|
@@ -148,6 +148,16 @@ fn sbb(a: BigDigit, b: BigDigit, borrow: &mut BigDigit) -> BigDigit {
|
|
|
lo
|
|
|
}
|
|
|
|
|
|
+#[inline]
|
|
|
+fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, carry: &mut BigDigit) -> BigDigit {
|
|
|
+ let (hi, lo) = big_digit::from_doublebigdigit(
|
|
|
+ (a as DoubleBigDigit) +
|
|
|
+ (b as DoubleBigDigit) * (c as DoubleBigDigit) +
|
|
|
+ (*carry as DoubleBigDigit));
|
|
|
+ *carry = hi;
|
|
|
+ lo
|
|
|
+}
|
|
|
+
|
|
|
/// A big unsigned integer type.
|
|
|
///
|
|
|
/// A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number
|
|
@@ -172,18 +182,25 @@ impl PartialOrd for BigUint {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering {
|
|
|
+ debug_assert!(a.last() != Some(&0));
|
|
|
+ debug_assert!(b.last() != Some(&0));
|
|
|
+
|
|
|
+ let (a_len, b_len) = (a.len(), b.len());
|
|
|
+ if a_len < b_len { return Less; }
|
|
|
+ if a_len > b_len { return Greater; }
|
|
|
+
|
|
|
+ for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) {
|
|
|
+ if ai < bi { return Less; }
|
|
|
+ if ai > bi { return Greater; }
|
|
|
+ }
|
|
|
+ return Equal;
|
|
|
+}
|
|
|
+
|
|
|
impl Ord for BigUint {
|
|
|
#[inline]
|
|
|
fn cmp(&self, other: &BigUint) -> Ordering {
|
|
|
- let (s_len, o_len) = (self.data.len(), other.data.len());
|
|
|
- if s_len < o_len { return Less; }
|
|
|
- if s_len > o_len { return Greater; }
|
|
|
-
|
|
|
- for (&self_i, &other_i) in self.data.iter().rev().zip(other.data.iter().rev()) {
|
|
|
- if self_i < other_i { return Less; }
|
|
|
- if self_i > other_i { return Greater; }
|
|
|
- }
|
|
|
- return Equal;
|
|
|
+ cmp_slice(&self.data[..], &other.data[..])
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -608,80 +625,202 @@ impl<'a> Sub<&'a BigUint> for BigUint {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
|
|
|
+ // Normalize:
|
|
|
+ let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
|
|
|
+ let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
|
|
|
|
|
|
-forward_all_binop_to_val_ref_commutative!(impl Mul for BigUint, mul);
|
|
|
+ match cmp_slice(a, b) {
|
|
|
+ Greater => {
|
|
|
+ let mut ret = BigUint::from_slice(a);
|
|
|
+ sub2(&mut ret.data[..], b);
|
|
|
+ BigInt::from_biguint(Plus, ret.normalize())
|
|
|
+ },
|
|
|
+ Less => {
|
|
|
+ let mut ret = BigUint::from_slice(b);
|
|
|
+ sub2(&mut ret.data[..], a);
|
|
|
+ BigInt::from_biguint(Minus, ret.normalize())
|
|
|
+ },
|
|
|
+ _ => Zero::zero(),
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-impl<'a> Mul<&'a BigUint> for BigUint {
|
|
|
- type Output = BigUint;
|
|
|
+forward_all_binop_to_ref_ref!(impl Mul for BigUint, mul);
|
|
|
|
|
|
- fn mul(self, other: &BigUint) -> BigUint {
|
|
|
- if self.is_zero() || other.is_zero() { return Zero::zero(); }
|
|
|
-
|
|
|
- let (s_len, o_len) = (self.data.len(), other.data.len());
|
|
|
- if s_len == 1 { return mul_digit(other.clone(), self.data[0]); }
|
|
|
- if o_len == 1 { return mul_digit(self, other.data[0]); }
|
|
|
-
|
|
|
- // Using Karatsuba multiplication
|
|
|
- // (a1 * base + a0) * (b1 * base + b0)
|
|
|
- // = a1*b1 * base^2 +
|
|
|
- // (a1*b1 + a0*b0 - (a1-b0)*(b1-a0)) * base +
|
|
|
- // a0*b0
|
|
|
- let half_len = cmp::max(s_len, o_len) / 2;
|
|
|
- let (s_hi, s_lo) = cut_at(self, half_len);
|
|
|
- let (o_hi, o_lo) = cut_at(other.clone(), half_len);
|
|
|
-
|
|
|
- let ll = &s_lo * &o_lo;
|
|
|
- let hh = &s_hi * &o_hi;
|
|
|
- let mm = {
|
|
|
- let (s1, n1) = sub_sign(s_hi, s_lo);
|
|
|
- let (s2, n2) = sub_sign(o_hi, o_lo);
|
|
|
- match (s1, s2) {
|
|
|
- (Equal, _) | (_, Equal) => &hh + &ll,
|
|
|
- (Less, Greater) | (Greater, Less) => &hh + &ll + (n1 * n2),
|
|
|
- (Less, Less) | (Greater, Greater) => &hh + &ll - (n1 * n2)
|
|
|
- }
|
|
|
- };
|
|
|
+/// Three argument multiply accumulate:
|
|
|
+/// acc += b * c
|
|
|
+fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
|
|
|
+ if c == 0 { return; }
|
|
|
|
|
|
- return ll + mm.shl_unit(half_len) + hh.shl_unit(half_len * 2);
|
|
|
+ let mut b_iter = b.iter();
|
|
|
+ let mut carry = 0;
|
|
|
|
|
|
+ for ai in acc.iter_mut() {
|
|
|
+ if let Some(bi) = b_iter.next() {
|
|
|
+ *ai = mac_with_carry(*ai, *bi, c, &mut carry);
|
|
|
+ } else if carry != 0 {
|
|
|
+ *ai = mac_with_carry(*ai, 0, c, &mut carry);
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- fn mul_digit(a: BigUint, n: BigDigit) -> BigUint {
|
|
|
- if n == 0 { return Zero::zero(); }
|
|
|
- if n == 1 { return a; }
|
|
|
+ assert!(carry == 0);
|
|
|
+}
|
|
|
|
|
|
- let mut carry = 0;
|
|
|
- let mut prod = a.data;
|
|
|
- for a in &mut prod {
|
|
|
- let d = (*a as DoubleBigDigit)
|
|
|
- * (n as DoubleBigDigit)
|
|
|
- + (carry as DoubleBigDigit);
|
|
|
- let (hi, lo) = big_digit::from_doublebigdigit(d);
|
|
|
- carry = hi;
|
|
|
- *a = lo;
|
|
|
- }
|
|
|
- if carry != 0 { prod.push(carry); }
|
|
|
- BigUint::new(prod)
|
|
|
- }
|
|
|
+/// Three argument multiply accumulate:
|
|
|
+/// acc += b * c
|
|
|
+fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
|
|
|
+ let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) };
|
|
|
|
|
|
- #[inline]
|
|
|
- fn cut_at(mut a: BigUint, n: usize) -> (BigUint, BigUint) {
|
|
|
- let mid = cmp::min(a.data.len(), n);
|
|
|
- let hi = BigUint::from_slice(&a.data[mid ..]);
|
|
|
- a.data.truncate(mid);
|
|
|
- (hi, BigUint::new(a.data))
|
|
|
+ /*
|
|
|
+ * Karatsuba multiplication is slower than long multiplication for small x and y:
|
|
|
+ */
|
|
|
+ if x.len() <= 4 {
|
|
|
+ for (i, xi) in x.iter().enumerate() {
|
|
|
+ mac_digit(&mut acc[i..], y, *xi);
|
|
|
}
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn sub_sign(a: BigUint, b: BigUint) -> (Ordering, BigUint) {
|
|
|
- match a.cmp(&b) {
|
|
|
- Less => (Less, b - a),
|
|
|
- Greater => (Greater, a - b),
|
|
|
- _ => (Equal, Zero::zero())
|
|
|
- }
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * Karatsuba multiplication:
|
|
|
+ *
|
|
|
+ * The idea is that we break x and y up into two smaller numbers that each have about half
|
|
|
+ * as many digits, like so (note that multiplying by b is just a shift):
|
|
|
+ *
|
|
|
+ * x = x0 + x1 * b
|
|
|
+ * y = y0 + y1 * b
|
|
|
+ *
|
|
|
+ * With some algebra, we can compute x * y with three smaller products, where the inputs to
|
|
|
+ * each of the smaller products have only about half as many digits as x and y:
|
|
|
+ *
|
|
|
+ * x * y = (x0 + x1 * b) * (y0 + y1 * b)
|
|
|
+ *
|
|
|
+ * x * y = x0 * y0
|
|
|
+ * + x0 * y1 * b
|
|
|
+ * + x1 * y0 * b
|
|
|
+ * + x1 * y1 * b^2
|
|
|
+ *
|
|
|
+ * Let p0 = x0 * y0 and p2 = x1 * y1:
|
|
|
+ *
|
|
|
+ * x * y = p0
|
|
|
+ * + (x0 * y1 + x1 * p0) * b
|
|
|
+ * + p2 * b^2
|
|
|
+ *
|
|
|
+ * The real trick is that middle term:
|
|
|
+ *
|
|
|
+ * x0 * y1 + x1 * y0
|
|
|
+ *
|
|
|
+ * = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
|
|
|
+ *
|
|
|
+ * = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
|
|
|
+ *
|
|
|
+ * Now we complete the square:
|
|
|
+ *
|
|
|
+ * = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
|
|
|
+ *
|
|
|
+ * = -((x1 - x0) * (y1 - y0)) + p0 + p2
|
|
|
+ *
|
|
|
+ * Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
|
|
|
+ *
|
|
|
+ * x * y = p0
|
|
|
+ * + (p0 + p2 - p1) * b
|
|
|
+ * + p2 * b^2
|
|
|
+ *
|
|
|
+ * Where the three intermediate products are:
|
|
|
+ *
|
|
|
+ * p0 = x0 * y0
|
|
|
+ * p1 = (x1 - x0) * (y1 - y0)
|
|
|
+ * p2 = x1 * y1
|
|
|
+ *
|
|
|
+ * In doing the computation, we take great care to avoid unnecessary temporary variables
|
|
|
+ * (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
|
|
|
+ * bit so we can use the same temporary variable for all the intermediate products:
|
|
|
+ *
|
|
|
+ * x * y = p2 * b^2 + p2 * b
|
|
|
+ * + p0 * b + p0
|
|
|
+ * - p1 * b
|
|
|
+ *
|
|
|
+ * The other trick we use is instead of doing explicit shifts, we slice acc at the
|
|
|
+ * appropriate offset when doing the add.
|
|
|
+ */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * When x is smaller than y, it's significantly faster to pick b such that x is split in
|
|
|
+ * half, not y:
|
|
|
+ */
|
|
|
+ let b = x.len() / 2;
|
|
|
+ let (x0, x1) = x.split_at(b);
|
|
|
+ let (y0, y1) = y.split_at(b);
|
|
|
+
|
|
|
+ /* We reuse the same BigUint for all the intermediate multiplies: */
|
|
|
+
|
|
|
+ let len = y.len() + 1;
|
|
|
+ let mut p: BigUint = BigUint { data: Vec::with_capacity(len) };
|
|
|
+ p.data.extend(repeat(0).take(len));
|
|
|
+
|
|
|
+ // p2 = x1 * y1
|
|
|
+ mac3(&mut p.data[..], x1, y1);
|
|
|
+
|
|
|
+ // Not required, but the adds go faster if we drop any unneeded 0s from the end:
|
|
|
+ p = p.normalize();
|
|
|
+
|
|
|
+ add2(&mut acc[b..], &p.data[..]);
|
|
|
+ add2(&mut acc[b * 2..], &p.data[..]);
|
|
|
+
|
|
|
+ // Zero out p before the next multiply:
|
|
|
+ p.data.truncate(0);
|
|
|
+ p.data.extend(repeat(0).take(len));
|
|
|
+
|
|
|
+ // p0 = x0 * y0
|
|
|
+ mac3(&mut p.data[..], x0, y0);
|
|
|
+ p = p.normalize();
|
|
|
+
|
|
|
+ add2(&mut acc[..], &p.data[..]);
|
|
|
+ add2(&mut acc[b..], &p.data[..]);
|
|
|
+
|
|
|
+ // p1 = (x1 - x0) * (y1 - y0)
|
|
|
+ // We do this one last, since it may be negative and acc can't ever be negative:
|
|
|
+ let j0 = sub_sign(x1, x0);
|
|
|
+ let j1 = sub_sign(y1, y0);
|
|
|
+
|
|
|
+ match j0.sign * j1.sign {
|
|
|
+ Plus => {
|
|
|
+ p.data.truncate(0);
|
|
|
+ p.data.extend(repeat(0).take(len));
|
|
|
+
|
|
|
+ mac3(&mut p.data[..], &j0.data.data[..], &j1.data.data[..]);
|
|
|
+ p = p.normalize();
|
|
|
+
|
|
|
+ sub2(&mut acc[b..], &p.data[..]);
|
|
|
+ },
|
|
|
+ Minus => {
|
|
|
+ mac3(&mut acc[b..], &j0.data.data[..], &j1.data.data[..]);
|
|
|
+ },
|
|
|
+ NoSign => (),
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
|
|
|
+ let len = x.len() + y.len() + 1;
|
|
|
+ let mut prod: BigUint = BigUint { data: Vec::with_capacity(len) };
|
|
|
+
|
|
|
+ // resize isn't stable yet:
|
|
|
+ //prod.data.resize(len, 0);
|
|
|
+ prod.data.extend(repeat(0).take(len));
|
|
|
+
|
|
|
+ mac3(&mut prod.data[..], x, y);
|
|
|
+ prod.normalize()
|
|
|
+}
|
|
|
+
|
|
|
+impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint {
|
|
|
+ type Output = BigUint;
|
|
|
+
|
|
|
+ #[inline]
|
|
|
+ fn mul(self, other: &BigUint) -> BigUint {
|
|
|
+ mul3(&self.data[..], &other.data[..])
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
forward_all_binop_to_ref_ref!(impl Div for BigUint, div);
|
|
|
|
|
@@ -3131,6 +3270,16 @@ mod biguint_tests {
|
|
|
// Switching u and l should fail:
|
|
|
let _n: BigUint = rng.gen_biguint_range(&u, &l);
|
|
|
}
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ fn test_sub_sign() {
|
|
|
+ use super::sub_sign;
|
|
|
+ let a = BigInt::from_str_radix("265252859812191058636308480000000", 10).unwrap();
|
|
|
+ let b = BigInt::from_str_radix("26525285981219105863630848000000", 10).unwrap();
|
|
|
+
|
|
|
+ assert_eq!(sub_sign(&a.data.data[..], &b.data.data[..]), &a - &b);
|
|
|
+ assert_eq!(sub_sign(&b.data.data[..], &a.data.data[..]), &b - &a);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|