//! Exports item [`Multiboot2HeaderBuilder`]. use crate::HeaderTagISA; use crate::{ AddressHeaderTag, ConsoleHeaderTag, EfiBootServiceHeaderTag, EndHeaderTag, EntryEfi32HeaderTag, EntryEfi64HeaderTag, EntryHeaderTag, FramebufferHeaderTag, InformationRequestHeaderTagBuilder, ModuleAlignHeaderTag, Multiboot2BasicHeader, RelocatableHeaderTag, StructAsBytes, }; use core::mem::size_of; /// Builder to construct a valid Multiboot2 header dynamically at runtime. /// The tags will appear in the order of their corresponding enumeration, /// except for the END tag. #[derive(Debug)] pub struct Multiboot2HeaderBuilder { arch: HeaderTagISA, // first information_request_tag: Option, // second address_tag: Option, // third entry_tag: Option, // fourth console_tag: Option, // fifth framebuffer_tag: Option, // sixth module_align_tag: Option, // seventh efi_bs_tag: Option, // eighth efi_32_tag: Option, // ninth efi_64_tag: Option, // tenth (last) relocatable_tag: Option, } impl Multiboot2HeaderBuilder { pub const fn new(arch: HeaderTagISA) -> Self { Self { arch, information_request_tag: None, address_tag: None, entry_tag: None, console_tag: None, framebuffer_tag: None, module_align_tag: None, efi_bs_tag: None, efi_32_tag: None, efi_64_tag: None, relocatable_tag: None, } } /// Returns the size, if the value is a multiple of 8 or returns /// the next number that is a multiple of 8. With this, one can /// easily calculate the size of a Multiboot2 header, where /// all the tags are 8-byte aligned. const fn size_or_up_aligned(size: usize) -> usize { let remainder = size % 8; if remainder == 0 { size } else { size + 8 - remainder } } /// Returns the expected length of the Multiboot2 header, /// when the `build()`-method gets called. pub fn expected_len(&self) -> usize { let base_len = size_of::(); // size_or_up_aligned not required, because basic header length is 16 and the // begin is 8 byte aligned => first tag automatically 8 byte aligned let mut len = Self::size_or_up_aligned(base_len); if let Some(tag_builder) = self.information_request_tag.as_ref() { // we use size_or_up_aligned, because each tag will start at an 8 byte aligned address. // Attention: expected len from builder, not the size of the builder itself! len += Self::size_or_up_aligned(tag_builder.expected_len()) } if self.address_tag.is_some() { // we use size_or_up_aligned, because each tag will start at an 8 byte aligned address len += Self::size_or_up_aligned(size_of::()) } if self.entry_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.console_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.framebuffer_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.module_align_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.efi_bs_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.efi_32_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.efi_64_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } if self.relocatable_tag.is_some() { len += Self::size_or_up_aligned(size_of::()) } // only here size_or_up_aligned is not important, because it is the last tag len += size_of::(); len } /// Adds the bytes of a tag to the final Multiboot2 header byte vector. /// Align should be true for all tags except the end tag. fn build_add_bytes(dest: &mut Vec, source: &[u8], is_end_tag: bool) { dest.extend(source); if !is_end_tag { let size = source.len(); let size_to_8_align = Self::size_or_up_aligned(size); let size_to_8_align_diff = size_to_8_align - size; // fill zeroes so that next data block is 8-byte aligned dest.extend([0].repeat(size_to_8_align_diff)); } } /// Constructs the bytes for a valid Multiboot2 header with the given properties. /// The bytes can be casted to a Multiboot2 structure. pub fn build(mut self) -> Vec { let mut data = Vec::new(); Self::build_add_bytes( &mut data, // important that we write the correct expected length into the header! &Multiboot2BasicHeader::new(self.arch, self.expected_len() as u32).struct_as_bytes(), false, ); if self.information_request_tag.is_some() { Self::build_add_bytes( &mut data, &self.information_request_tag.take().unwrap().build(), false, ) } if let Some(tag) = self.address_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.entry_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.console_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.framebuffer_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.module_align_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.efi_bs_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.efi_32_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.efi_64_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } if let Some(tag) = self.relocatable_tag.as_ref() { Self::build_add_bytes(&mut data, &tag.struct_as_bytes(), false) } Self::build_add_bytes(&mut data, &EndHeaderTag::new().struct_as_bytes(), true); data } // clippy thinks this can be a const fn but the compiler denies it #[allow(clippy::missing_const_for_fn)] pub fn information_request_tag( mut self, information_request_tag: InformationRequestHeaderTagBuilder, ) -> Self { self.information_request_tag = Some(information_request_tag); self } pub const fn address_tag(mut self, address_tag: AddressHeaderTag) -> Self { self.address_tag = Some(address_tag); self } pub const fn entry_tag(mut self, entry_tag: EntryHeaderTag) -> Self { self.entry_tag = Some(entry_tag); self } pub const fn console_tag(mut self, console_tag: ConsoleHeaderTag) -> Self { self.console_tag = Some(console_tag); self } pub const fn framebuffer_tag(mut self, framebuffer_tag: FramebufferHeaderTag) -> Self { self.framebuffer_tag = Some(framebuffer_tag); self } pub const fn module_align_tag(mut self, module_align_tag: ModuleAlignHeaderTag) -> Self { self.module_align_tag = Some(module_align_tag); self } pub const fn efi_bs_tag(mut self, efi_bs_tag: EfiBootServiceHeaderTag) -> Self { self.efi_bs_tag = Some(efi_bs_tag); self } pub const fn efi_32_tag(mut self, efi_32_tag: EntryEfi32HeaderTag) -> Self { self.efi_32_tag = Some(efi_32_tag); self } pub const fn efi_64_tag(mut self, efi_64_tag: EntryEfi64HeaderTag) -> Self { self.efi_64_tag = Some(efi_64_tag); self } pub const fn relocatable_tag(mut self, relocatable_tag: RelocatableHeaderTag) -> Self { self.relocatable_tag = Some(relocatable_tag); self } } #[cfg(test)] mod tests { use crate::{ HeaderTagFlag, HeaderTagISA, InformationRequestHeaderTagBuilder, MbiTagType, Multiboot2Header, Multiboot2HeaderBuilder, RelocatableHeaderTag, RelocatableHeaderTagPreference, }; #[test] fn test_size_or_up_aligned() { assert_eq!(0, Multiboot2HeaderBuilder::size_or_up_aligned(0)); assert_eq!(8, Multiboot2HeaderBuilder::size_or_up_aligned(1)); assert_eq!(8, Multiboot2HeaderBuilder::size_or_up_aligned(8)); assert_eq!(16, Multiboot2HeaderBuilder::size_or_up_aligned(9)); } #[test] fn test_size_builder() { let builder = Multiboot2HeaderBuilder::new(HeaderTagISA::I386); // Multiboot2 basic header + end tag let mut expected_len = 16 + 8; assert_eq!(builder.expected_len(), expected_len); // add information request tag let ifr_builder = InformationRequestHeaderTagBuilder::new(HeaderTagFlag::Required).add_irs(&[ MbiTagType::EfiMmap, MbiTagType::Cmdline, MbiTagType::ElfSections, ]); let ifr_tag_size_with_padding = ifr_builder.expected_len() + 4; assert_eq!( ifr_tag_size_with_padding % 8, 0, "the length of the IFR tag with padding must be a multiple of 8" ); expected_len += ifr_tag_size_with_padding; let builder = builder.information_request_tag(ifr_builder); assert_eq!(builder.expected_len(), expected_len); let builder = builder.relocatable_tag(RelocatableHeaderTag::new( HeaderTagFlag::Required, 0x1337, 0xdeadbeef, 4096, RelocatableHeaderTagPreference::None, )); println!("builder: {:#?}", builder); println!("expected_len: {} bytes", builder.expected_len()); let mb2_hdr_data = builder.build(); let mb2_hdr = mb2_hdr_data.as_ptr() as usize; let mb2_hdr = unsafe { Multiboot2Header::from_addr(mb2_hdr) }; println!("{:#?}", mb2_hdr); /* you can write the binary to a file and a tool such as crate "bootinfo" will be able to fully parse the MB2 header let mut file = std::file::File::create("mb2_hdr.bin").unwrap(); use std::io::Write; file.write_all(mb2_hdr_data.as_slice()).unwrap();*/ } }