lib.rs 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. //! `aml` is a pure-Rust AML (ACPI Machine Language) parser, used for parsing the DSDT and
  2. //! SSDT tables from ACPI. This crate can be used by kernels to gather information about the
  3. //! hardware, and invoke control methods (this is not yet supported) to query and change the state
  4. //! of devices in a hardware-independent way.
  5. //!
  6. //! ### Using the library
  7. //! To use the library, you will mostly interact with the `AmlContext` type. You should create an
  8. //! instance of this type using `AmlContext::new()`, and then pass it tables containing AML
  9. //! (probably from the `acpi` crate), which you've mapped into the virtual address space. This will
  10. //! parse the table, populating the namespace with objects encoded by the AML. After this, you may
  11. //! unmap the memory the table was mapped into - all the information needed will be extracted and
  12. //! allocated on the heap.
  13. //!
  14. //! You can then access specific objects by name like so: e.g.
  15. //! ```ignore
  16. //! let my_aml_value = aml_context.lookup(&AmlName::from_str("\\_SB.PCI0.S08._ADR").unwrap());
  17. //! ```
  18. // TODO: add example of invoking a method
  19. //!
  20. //! ### About the parser
  21. //! The parser is written using a set of custom parser combinators - the code can be confusing on
  22. //! first reading, but provides an extensible and type-safe way to write parsers. For an easy
  23. //! introduction to parser combinators and the foundations used for this library, I suggest reading
  24. //! [Bodil's fantastic blog post](https://bodil.lol/parser-combinators/).
  25. //!
  26. //! The actual combinators can be found in `parser.rs`. Various tricks are used to provide a nice
  27. //! API and work around limitations in the type system, such as the concrete types like
  28. //! `MapWithContext`, and the `make_parser_concrete` hack macro.
  29. //!
  30. //! The actual parsers are then grouped into categories based loosely on the AML grammar sections in
  31. //! the ACPI spec. Most are written in terms of combinators, but some have to be written in a more
  32. //! imperitive style, either because they're clearer, or because we haven't yet found good
  33. //! combinator patterns to express the parse.
  34. #![no_std]
  35. #![feature(decl_macro, type_ascription, box_syntax)]
  36. extern crate alloc;
  37. #[cfg(test)]
  38. extern crate std;
  39. #[cfg(test)]
  40. mod test_utils;
  41. pub(crate) mod misc;
  42. pub(crate) mod name_object;
  43. pub(crate) mod namespace;
  44. pub(crate) mod opcode;
  45. pub(crate) mod parser;
  46. pub mod pci_routing;
  47. pub(crate) mod pkg_length;
  48. pub mod resource;
  49. pub(crate) mod term_object;
  50. pub(crate) mod type1;
  51. pub(crate) mod type2;
  52. pub mod value;
  53. pub use crate::{
  54. namespace::{AmlHandle, AmlName, Namespace},
  55. value::AmlValue,
  56. };
  57. use alloc::{boxed::Box, string::ToString};
  58. use core::mem;
  59. use log::error;
  60. use misc::{ArgNum, LocalNum};
  61. use name_object::Target;
  62. use namespace::LevelType;
  63. use parser::{Parser, Propagate};
  64. use pkg_length::PkgLength;
  65. use term_object::term_list;
  66. use value::{AmlType, Args};
  67. /// AML has a `RevisionOp` operator that returns the "AML interpreter revision". It's not clear
  68. /// what this is actually used for, but this is ours.
  69. pub const AML_INTERPRETER_REVISION: u64 = 0;
  70. /// Describes how much debug information the parser should emit. Set the "maximum" expected verbosity in
  71. /// the context's `debug_verbosity` - everything will be printed that is less or equal in 'verbosity'.
  72. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
  73. pub enum DebugVerbosity {
  74. /// Print no debug information
  75. None,
  76. /// Print heads and tails when entering and leaving scopes of major objects, but not more minor ones.
  77. Scopes,
  78. /// Print heads and tails when entering and leaving scopes of all objects.
  79. AllScopes,
  80. /// Print heads and tails of all objects, and extra debug information as it's parsed.
  81. All,
  82. }
  83. struct MethodContext {
  84. /*
  85. * AML local variables. These are used when we invoke a control method. A `None` value
  86. * represents a null AML object.
  87. */
  88. local_0: Option<AmlValue>,
  89. local_1: Option<AmlValue>,
  90. local_2: Option<AmlValue>,
  91. local_3: Option<AmlValue>,
  92. local_4: Option<AmlValue>,
  93. local_5: Option<AmlValue>,
  94. local_6: Option<AmlValue>,
  95. local_7: Option<AmlValue>,
  96. /// If we're currently invoking a control method, this stores the arguments that were passed to
  97. /// it. It's `None` if we aren't invoking a method.
  98. args: Args,
  99. }
  100. impl MethodContext {
  101. fn new(args: Args) -> MethodContext {
  102. MethodContext {
  103. local_0: None,
  104. local_1: None,
  105. local_2: None,
  106. local_3: None,
  107. local_4: None,
  108. local_5: None,
  109. local_6: None,
  110. local_7: None,
  111. args,
  112. }
  113. }
  114. }
  115. pub struct AmlContext {
  116. /// The `Handler` passed from the library user. This is stored as a boxed trait object simply to avoid having
  117. /// to add a lifetime and type parameter to `AmlContext`, as they would massively complicate the parser types.
  118. handler: Box<dyn Handler>,
  119. pub namespace: Namespace,
  120. method_context: Option<MethodContext>,
  121. /*
  122. * These track the state of the context while it's parsing an AML table.
  123. */
  124. current_scope: AmlName,
  125. scope_indent: usize,
  126. debug_verbosity: DebugVerbosity,
  127. }
  128. impl AmlContext {
  129. /// Creates a new `AmlContext` - the central type in managing the AML tables. Only one of these should be
  130. /// created, and it should be passed the DSDT and all SSDTs defined by the hardware.
  131. pub fn new(handler: Box<dyn Handler>, debug_verbosity: DebugVerbosity) -> AmlContext {
  132. let mut context = AmlContext {
  133. handler,
  134. namespace: Namespace::new(),
  135. method_context: None,
  136. current_scope: AmlName::root(),
  137. scope_indent: 0,
  138. debug_verbosity,
  139. };
  140. context.add_predefined_objects();
  141. context
  142. }
  143. pub fn parse_table(&mut self, stream: &[u8]) -> Result<(), AmlError> {
  144. if stream.len() == 0 {
  145. return Err(AmlError::UnexpectedEndOfStream);
  146. }
  147. let table_length = PkgLength::from_raw_length(stream, stream.len() as u32).unwrap();
  148. match term_object::term_list(table_length).parse(stream, self) {
  149. Ok(_) => Ok(()),
  150. Err((_, _, Propagate::Err(err))) => {
  151. error!("Failed to parse AML stream. Err = {:?}", err);
  152. Err(err)
  153. }
  154. Err((_, _, other)) => {
  155. error!("AML table evaluated to weird result: {:?}", other);
  156. Err(AmlError::MalformedStream)
  157. }
  158. }
  159. }
  160. // TODO: docs
  161. pub fn invoke_method(&mut self, path: &AmlName, args: Args) -> Result<AmlValue, AmlError> {
  162. match self.namespace.get_by_path(path)?.clone() {
  163. AmlValue::Method { flags, code } => {
  164. /*
  165. * First, set up the state we expect to enter the method with, but clearing local
  166. * variables to "null" and setting the arguments. Save the current method state and scope, so if we're
  167. * already executing another control method, we resume into it correctly.
  168. */
  169. let old_context = mem::replace(&mut self.method_context, Some(MethodContext::new(args)));
  170. let old_scope = mem::replace(&mut self.current_scope, path.clone());
  171. /*
  172. * Create a namespace level to store local objects created by the invocation.
  173. */
  174. self.namespace.add_level(path.clone(), LevelType::MethodLocals)?;
  175. let return_value = match term_list(PkgLength::from_raw_length(&code, code.len() as u32).unwrap())
  176. .parse(&code, self)
  177. {
  178. // If the method doesn't return a value, we implicitly return `0`
  179. Ok(_) => Ok(AmlValue::Integer(0)),
  180. Err((_, _, AmlError::Return(result))) => Ok(result),
  181. Err((_, _, err)) => {
  182. error!("Failed to execute control method: {:?}", err);
  183. Err(err)
  184. }
  185. };
  186. /*
  187. * Locally-created objects should be destroyed on method exit (see §5.5.2.3 of the ACPI spec). We do
  188. * this by simply removing the method's local object layer.
  189. */
  190. // TODO: this should also remove objects created by the method outside the method's scope, if they
  191. // weren't statically created. This is harder.
  192. self.namespace.remove_level(path.clone())?;
  193. /*
  194. * Restore the old state.
  195. */
  196. self.method_context = old_context;
  197. self.current_scope = old_scope;
  198. return_value
  199. }
  200. /*
  201. * AML can encode methods that don't require any computation simply as the value that would otherwise be
  202. * returned (e.g. a `_STA` object simply being an `AmlValue::Integer`, instead of a method that just
  203. * returns an integer).
  204. */
  205. value => Ok(value),
  206. }
  207. }
  208. // TODO: docs
  209. pub fn initialize_objects(&mut self) -> Result<(), AmlError> {
  210. use name_object::NameSeg;
  211. use namespace::NamespaceLevel;
  212. use value::StatusObject;
  213. /*
  214. * If `\_SB._INI` exists, we unconditionally execute it at the beginning of device initialization.
  215. */
  216. match self.invoke_method(&AmlName::from_str("\\_SB._INI").unwrap(), Args::default()) {
  217. Ok(_) => (),
  218. Err(AmlError::ValueDoesNotExist(_)) => (),
  219. Err(err) => return Err(err),
  220. }
  221. /*
  222. * Next, we traverse the namespace, looking for devices.
  223. *
  224. * XXX: we clone the namespace here, which obviously drives up heap burden quite a bit (not as much as you
  225. * might first expect though - we're only duplicating the level data structure, not all the objects). The
  226. * issue here is that we need to access the namespace during traversal (e.g. to invoke a method), which the
  227. * borrow checker really doesn't like. A better solution could be a iterator-like traversal system that
  228. * keeps track of the namespace without keeping it borrowed. This works for now.
  229. */
  230. self.namespace.clone().traverse(|path, level: &NamespaceLevel| match level.typ {
  231. LevelType::Device => {
  232. let status = if level.values.contains_key(&NameSeg::from_str("_STA").unwrap()) {
  233. self.invoke_method(&AmlName::from_str("_STA").unwrap().resolve(&path)?, Args::default())?
  234. .as_status()?
  235. } else {
  236. StatusObject::default()
  237. };
  238. /*
  239. * If the device is present and has an `_INI` method, invoke it.
  240. */
  241. if status.present && level.values.contains_key(&NameSeg::from_str("_INI").unwrap()) {
  242. log::info!("Invoking _INI at level: {}", path);
  243. self.invoke_method(&AmlName::from_str("_INI").unwrap().resolve(&path)?, Args::default())?;
  244. }
  245. /*
  246. * We traverse the children of this device if it's present, or isn't present but is functional.
  247. */
  248. Ok(status.present || status.functional)
  249. }
  250. LevelType::Scope => Ok(true),
  251. // TODO: can either of these contain devices?
  252. LevelType::Processor => Ok(false),
  253. LevelType::MethodLocals => Ok(false),
  254. })?;
  255. Ok(())
  256. }
  257. /// Get the value of an argument by its argument number. Can only be executed from inside a control method.
  258. pub(crate) fn current_arg(&self, arg: ArgNum) -> Result<&AmlValue, AmlError> {
  259. self.method_context.as_ref().ok_or(AmlError::NotExecutingControlMethod)?.args.arg(arg)
  260. }
  261. /// Get the current value of a local by its local number. Can only be executed from inside a control method.
  262. pub(crate) fn local(&self, local: LocalNum) -> Result<&AmlValue, AmlError> {
  263. if let None = self.method_context {
  264. return Err(AmlError::NotExecutingControlMethod);
  265. }
  266. match local {
  267. 0 => self.method_context.as_ref().unwrap().local_0.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  268. 1 => self.method_context.as_ref().unwrap().local_1.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  269. 2 => self.method_context.as_ref().unwrap().local_2.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  270. 3 => self.method_context.as_ref().unwrap().local_3.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  271. 4 => self.method_context.as_ref().unwrap().local_4.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  272. 5 => self.method_context.as_ref().unwrap().local_5.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  273. 6 => self.method_context.as_ref().unwrap().local_6.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  274. 7 => self.method_context.as_ref().unwrap().local_7.as_ref().ok_or(AmlError::InvalidLocalAccess(local)),
  275. _ => Err(AmlError::InvalidLocalAccess(local)),
  276. }
  277. }
  278. /// Perform a store into a `Target`. This returns a value read out of the target, if neccessary, as values can
  279. /// be altered during a store in some circumstances. If the target is a `Name`, this also performs required
  280. /// implicit conversions. Stores to other targets are semantically equivalent to a `CopyObject`.
  281. pub(crate) fn store(&mut self, target: Target, value: AmlValue) -> Result<AmlValue, AmlError> {
  282. match target {
  283. Target::Name(ref path) => {
  284. let (_, handle) = self.namespace.search(path, &self.current_scope)?;
  285. let converted_object = match self.namespace.get(handle).unwrap().type_of() {
  286. /*
  287. * We special-case FieldUnits here because we don't have the needed information to actually do
  288. * the write if we try and convert using `as_type`.
  289. */
  290. AmlType::FieldUnit => {
  291. let mut field = self.namespace.get(handle).unwrap().clone();
  292. field.write_field(value, self)?;
  293. field.read_field(self)?
  294. }
  295. typ => value.as_type(typ, self)?,
  296. };
  297. *self.namespace.get_mut(handle)? = converted_object;
  298. Ok(self.namespace.get(handle)?.clone())
  299. }
  300. Target::Debug => {
  301. // TODO
  302. unimplemented!()
  303. }
  304. Target::Arg(arg_num) => {
  305. if let None = self.method_context {
  306. return Err(AmlError::NotExecutingControlMethod);
  307. }
  308. match arg_num {
  309. 1 => self.method_context.as_mut().unwrap().args.arg_1 = Some(value.clone()),
  310. 2 => self.method_context.as_mut().unwrap().args.arg_2 = Some(value.clone()),
  311. 3 => self.method_context.as_mut().unwrap().args.arg_3 = Some(value.clone()),
  312. 4 => self.method_context.as_mut().unwrap().args.arg_4 = Some(value.clone()),
  313. 5 => self.method_context.as_mut().unwrap().args.arg_5 = Some(value.clone()),
  314. 6 => self.method_context.as_mut().unwrap().args.arg_6 = Some(value.clone()),
  315. _ => return Err(AmlError::InvalidArgAccess(arg_num)),
  316. }
  317. Ok(value)
  318. }
  319. Target::Local(local_num) => {
  320. if let None = self.method_context {
  321. return Err(AmlError::NotExecutingControlMethod);
  322. }
  323. match local_num {
  324. 0 => self.method_context.as_mut().unwrap().local_0 = Some(value.clone()),
  325. 1 => self.method_context.as_mut().unwrap().local_1 = Some(value.clone()),
  326. 2 => self.method_context.as_mut().unwrap().local_2 = Some(value.clone()),
  327. 3 => self.method_context.as_mut().unwrap().local_3 = Some(value.clone()),
  328. 4 => self.method_context.as_mut().unwrap().local_4 = Some(value.clone()),
  329. 5 => self.method_context.as_mut().unwrap().local_5 = Some(value.clone()),
  330. 6 => self.method_context.as_mut().unwrap().local_6 = Some(value.clone()),
  331. 7 => self.method_context.as_mut().unwrap().local_7 = Some(value.clone()),
  332. _ => return Err(AmlError::InvalidLocalAccess(local_num)),
  333. }
  334. Ok(value)
  335. }
  336. Target::Null => Ok(value),
  337. }
  338. }
  339. /// Read from an operation-region, performing only standard-sized reads (supported powers-of-2 only. If a field
  340. /// is not one of these sizes, it may need to be masked, or multiple reads may need to be performed).
  341. pub(crate) fn read_region(&self, region_handle: AmlHandle, offset: u64, length: u64) -> Result<u64, AmlError> {
  342. use bit_field::BitField;
  343. use core::convert::TryInto;
  344. use value::RegionSpace;
  345. let (region_space, region_base, region_length, parent_device) = {
  346. if let AmlValue::OpRegion { region, offset, length, parent_device } =
  347. self.namespace.get(region_handle)?
  348. {
  349. (region, offset, length, parent_device)
  350. } else {
  351. return Err(AmlError::FieldRegionIsNotOpRegion);
  352. }
  353. };
  354. match region_space {
  355. RegionSpace::SystemMemory => {
  356. let address = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
  357. match length {
  358. 8 => Ok(self.handler.read_u8(address) as u64),
  359. 16 => Ok(self.handler.read_u16(address) as u64),
  360. 32 => Ok(self.handler.read_u32(address) as u64),
  361. 64 => Ok(self.handler.read_u64(address)),
  362. _ => Err(AmlError::FieldInvalidAccessSize),
  363. }
  364. }
  365. RegionSpace::SystemIo => {
  366. let port = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
  367. match length {
  368. 8 => Ok(self.handler.read_io_u8(port) as u64),
  369. 16 => Ok(self.handler.read_io_u16(port) as u64),
  370. 32 => Ok(self.handler.read_io_u32(port) as u64),
  371. _ => Err(AmlError::FieldInvalidAccessSize),
  372. }
  373. }
  374. RegionSpace::PciConfig => {
  375. /*
  376. * First, we need to get some extra information out of objects in the parent object. Both
  377. * `_SEG` and `_BBN` seem optional, with defaults that line up with legacy PCI implementations
  378. * (e.g. systems with a single segment group and a single root, respectively).
  379. */
  380. let parent_device = parent_device.as_ref().unwrap();
  381. let seg = match self.namespace.search(&AmlName::from_str("_SEG").unwrap(), parent_device) {
  382. Ok((_, handle)) => self
  383. .namespace
  384. .get(handle)?
  385. .as_integer(self)?
  386. .try_into()
  387. .map_err(|_| AmlError::FieldInvalidAddress)?,
  388. Err(AmlError::ValueDoesNotExist(_)) => 0,
  389. Err(err) => return Err(err),
  390. };
  391. let bbn = match self.namespace.search(&AmlName::from_str("_BBN").unwrap(), parent_device) {
  392. Ok((_, handle)) => self
  393. .namespace
  394. .get(handle)?
  395. .as_integer(self)?
  396. .try_into()
  397. .map_err(|_| AmlError::FieldInvalidAddress)?,
  398. Err(AmlError::ValueDoesNotExist(_)) => 0,
  399. Err(err) => return Err(err),
  400. };
  401. let adr = {
  402. let (_, handle) = self.namespace.search(&AmlName::from_str("_ADR").unwrap(), parent_device)?;
  403. self.namespace.get(handle)?.as_integer(self)?
  404. };
  405. let device = adr.get_bits(16..24) as u8;
  406. let function = adr.get_bits(0..8) as u8;
  407. let offset = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
  408. match length {
  409. 8 => Ok(self.handler.read_pci_u8(seg, bbn, device, function, offset) as u64),
  410. 16 => Ok(self.handler.read_pci_u16(seg, bbn, device, function, offset) as u64),
  411. 32 => Ok(self.handler.read_pci_u32(seg, bbn, device, function, offset) as u64),
  412. _ => Err(AmlError::FieldInvalidAccessSize),
  413. }
  414. }
  415. // TODO
  416. _ => unimplemented!(),
  417. }
  418. }
  419. pub(crate) fn write_region(
  420. &mut self,
  421. region_handle: AmlHandle,
  422. offset: u64,
  423. length: u64,
  424. value: u64,
  425. ) -> Result<(), AmlError> {
  426. use bit_field::BitField;
  427. use core::convert::TryInto;
  428. use value::RegionSpace;
  429. let (region_space, region_base, region_length, parent_device) = {
  430. if let AmlValue::OpRegion { region, offset, length, parent_device } =
  431. self.namespace.get(region_handle)?
  432. {
  433. (region, offset, length, parent_device)
  434. } else {
  435. return Err(AmlError::FieldRegionIsNotOpRegion);
  436. }
  437. };
  438. match region_space {
  439. RegionSpace::SystemMemory => {
  440. let address = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
  441. match length {
  442. 8 => Ok(self.handler.write_u8(address, value as u8)),
  443. 16 => Ok(self.handler.write_u16(address, value as u16)),
  444. 32 => Ok(self.handler.write_u32(address, value as u32)),
  445. 64 => Ok(self.handler.write_u64(address, value)),
  446. _ => Err(AmlError::FieldInvalidAccessSize),
  447. }
  448. }
  449. RegionSpace::SystemIo => {
  450. let port = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
  451. match length {
  452. 8 => Ok(self.handler.write_io_u8(port, value as u8)),
  453. 16 => Ok(self.handler.write_io_u16(port, value as u16)),
  454. 32 => Ok(self.handler.write_io_u32(port, value as u32)),
  455. _ => Err(AmlError::FieldInvalidAccessSize),
  456. }
  457. }
  458. RegionSpace::PciConfig => {
  459. /*
  460. * First, we need to get some extra information out of objects in the parent object. Both
  461. * `_SEG` and `_BBN` seem optional, with defaults that line up with legacy PCI implementations
  462. * (e.g. systems with a single segment group and a single root, respectively).
  463. */
  464. let parent_device = parent_device.as_ref().unwrap();
  465. let seg = match self.namespace.search(&AmlName::from_str("_SEG").unwrap(), parent_device) {
  466. Ok((_, handle)) => self
  467. .namespace
  468. .get(handle)?
  469. .as_integer(self)?
  470. .try_into()
  471. .map_err(|_| AmlError::FieldInvalidAddress)?,
  472. Err(AmlError::ValueDoesNotExist(_)) => 0,
  473. Err(err) => return Err(err),
  474. };
  475. let bbn = match self.namespace.search(&AmlName::from_str("_BBN").unwrap(), parent_device) {
  476. Ok((_, handle)) => self
  477. .namespace
  478. .get(handle)?
  479. .as_integer(self)?
  480. .try_into()
  481. .map_err(|_| AmlError::FieldInvalidAddress)?,
  482. Err(AmlError::ValueDoesNotExist(_)) => 0,
  483. Err(err) => return Err(err),
  484. };
  485. let adr = {
  486. let (_, handle) = self.namespace.search(&AmlName::from_str("_ADR").unwrap(), parent_device)?;
  487. self.namespace.get(handle)?.as_integer(self)?
  488. };
  489. let device = adr.get_bits(16..24) as u8;
  490. let function = adr.get_bits(0..8) as u8;
  491. let offset = (region_base + offset).try_into().map_err(|_| AmlError::FieldInvalidAddress)?;
  492. match length {
  493. 8 => Ok(self.handler.write_pci_u8(seg, bbn, device, function, offset, value as u8)),
  494. 16 => Ok(self.handler.write_pci_u16(seg, bbn, device, function, offset, value as u16)),
  495. 32 => Ok(self.handler.write_pci_u32(seg, bbn, device, function, offset, value as u32)),
  496. _ => Err(AmlError::FieldInvalidAccessSize),
  497. }
  498. }
  499. // TODO
  500. _ => unimplemented!(),
  501. }
  502. }
  503. fn add_predefined_objects(&mut self) {
  504. /*
  505. * These are the scopes predefined by the spec. Some tables will try to access them without defining them
  506. * themselves, and so we have to pre-create them.
  507. */
  508. self.namespace.add_level(AmlName::from_str("\\_GPE").unwrap(), LevelType::Scope).unwrap();
  509. self.namespace.add_level(AmlName::from_str("\\_SB").unwrap(), LevelType::Scope).unwrap();
  510. self.namespace.add_level(AmlName::from_str("\\_SI").unwrap(), LevelType::Scope).unwrap();
  511. self.namespace.add_level(AmlName::from_str("\\_PR").unwrap(), LevelType::Scope).unwrap();
  512. self.namespace.add_level(AmlName::from_str("\\_TZ").unwrap(), LevelType::Scope).unwrap();
  513. /*
  514. * In the dark ages of ACPI 1.0, before `\_OSI`, `\_OS` was used to communicate to the firmware which OS
  515. * was running. This was predictably not very good, and so was replaced in ACPI 3.0 with `_OSI`, which
  516. * allows support for individual capabilities to be queried. `_OS` should not be used by modern firmwares,
  517. * but to avoid problems we follow Linux in returning `"Microsoft Windows NT"`.
  518. *
  519. * See https://www.kernel.org/doc/html/latest/firmware-guide/acpi/osi.html for more information.
  520. */
  521. self.namespace
  522. .add_value(AmlName::from_str("\\_OS").unwrap(), AmlValue::String("Microsoft Windows NT".to_string()))
  523. .unwrap();
  524. /*
  525. * `\_OSI` was introduced by ACPI 3.0 to improve the situation created by `\_OS`. Unfortunately, exactly
  526. * the same problem was immediately repeated by introducing capabilities reflecting that an ACPI
  527. * implementation is exactly the same as a particular version of Windows' (e.g. firmwares will call
  528. * `\_OSI("Windows 2001")`).
  529. *
  530. * We basically follow suit with whatever Linux does, as this will hopefully minimise breakage:
  531. * - We always claim `Windows *` compatability
  532. * - We answer 'yes' to `_OSI("Darwin")
  533. * - We answer 'no' to `_OSI("Linux")`, and report that the tables are doing the wrong thing
  534. */
  535. // TODO
  536. // self.namespace.add_value(AmlName::from_str("\\_OSI").unwrap(), todo!()).unwrap();
  537. /*
  538. * `\_REV` evaluates to the version of the ACPI specification supported by this interpreter. Linux did this
  539. * correctly until 2015, but firmwares misused this to detect Linux (as even modern versions of Windows
  540. * return `2`), and so they switched to just returning `2` (as we'll also do). `_REV` should be considered
  541. * useless and deprecated (this is mirrored in newer specs, which claim `2` means "ACPI 2 or greater").
  542. */
  543. self.namespace.add_value(AmlName::from_str("\\_REV").unwrap(), AmlValue::Integer(2)).unwrap();
  544. }
  545. }
  546. // TODO: docs
  547. pub trait Handler {
  548. fn read_u8(&self, address: usize) -> u8;
  549. fn read_u16(&self, address: usize) -> u16;
  550. fn read_u32(&self, address: usize) -> u32;
  551. fn read_u64(&self, address: usize) -> u64;
  552. fn write_u8(&mut self, address: usize, value: u8);
  553. fn write_u16(&mut self, address: usize, value: u16);
  554. fn write_u32(&mut self, address: usize, value: u32);
  555. fn write_u64(&mut self, address: usize, value: u64);
  556. fn read_io_u8(&self, port: u16) -> u8;
  557. fn read_io_u16(&self, port: u16) -> u16;
  558. fn read_io_u32(&self, port: u16) -> u32;
  559. fn write_io_u8(&self, port: u16, value: u8);
  560. fn write_io_u16(&self, port: u16, value: u16);
  561. fn write_io_u32(&self, port: u16, value: u32);
  562. fn read_pci_u8(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16) -> u8;
  563. fn read_pci_u16(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16) -> u16;
  564. fn read_pci_u32(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16) -> u32;
  565. fn write_pci_u8(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16, value: u8);
  566. fn write_pci_u16(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16, value: u16);
  567. fn write_pci_u32(&self, segment: u16, bus: u8, device: u8, function: u8, offset: u16, value: u32);
  568. }
  569. #[derive(Clone, Debug, PartialEq, Eq)]
  570. pub enum AmlError {
  571. /*
  572. * Errors produced parsing the AML stream.
  573. */
  574. UnexpectedEndOfStream,
  575. UnexpectedByte(u8),
  576. /// Produced when the stream evaluates to something other than nothing or an error.
  577. MalformedStream,
  578. InvalidNameSeg,
  579. InvalidPkgLength,
  580. InvalidFieldFlags,
  581. IncompatibleValueConversion,
  582. UnterminatedStringConstant,
  583. InvalidStringConstant,
  584. InvalidRegionSpace(u8),
  585. /// Produced when a `DefPackage` contains a different number of elements to the package's length.
  586. MalformedPackage,
  587. /// Produced when a `DefBuffer` contains more bytes that its size.
  588. MalformedBuffer,
  589. /// Emitted by a parser when it's clear that the stream doesn't encode the object parsed by
  590. /// that parser (e.g. the wrong opcode starts the stream). This is handled specially by some
  591. /// parsers such as `or` and `choice!`.
  592. WrongParser,
  593. /*
  594. * Errors produced manipulating AML names.
  595. */
  596. EmptyNamesAreInvalid,
  597. /// Produced when trying to normalize a path that does not point to a valid level of the
  598. /// namespace. E.g. `\_SB.^^PCI0` goes above the root of the namespace. The contained value is the name that
  599. /// normalization was attempted upon.
  600. InvalidNormalizedName(AmlName),
  601. RootHasNoParent,
  602. /*
  603. * Errors produced working with the namespace.
  604. */
  605. /// Produced when a sub-level or value is added to a level that has not yet been added to the namespace. The
  606. /// `AmlName` is the name of the entire sub-level/value.
  607. LevelDoesNotExist(AmlName),
  608. ValueDoesNotExist(AmlName),
  609. /// Produced when two values with the same name are added to the namespace.
  610. NameCollision(AmlName),
  611. TriedToRemoveRootNamespace,
  612. /*
  613. * Errors produced executing control methods.
  614. */
  615. /// Produced when AML tries to do something only possible in a control method (e.g. read from an argument)
  616. /// when there's no control method executing.
  617. NotExecutingControlMethod,
  618. /// Produced when a method accesses an argument it does not have (e.g. a method that takes 2
  619. /// arguments accesses `Arg4`). The inner value is the number of the argument accessed.
  620. InvalidArgAccess(ArgNum),
  621. /// Produced when a method accesses a local that it has not stored into.
  622. InvalidLocalAccess(LocalNum),
  623. /// This is not a real error, but is used to propagate return values from within the deep
  624. /// parsing call-stack. It should only be emitted when parsing a `DefReturn`. We use the
  625. /// error system here because the way errors are propagated matches how we want to handle
  626. /// return values.
  627. Return(AmlValue),
  628. /*
  629. * Errors produced parsing the PCI routing tables (_PRT objects).
  630. */
  631. PrtInvalidAddress,
  632. PrtInvalidPin,
  633. PrtInvalidSource,
  634. PrtInvalidGsi,
  635. /// Produced when the PRT doesn't contain an entry for the requested address + pin
  636. PrtNoEntry,
  637. /*
  638. * Errors produced parsing Resource Descriptors.
  639. */
  640. ReservedResourceType,
  641. ResourceDescriptorTooShort,
  642. ResourceDescriptorTooLong,
  643. /*
  644. * Errors produced working with AML values.
  645. */
  646. InvalidStatusObject,
  647. InvalidShiftLeft,
  648. InvalidShiftRight,
  649. FieldRegionIsNotOpRegion,
  650. FieldInvalidAddress,
  651. FieldInvalidAccessSize,
  652. TypeCannotBeCompared(AmlType),
  653. }