|
@@ -0,0 +1,227 @@
|
|
|
+use core::ops::{Div, Rem};
|
|
|
+use Float;
|
|
|
+
|
|
|
+pub trait DivRemEuclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
|
|
|
+ /// Calculates Euclidean division, the matching method for `rem_euclid`.
|
|
|
+ ///
|
|
|
+ /// This computes the integer `n` such that
|
|
|
+ /// `self = n * rhs + self.rem_euclid(rhs)`.
|
|
|
+ /// In other words, the result is `self / rhs` rounded to the integer `n`
|
|
|
+ /// such that `self >= n * rhs`.
|
|
|
+ ///
|
|
|
+ /// # Examples
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::DivRemEuclid;
|
|
|
+ ///
|
|
|
+ /// let a: i32 = 7;
|
|
|
+ /// let b: i32 = 4;
|
|
|
+ /// assert_eq!(DivRemEuclid::div_euclid(&a,&b), 1); // 7 > 4 * 1
|
|
|
+ /// assert_eq!(DivRemEuclid::div_euclid(&-a,&b), -2); // -7 >= 4 * -2
|
|
|
+ /// assert_eq!(DivRemEuclid::div_euclid(&a,&-b), -1); // 7 >= -4 * -1
|
|
|
+ /// assert_eq!(DivRemEuclid::div_euclid(&-a,&-b), 2); // -7 >= -4 * 2
|
|
|
+ /// ```
|
|
|
+ fn div_euclid(&self, v: &Self) -> Self;
|
|
|
+
|
|
|
+ /// Calculates the least nonnegative remainder of `self (mod rhs)`.
|
|
|
+ ///
|
|
|
+ /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
|
|
|
+ /// most cases. However, due to a floating point round-off error it can
|
|
|
+ /// result in `r == rhs.abs()`, violating the mathematical definition, if
|
|
|
+ /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
|
|
|
+ /// This result is not an element of the function's codomain, but it is the
|
|
|
+ /// closest floating point number in the real numbers and thus fulfills the
|
|
|
+ /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
|
|
|
+ /// approximatively.
|
|
|
+ ///
|
|
|
+ /// # Examples
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::DivRemEuclid;
|
|
|
+ ///
|
|
|
+ /// let a: f32 = 7.0;
|
|
|
+ /// let b: f32 = 4.0;
|
|
|
+ /// assert_eq!(DivRemEuclid::rem_euclid(&a,&b), 3.0);
|
|
|
+ /// assert_eq!(DivRemEuclid::rem_euclid(&-a,&b), 1.0);
|
|
|
+ /// assert_eq!(DivRemEuclid::rem_euclid(&a,&-b), 3.0);
|
|
|
+ /// assert_eq!(DivRemEuclid::rem_euclid(&-a,&-b), 1.0);
|
|
|
+ /// ```
|
|
|
+ fn rem_euclid(&self, v: &Self) -> Self;
|
|
|
+}
|
|
|
+macro_rules! div_rem_euclid_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
+ #[inline]
|
|
|
+ fn div_euclid(&self, v: &$t) -> Self {
|
|
|
+ <$t>::div_euclid(*self, *v)
|
|
|
+ }
|
|
|
+
|
|
|
+ #[inline]
|
|
|
+ fn rem_euclid(&self, v: &$t) -> Self {
|
|
|
+ <$t>::rem_euclid(*self, *v)
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+div_rem_euclid_impl!(DivRemEuclid for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
|
|
|
+#[cfg(has_i128)]
|
|
|
+div_rem_euclid_impl!(DivRemEuclid for i128 u128);
|
|
|
+
|
|
|
+#[cfg(any(feature = "std", feature = "libm"))]
|
|
|
+impl DivRemEuclid for f32 {
|
|
|
+ fn div_euclid(&self, rhs: &f32) -> f32 {
|
|
|
+ let q = <f32 as Float>::trunc(self / rhs);
|
|
|
+ if self % rhs < 0.0 {
|
|
|
+ return if *rhs > 0.0 { q - 1.0 } else { q + 1.0 };
|
|
|
+ }
|
|
|
+ q
|
|
|
+ }
|
|
|
+
|
|
|
+ fn rem_euclid(&self, rhs: &f32) -> f32 {
|
|
|
+ let r = self % rhs;
|
|
|
+ if r < 0.0 {
|
|
|
+ r + <f32 as Float>::abs(*rhs)
|
|
|
+ } else {
|
|
|
+ r
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#[cfg(any(feature = "std", feature = "libm"))]
|
|
|
+impl DivRemEuclid for f64 {
|
|
|
+ fn div_euclid(&self, rhs: &f64) -> f64 {
|
|
|
+ let q = <f64 as Float>::trunc(self / rhs);
|
|
|
+ if self % rhs < 0.0 {
|
|
|
+ return if *rhs > 0.0 { q - 1.0 } else { q + 1.0 };
|
|
|
+ }
|
|
|
+ q
|
|
|
+ }
|
|
|
+
|
|
|
+ fn rem_euclid(&self, rhs: &f64) -> f64 {
|
|
|
+ let r = self % rhs;
|
|
|
+ if r < 0.0 {
|
|
|
+ r + <f64 as Float>::abs(*rhs)
|
|
|
+ } else {
|
|
|
+ r
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+pub trait CheckedDivRemEuclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
|
|
|
+ /// Performs euclid division that returns `None` instead of panicking on division by zero
|
|
|
+ /// and instead of wrapping around on underflow and overflow.
|
|
|
+ fn checked_div_euclid(&self, v: &Self) -> Option<Self>;
|
|
|
+
|
|
|
+ /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and
|
|
|
+ /// division by zero. If any of that happens, `None` is returned.
|
|
|
+ fn checked_rem_euclid(&self, v: &Self) -> Option<Self>;
|
|
|
+}
|
|
|
+
|
|
|
+macro_rules! checked_div_rem_euclid_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
+ #[inline]
|
|
|
+ fn checked_div_euclid(&self, v: &$t) -> Option<$t> {
|
|
|
+ <$t>::checked_div_euclid(*self, *v)
|
|
|
+ }
|
|
|
+
|
|
|
+ #[inline]
|
|
|
+ fn checked_rem_euclid(&self, v: &$t) -> Option<$t> {
|
|
|
+ <$t>::checked_rem_euclid(*self, *v)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+checked_div_rem_euclid_impl!(CheckedDivRemEuclid for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
|
|
|
+#[cfg(has_i128)]
|
|
|
+checked_div_rem_euclid_impl!(CheckedDivRemEuclid for i128 u128);
|
|
|
+
|
|
|
+#[cfg(test)]
|
|
|
+mod tests {
|
|
|
+ use super::*;
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ fn euclid_unsigned() {
|
|
|
+ macro_rules! test_euclid {
|
|
|
+ ($($t:ident)+) => {
|
|
|
+ $(
|
|
|
+ {
|
|
|
+ let x: $t = 10;
|
|
|
+ let y: $t = 3;
|
|
|
+ assert_eq!(DivRemEuclid::div_euclid(&x,&y),3);
|
|
|
+ assert_eq!(DivRemEuclid::rem_euclid(&x,&y),1);
|
|
|
+ }
|
|
|
+ )+
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ test_euclid!(usize u8 u16 u32 u64 isize);
|
|
|
+ }
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ fn euclid_signed() {
|
|
|
+ macro_rules! test_euclid {
|
|
|
+ ($($t:ident)+) => {
|
|
|
+ $(
|
|
|
+ {
|
|
|
+ let x: $t = 10;
|
|
|
+ let y: $t = -3;
|
|
|
+ assert_eq!(DivRemEuclid::div_euclid(&x,&y),-3);
|
|
|
+ assert_eq!(DivRemEuclid::div_euclid(&-x,&y),4);
|
|
|
+ assert_eq!(DivRemEuclid::rem_euclid(&x,&y),1);
|
|
|
+ assert_eq!(DivRemEuclid::rem_euclid(&-x,&y),2);
|
|
|
+ let x: $t = $t::MIN+1;
|
|
|
+ let y: $t = -1;
|
|
|
+ assert_eq!(DivRemEuclid::div_euclid(&x,&y),$t::MAX);
|
|
|
+ }
|
|
|
+ )+
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ test_euclid!(i8 i16 i32 i64);
|
|
|
+ }
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ #[cfg(any(feature = "std", feature = "libm"))]
|
|
|
+ fn euclid_float() {
|
|
|
+ macro_rules! test_euclid {
|
|
|
+ ($($t:ident)+) => {
|
|
|
+ $(
|
|
|
+ {
|
|
|
+ let x: $t = 12.1;
|
|
|
+ let y: $t = 3.2;
|
|
|
+ assert!(DivRemEuclid::div_euclid(&x,&y)*y+DivRemEuclid::rem_euclid(&x,&y)-x
|
|
|
+ <=46.4 * $t::EPSILON);
|
|
|
+ assert!(DivRemEuclid::div_euclid(&x,&-y)*-y+DivRemEuclid::rem_euclid(&x,&-y)-x
|
|
|
+ <= 46.4 * $t::EPSILON);
|
|
|
+ assert!(DivRemEuclid::div_euclid(&-x,&y)*y+DivRemEuclid::rem_euclid(&-x,&y)-(-x)
|
|
|
+ <= 46.4 * $t::EPSILON);
|
|
|
+ assert!(DivRemEuclid::div_euclid(&-x,&-y)*-y+DivRemEuclid::rem_euclid(&-x,&-y)-(-x)
|
|
|
+ <= 46.4 * $t::EPSILON);
|
|
|
+ }
|
|
|
+ )+
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ test_euclid!(f32 f64);
|
|
|
+ }
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ fn euclid_checked() {
|
|
|
+ macro_rules! test_euclid_checked {
|
|
|
+ ($($t:ident)+) => {
|
|
|
+ $(
|
|
|
+ {
|
|
|
+ assert_eq!(CheckedDivRemEuclid::checked_div_euclid(&$t::MIN,&-1),None);
|
|
|
+ assert_eq!(CheckedDivRemEuclid::checked_rem_euclid(&$t::MIN,&-1),None);
|
|
|
+ assert_eq!(CheckedDivRemEuclid::checked_div_euclid(&1,&0),None);
|
|
|
+ assert_eq!(CheckedDivRemEuclid::checked_rem_euclid(&1,&0),None);
|
|
|
+ }
|
|
|
+ )+
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ test_euclid_checked!(i8 i16 i32 i64);
|
|
|
+ }
|
|
|
+}
|