|
@@ -676,6 +676,23 @@ impl<T> IterBinomial<T>
|
|
|
where T: Integer,
|
|
|
{
|
|
|
/// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
|
|
|
+ ///
|
|
|
+ /// Note that this might overflow, depending on `T`. For the primitive
|
|
|
+ /// integer types, the following n are the largest ones for which there will
|
|
|
+ /// be no overflow:
|
|
|
+ ///
|
|
|
+ /// type | n
|
|
|
+ /// -----|---
|
|
|
+ /// u8 | 10
|
|
|
+ /// i8 | 9
|
|
|
+ /// u16 | 18
|
|
|
+ /// i16 | 17
|
|
|
+ /// u32 | 34
|
|
|
+ /// i32 | 33
|
|
|
+ /// u64 | 67
|
|
|
+ /// i64 | 66
|
|
|
+ ///
|
|
|
+ /// For larger n, `T` should be a bigint type.
|
|
|
pub fn new(n: T) -> IterBinomial<T> {
|
|
|
IterBinomial {
|
|
|
k: T::zero(), a: T::one(), n: n
|
|
@@ -716,6 +733,23 @@ fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
|
|
|
}
|
|
|
|
|
|
/// Calculate the binomial coefficient.
|
|
|
+///
|
|
|
+/// Note that this might overflow, depending on `T`. For the primitive integer
|
|
|
+/// types, the following n are the largest ones possible such that there will
|
|
|
+/// be no overflow for any k:
|
|
|
+///
|
|
|
+/// type | n
|
|
|
+/// -----|---
|
|
|
+/// u8 | 10
|
|
|
+/// i8 | 9
|
|
|
+/// u16 | 18
|
|
|
+/// i16 | 17
|
|
|
+/// u32 | 34
|
|
|
+/// i32 | 33
|
|
|
+/// u64 | 67
|
|
|
+/// i64 | 66
|
|
|
+///
|
|
|
+/// For larger n, consider using a bigint type for `T`.
|
|
|
pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
|
|
|
// See http://blog.plover.com/math/choose.html for the idea.
|
|
|
if k > n {
|