.
- pub fn search(&self, path: &AmlName, starting_scope: &AmlName) -> Result<(AmlName, AmlHandle), AmlError> {
- if path.search_rules_apply() {
- /*
- * If search rules apply, we need to recursively look through the namespace. If the
- * given name does not occur in the current scope, we look at the parent scope, until
- * we either find the name, or reach the root of the namespace.
- */
- let mut scope = starting_scope.clone();
- assert!(scope.is_absolute());
- loop {
- // Search for the name at this namespace level. If we find it, we're done.
- let name = path.resolve(&scope)?;
- let (level, last_seg) = self.get_level_for_path(&name)?;
- if let Some(&handle) = level.values.get(&last_seg) {
- return Ok((name, handle));
- }
- // If we don't find it, go up a level in the namespace and search for it there,
- // recursively.
- match scope.parent() {
- Ok(parent) => scope = parent,
- // If we still haven't found the value and have run out of parents, return `None`.
- Err(AmlError::RootHasNoParent) => return Err(AmlError::ValueDoesNotExist(path.clone())),
- Err(err) => return Err(err),
- }
- }
- } else {
- // If search rules don't apply, simply resolve it against the starting scope
- let name = path.resolve(starting_scope)?;
- let (level, last_seg) = self.get_level_for_path(&path.resolve(starting_scope)?)?;
- if let Some(&handle) = level.values.get(&last_seg) {
- Ok((name, handle))
- } else {
- Err(AmlError::ValueDoesNotExist(path.clone()))
- }
- }
- }
- fn get_level_for_path(&self, path: &AmlName) -> Result<(&NamespaceLevel, NameSeg), AmlError> {
- let (last_seg, levels) = path.0[1..].split_last().unwrap();
- let last_seg = last_seg.as_segment().unwrap();
- // TODO: this helps with diagnostics, but requires a heap allocation just in case we need to error.
- let mut traversed_path = AmlName::root();
- let mut current_level = &self.root;
- for level in levels {
- traversed_path.0.push(*level);
- current_level = current_level
- .children
- .get(&level.as_segment().unwrap())
- .ok_or(AmlError::LevelDoesNotExist(traversed_path.clone()))?;
- }
- Ok((current_level, last_seg))
- }
- fn get_level_for_path_mut(&mut self, path: &AmlName) -> Result<(&mut NamespaceLevel, NameSeg), AmlError> {
- let (last_seg, levels) = path.0[1..].split_last().unwrap();
- let last_seg = last_seg.as_segment().unwrap();
- // TODO: this helps with diagnostics, but requires a heap allocation just in case we need to error. We can
- // improve this by changing the `levels` interation into an `enumerate()`, and then using the index to
- // create the correct path on the error path
- let mut traversed_path = AmlName::root();
- let mut current_level = &mut self.root;
- for level in levels {
- traversed_path.0.push(*level);
- current_level = current_level
- .children
- .get_mut(&level.as_segment().unwrap())
- .ok_or(AmlError::LevelDoesNotExist(traversed_path.clone()))?;
- }
- Ok((current_level, last_seg))
- }
- }
- impl fmt::Debug for Namespace {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- const INDENT_PER_LEVEL: usize = 4;
- fn print_level(
- namespace: &Namespace,
- f: &mut fmt::Formatter<'_>,
- level_name: &str,
- level: &NamespaceLevel,
- indent: usize,
- ) -> fmt::Result {
- writeln!(f, "{:indent$}{}:", "", level_name, indent = indent)?;
- for (name, handle) in level.values.iter() {
- writeln!(
- f,
- "{:indent$}{}: {:?}",
- "",
- name.as_str(),
- namespace.object_map.get(handle).unwrap(),
- indent = indent + INDENT_PER_LEVEL
- )?;
- }
- for (name, sub_level) in level.children.iter() {
- print_level(namespace, f, name.as_str(), sub_level, indent + INDENT_PER_LEVEL)?;
- }
- Ok(())
- };
- print_level(self, f, "\\", &self.root, 0)
- }
- }
- #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
- pub struct AmlName(pub(crate) Vec<NameComponent>);
- impl AmlName {
- pub fn root() -> AmlName {
- AmlName(alloc::vec![NameComponent::Root])
- }
- pub fn from_name_seg(seg: NameSeg) -> AmlName {
- AmlName(alloc::vec![NameComponent::Segment(seg)])
- }
- /// Convert a string representation of an AML name into an `AmlName`.
- pub fn from_str(mut string: &str) -> Result<AmlName, AmlError> {
- if string.len() == 0 {
- return Err(AmlError::EmptyNamesAreInvalid);
- }
- let mut components = Vec::new();
- // If it starts with a \, make it an absolute name
- if string.starts_with('\\') {
- components.push(NameComponent::Root);
- string = &string[1..];
- }
- if string.len() > 0 {
- // Divide the rest of it into segments, and parse those
- for mut part in string.split('.') {
- // Handle prefix chars
- while part.starts_with('^') {
- components.push(NameComponent::Prefix);
- part = &part[1..];
- }
- components.push(NameComponent::Segment(NameSeg::from_str(part)?));
- }
- }
- Ok(AmlName(components))
- }
- pub fn as_string(&self) -> String {
- self.0
- .iter()
- .fold(String::new(), |name, component| match component {
- NameComponent::Root => name + "\\",
- NameComponent::Prefix => name + "^",
- NameComponent::Segment(seg) => name + seg.as_str() + ".",
- })
- .trim_end_matches('.')
- .to_string()
- }
- /// An AML path is normal if it does not contain any prefix elements ("^" characters, when
- /// expressed as a string).
- pub fn is_normal(&self) -> bool {
- !self.0.contains(&NameComponent::Prefix)
- }
- pub fn is_absolute(&self) -> bool {
- self.0.first() == Some(&NameComponent::Root)
- }
- /// Special rules apply when searching for certain paths (specifically, those that are made up
- /// of a single name segment). Returns `true` if those rules apply.
- pub fn search_rules_apply(&self) -> bool {
- if self.0.len() != 1 {
- return false;
- }
- match self.0[0] {
- NameComponent::Segment(_) => true,
- _ => false,
- }
- }
- /// Normalize an AML path, resolving prefix chars. Returns `AmlError::InvalidNormalizedName` if the path
- /// normalizes to an invalid path (e.g. `\^_FOO`)
- pub fn normalize(self) -> Result<AmlName, AmlError> {
- /*
- * If the path is already normal, just return it as-is. This avoids an unneccessary heap allocation and
- * free.
- */
- if self.is_normal() {
- return Ok(self);
- }
- Ok(AmlName(self.0.iter().try_fold(Vec::new(), |mut name, &component| match component {
- seg @ NameComponent::Segment(_) => {
- name.push(seg);
- Ok(name)
- }
- NameComponent::Root => {
- name.push(NameComponent::Root);
- Ok(name)
- }
- NameComponent::Prefix => {
- if let Some(NameComponent::Segment(_)) = name.iter().last() {
- name.pop().unwrap();
- Ok(name)
- } else {
- Err(AmlError::InvalidNormalizedName(self.clone()))
- }
- }
- })?))
- }
- /// Get the parent of this `AmlName`. For example, the parent of `\_SB.PCI0._PRT` is `\_SB.PCI0`. The root
- /// path has no parent, and so returns `None`.
- pub fn parent(&self) -> Result<AmlName, AmlError> {
- // Firstly, normalize the path so we don't have to deal with prefix chars
- let mut normalized_self = self.clone().normalize()?;
- match normalized_self.0.last() {
- None | Some(NameComponent::Root) => Err(AmlError::RootHasNoParent),
- Some(NameComponent::Segment(_)) => {
- normalized_self.0.pop();
- Ok(normalized_self)
- }
- Some(NameComponent::Prefix) => unreachable!(), // Prefix chars are removed by normalization
- }
- }
- /// Resolve this path against a given scope, making it absolute. If the path is absolute, it is
- /// returned directly. The path is also normalized.
- pub fn resolve(&self, scope: &AmlName) -> Result<AmlName, AmlError> {
- assert!(scope.is_absolute());
- if self.is_absolute() {
- return Ok(self.clone());
- }
- let mut resolved_path = scope.clone();
- resolved_path.0.extend_from_slice(&(self.0));
- resolved_path.normalize()
- }
- }
- impl fmt::Display for AmlName {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- write!(f, "{}", self.as_string())
- }
- }
- #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
- pub enum NameComponent {
- Root,
- Prefix,
- Segment(NameSeg),
- }
- impl NameComponent {
- pub fn as_segment(self) -> Result<NameSeg, ()> {
- match self {
- NameComponent::Segment(seg) => Ok(seg),
- NameComponent::Root | NameComponent::Prefix => Err(()),
- }
- }
- }
- #[cfg(test)]
- mod tests {
- use super::*;
- #[test]
- fn test_aml_name_from_str() {
- assert_eq!(AmlName::from_str(""), Err(AmlError::EmptyNamesAreInvalid));
- assert_eq!(AmlName::from_str("\\"), Ok(AmlName::root()));
- assert_eq!(
- AmlName::from_str("\\_SB.PCI0"),
- Ok(AmlName(alloc::vec![
- NameComponent::Root,
- NameComponent::Segment(NameSeg([b'_', b'S', b'B', b'_'])),
- NameComponent::Segment(NameSeg([b'P', b'C', b'I', b'0']))
- ]))
- );
- assert_eq!(
- AmlName::from_str("\\_SB.^^^PCI0"),
- Ok(AmlName(alloc::vec![
- NameComponent::Root,
- NameComponent::Segment(NameSeg([b'_', b'S', b'B', b'_'])),
- NameComponent::Prefix,
- NameComponent::Prefix,
- NameComponent::Prefix,
- NameComponent::Segment(NameSeg([b'P', b'C', b'I', b'0']))
- ]))
- );
- }
- #[test]
- fn test_is_normal() {
- assert_eq!(AmlName::root().is_normal(), true);
- assert_eq!(AmlName::from_str("\\_SB.PCI0.VGA").unwrap().is_normal(), true);
- assert_eq!(AmlName::from_str("\\_SB.^PCI0.VGA").unwrap().is_normal(), false);
- assert_eq!(AmlName::from_str("\\^_SB.^^PCI0.VGA").unwrap().is_normal(), false);
- assert_eq!(AmlName::from_str("_SB.^^PCI0.VGA").unwrap().is_normal(), false);
- assert_eq!(AmlName::from_str("_SB.PCI0.VGA").unwrap().is_normal(), true);
- }
- #[test]
- fn test_normalization() {
- assert_eq!(
- AmlName::from_str("\\_SB.PCI0").unwrap().normalize(),
- Ok(AmlName::from_str("\\_SB.PCI0").unwrap())
- );
- assert_eq!(
- AmlName::from_str("\\_SB.^PCI0").unwrap().normalize(),
- Ok(AmlName::from_str("\\PCI0").unwrap())
- );
- assert_eq!(
- AmlName::from_str("\\_SB.PCI0.^^FOO").unwrap().normalize(),
- Ok(AmlName::from_str("\\FOO").unwrap())
- );
- assert_eq!(
- AmlName::from_str("_SB.PCI0.^FOO.BAR").unwrap().normalize(),
- Ok(AmlName::from_str("_SB.FOO.BAR").unwrap())
- );
- assert_eq!(
- AmlName::from_str("\\^_SB").unwrap().normalize(),
- Err(AmlError::InvalidNormalizedName(AmlName::from_str("\\^_SB").unwrap()))
- );
- assert_eq!(
- AmlName::from_str("\\_SB.PCI0.FOO.^^^^BAR").unwrap().normalize(),
- Err(AmlError::InvalidNormalizedName(AmlName::from_str("\\_SB.PCI0.FOO.^^^^BAR").unwrap()))
- );
- }
- #[test]
- fn test_is_absolute() {
- assert_eq!(AmlName::root().is_absolute(), true);
- assert_eq!(AmlName::from_str("\\_SB.PCI0.VGA").unwrap().is_absolute(), true);
- assert_eq!(AmlName::from_str("\\_SB.^PCI0.VGA").unwrap().is_absolute(), true);
- assert_eq!(AmlName::from_str("\\^_SB.^^PCI0.VGA").unwrap().is_absolute(), true);
- assert_eq!(AmlName::from_str("_SB.^^PCI0.VGA").unwrap().is_absolute(), false);
- assert_eq!(AmlName::from_str("_SB.PCI0.VGA").unwrap().is_absolute(), false);
- }
- #[test]
- fn test_search_rules_apply() {
- assert_eq!(AmlName::root().search_rules_apply(), false);
- assert_eq!(AmlName::from_str("\\_SB").unwrap().search_rules_apply(), false);
- assert_eq!(AmlName::from_str("^VGA").unwrap().search_rules_apply(), false);
- assert_eq!(AmlName::from_str("_SB.PCI0.VGA").unwrap().search_rules_apply(), false);
- assert_eq!(AmlName::from_str("VGA").unwrap().search_rules_apply(), true);
- assert_eq!(AmlName::from_str("_SB").unwrap().search_rules_apply(), true);
- }
- #[test]
- fn test_aml_name_parent() {
- assert_eq!(AmlName::from_str("\\").unwrap().parent(), Err(AmlError::RootHasNoParent));
- assert_eq!(AmlName::from_str("\\_SB").unwrap().parent(), Ok(AmlName::root()));
- assert_eq!(AmlName::from_str("\\_SB.PCI0").unwrap().parent(), Ok(AmlName::from_str("\\_SB").unwrap()));
- assert_eq!(AmlName::from_str("\\_SB.PCI0").unwrap().parent().unwrap().parent(), Ok(AmlName::root()));
- }
- }
|