|
@@ -1,1013 +0,0 @@
|
|
|
-// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
|
-// file at the top-level directory of this distribution and at
|
|
|
-// http://rust-lang.org/COPYRIGHT.
|
|
|
-//
|
|
|
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
-// option. This file may not be copied, modified, or distributed
|
|
|
-// except according to those terms.
|
|
|
-
|
|
|
-//! Rational numbers
|
|
|
-
|
|
|
-use Integer;
|
|
|
-
|
|
|
-use std::cmp;
|
|
|
-use std::error::Error;
|
|
|
-use std::fmt;
|
|
|
-use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
|
|
|
-use std::str::FromStr;
|
|
|
-
|
|
|
-#[cfg(feature = "serde")]
|
|
|
-use serde;
|
|
|
-
|
|
|
-#[cfg(feature = "bigint")]
|
|
|
-use bigint::{BigInt, BigUint, Sign};
|
|
|
-use traits::{FromPrimitive, Float, PrimInt};
|
|
|
-use {Num, Signed, Zero, One};
|
|
|
-
|
|
|
-/// Represents the ratio between 2 numbers.
|
|
|
-#[derive(Copy, Clone, Hash, Debug)]
|
|
|
-#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
|
|
|
-#[allow(missing_docs)]
|
|
|
-pub struct Ratio<T> {
|
|
|
- numer: T,
|
|
|
- denom: T
|
|
|
-}
|
|
|
-
|
|
|
-/// Alias for a `Ratio` of machine-sized integers.
|
|
|
-pub type Rational = Ratio<isize>;
|
|
|
-pub type Rational32 = Ratio<i32>;
|
|
|
-pub type Rational64 = Ratio<i64>;
|
|
|
-
|
|
|
-#[cfg(feature = "bigint")]
|
|
|
-/// Alias for arbitrary precision rationals.
|
|
|
-pub type BigRational = Ratio<BigInt>;
|
|
|
-
|
|
|
-impl<T: Clone + Integer> Ratio<T> {
|
|
|
- /// Creates a ratio representing the integer `t`.
|
|
|
- #[inline]
|
|
|
- pub fn from_integer(t: T) -> Ratio<T> {
|
|
|
- Ratio::new_raw(t, One::one())
|
|
|
- }
|
|
|
-
|
|
|
- /// Creates a ratio without checking for `denom == 0` or reducing.
|
|
|
- #[inline]
|
|
|
- pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
|
|
|
- Ratio { numer: numer, denom: denom }
|
|
|
- }
|
|
|
-
|
|
|
- /// Create a new Ratio. Fails if `denom == 0`.
|
|
|
- #[inline]
|
|
|
- pub fn new(numer: T, denom: T) -> Ratio<T> {
|
|
|
- if denom == Zero::zero() {
|
|
|
- panic!("denominator == 0");
|
|
|
- }
|
|
|
- let mut ret = Ratio::new_raw(numer, denom);
|
|
|
- ret.reduce();
|
|
|
- ret
|
|
|
- }
|
|
|
-
|
|
|
- /// Converts to an integer.
|
|
|
- #[inline]
|
|
|
- pub fn to_integer(&self) -> T {
|
|
|
- self.trunc().numer
|
|
|
- }
|
|
|
-
|
|
|
- /// Gets an immutable reference to the numerator.
|
|
|
- #[inline]
|
|
|
- pub fn numer<'a>(&'a self) -> &'a T {
|
|
|
- &self.numer
|
|
|
- }
|
|
|
-
|
|
|
- /// Gets an immutable reference to the denominator.
|
|
|
- #[inline]
|
|
|
- pub fn denom<'a>(&'a self) -> &'a T {
|
|
|
- &self.denom
|
|
|
- }
|
|
|
-
|
|
|
- /// Returns true if the rational number is an integer (denominator is 1).
|
|
|
- #[inline]
|
|
|
- pub fn is_integer(&self) -> bool {
|
|
|
- self.denom == One::one()
|
|
|
- }
|
|
|
-
|
|
|
- /// Put self into lowest terms, with denom > 0.
|
|
|
- fn reduce(&mut self) {
|
|
|
- let g : T = self.numer.gcd(&self.denom);
|
|
|
-
|
|
|
- // FIXME(#5992): assignment operator overloads
|
|
|
- // self.numer /= g;
|
|
|
- self.numer = self.numer.clone() / g.clone();
|
|
|
- // FIXME(#5992): assignment operator overloads
|
|
|
- // self.denom /= g;
|
|
|
- self.denom = self.denom.clone() / g;
|
|
|
-
|
|
|
- // keep denom positive!
|
|
|
- if self.denom < T::zero() {
|
|
|
- self.numer = T::zero() - self.numer.clone();
|
|
|
- self.denom = T::zero() - self.denom.clone();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /// Returns a `reduce`d copy of self.
|
|
|
- pub fn reduced(&self) -> Ratio<T> {
|
|
|
- let mut ret = self.clone();
|
|
|
- ret.reduce();
|
|
|
- ret
|
|
|
- }
|
|
|
-
|
|
|
- /// Returns the reciprocal.
|
|
|
- #[inline]
|
|
|
- pub fn recip(&self) -> Ratio<T> {
|
|
|
- Ratio::new_raw(self.denom.clone(), self.numer.clone())
|
|
|
- }
|
|
|
-
|
|
|
- /// Rounds towards minus infinity.
|
|
|
- #[inline]
|
|
|
- pub fn floor(&self) -> Ratio<T> {
|
|
|
- if *self < Zero::zero() {
|
|
|
- let one: T = One::one();
|
|
|
- Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) / self.denom.clone())
|
|
|
- } else {
|
|
|
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /// Rounds towards plus infinity.
|
|
|
- #[inline]
|
|
|
- pub fn ceil(&self) -> Ratio<T> {
|
|
|
- if *self < Zero::zero() {
|
|
|
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
|
|
- } else {
|
|
|
- let one: T = One::one();
|
|
|
- Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) / self.denom.clone())
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /// Rounds to the nearest integer. Rounds half-way cases away from zero.
|
|
|
- #[inline]
|
|
|
- pub fn round(&self) -> Ratio<T> {
|
|
|
- let zero: Ratio<T> = Zero::zero();
|
|
|
- let one: T = One::one();
|
|
|
- let two: T = one.clone() + one.clone();
|
|
|
-
|
|
|
- // Find unsigned fractional part of rational number
|
|
|
- let mut fractional = self.fract();
|
|
|
- if fractional < zero { fractional = zero - fractional };
|
|
|
-
|
|
|
- // The algorithm compares the unsigned fractional part with 1/2, that
|
|
|
- // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
|
|
|
- // a >= (b/2)+1. This avoids overflow issues.
|
|
|
- let half_or_larger = if fractional.denom().is_even() {
|
|
|
- *fractional.numer() >= fractional.denom().clone() / two.clone()
|
|
|
- } else {
|
|
|
- *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone()
|
|
|
- };
|
|
|
-
|
|
|
- if half_or_larger {
|
|
|
- let one: Ratio<T> = One::one();
|
|
|
- if *self >= Zero::zero() {
|
|
|
- self.trunc() + one
|
|
|
- } else {
|
|
|
- self.trunc() - one
|
|
|
- }
|
|
|
- } else {
|
|
|
- self.trunc()
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /// Rounds towards zero.
|
|
|
- #[inline]
|
|
|
- pub fn trunc(&self) -> Ratio<T> {
|
|
|
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
|
|
- }
|
|
|
-
|
|
|
- /// Returns the fractional part of a number.
|
|
|
- #[inline]
|
|
|
- pub fn fract(&self) -> Ratio<T> {
|
|
|
- Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer + PrimInt> Ratio<T> {
|
|
|
- /// Raises the ratio to the power of an exponent
|
|
|
- #[inline]
|
|
|
- pub fn pow(&self, expon: i32) -> Ratio<T> {
|
|
|
- match expon.cmp(&0) {
|
|
|
- cmp::Ordering::Equal => One::one(),
|
|
|
- cmp::Ordering::Less => self.recip().pow(-expon),
|
|
|
- cmp::Ordering::Greater => Ratio::new_raw(self.numer.pow(expon as u32),
|
|
|
- self.denom.pow(expon as u32)),
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-#[cfg(feature = "bigint")]
|
|
|
-impl Ratio<BigInt> {
|
|
|
- /// Converts a float into a rational number.
|
|
|
- pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
|
|
|
- if !f.is_finite() {
|
|
|
- return None;
|
|
|
- }
|
|
|
- let (mantissa, exponent, sign) = f.integer_decode();
|
|
|
- let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };
|
|
|
- if exponent < 0 {
|
|
|
- let one: BigInt = One::one();
|
|
|
- let denom: BigInt = one << ((-exponent) as usize);
|
|
|
- let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
|
|
|
- Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
|
|
|
- } else {
|
|
|
- let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
|
|
|
- numer = numer << (exponent as usize);
|
|
|
- Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* Comparisons */
|
|
|
-
|
|
|
-// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
|
|
|
-// for those multiplications to overflow fixed-size integers, so we need to take care.
|
|
|
-
|
|
|
-impl<T: Clone + Integer> Ord for Ratio<T> {
|
|
|
- #[inline]
|
|
|
- fn cmp(&self, other: &Self) -> cmp::Ordering {
|
|
|
- // With equal denominators, the numerators can be directly compared
|
|
|
- if self.denom == other.denom {
|
|
|
- let ord = self.numer.cmp(&other.numer);
|
|
|
- return if self.denom < T::zero() { ord.reverse() } else { ord };
|
|
|
- }
|
|
|
-
|
|
|
- // With equal numerators, the denominators can be inversely compared
|
|
|
- if self.numer == other.numer {
|
|
|
- let ord = self.denom.cmp(&other.denom);
|
|
|
- return if self.numer < T::zero() { ord } else { ord.reverse() };
|
|
|
- }
|
|
|
-
|
|
|
- // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the
|
|
|
- // division below, or even always avoid it for BigInt and BigUint.
|
|
|
- // FIXME- future breaking change to add Checked* to Integer?
|
|
|
-
|
|
|
- // Compare as floored integers and remainders
|
|
|
- let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
|
|
|
- let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
|
|
|
- match self_int.cmp(&other_int) {
|
|
|
- cmp::Ordering::Greater => cmp::Ordering::Greater,
|
|
|
- cmp::Ordering::Less => cmp::Ordering::Less,
|
|
|
- cmp::Ordering::Equal => {
|
|
|
- match (self_rem.is_zero(), other_rem.is_zero()) {
|
|
|
- (true, true) => cmp::Ordering::Equal,
|
|
|
- (true, false) => cmp::Ordering::Less,
|
|
|
- (false, true) => cmp::Ordering::Greater,
|
|
|
- (false, false) => {
|
|
|
- // Compare the reciprocals of the remaining fractions in reverse
|
|
|
- let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
|
|
|
- let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
|
|
|
- self_recip.cmp(&other_recip).reverse()
|
|
|
- }
|
|
|
- }
|
|
|
- },
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer> PartialOrd for Ratio<T> {
|
|
|
- #[inline]
|
|
|
- fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
|
|
|
- Some(self.cmp(other))
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer> PartialEq for Ratio<T> {
|
|
|
- #[inline]
|
|
|
- fn eq(&self, other: &Self) -> bool {
|
|
|
- self.cmp(other) == cmp::Ordering::Equal
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer> Eq for Ratio<T> {}
|
|
|
-
|
|
|
-
|
|
|
-macro_rules! forward_val_val_binop {
|
|
|
- (impl $imp:ident, $method:ident) => {
|
|
|
- impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
|
|
|
- type Output = Ratio<T>;
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn $method(self, other: Ratio<T>) -> Ratio<T> {
|
|
|
- (&self).$method(&other)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-macro_rules! forward_ref_val_binop {
|
|
|
- (impl $imp:ident, $method:ident) => {
|
|
|
- impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> where
|
|
|
- T: Clone + Integer
|
|
|
- {
|
|
|
- type Output = Ratio<T>;
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn $method(self, other: Ratio<T>) -> Ratio<T> {
|
|
|
- self.$method(&other)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-macro_rules! forward_val_ref_binop {
|
|
|
- (impl $imp:ident, $method:ident) => {
|
|
|
- impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> where
|
|
|
- T: Clone + Integer
|
|
|
- {
|
|
|
- type Output = Ratio<T>;
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn $method(self, other: &Ratio<T>) -> Ratio<T> {
|
|
|
- (&self).$method(other)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-macro_rules! forward_all_binop {
|
|
|
- (impl $imp:ident, $method:ident) => {
|
|
|
- forward_val_val_binop!(impl $imp, $method);
|
|
|
- forward_ref_val_binop!(impl $imp, $method);
|
|
|
- forward_val_ref_binop!(impl $imp, $method);
|
|
|
- };
|
|
|
-}
|
|
|
-
|
|
|
-/* Arithmetic */
|
|
|
-forward_all_binop!(impl Mul, mul);
|
|
|
-// a/b * c/d = (a*c)/(b*d)
|
|
|
-impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T>
|
|
|
- where T: Clone + Integer
|
|
|
-{
|
|
|
-
|
|
|
- type Output = Ratio<T>;
|
|
|
- #[inline]
|
|
|
- fn mul(self, rhs: &Ratio<T>) -> Ratio<T> {
|
|
|
- Ratio::new(self.numer.clone() * rhs.numer.clone(), self.denom.clone() * rhs.denom.clone())
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-forward_all_binop!(impl Div, div);
|
|
|
-// (a/b) / (c/d) = (a*d)/(b*c)
|
|
|
-impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T>
|
|
|
- where T: Clone + Integer
|
|
|
-{
|
|
|
- type Output = Ratio<T>;
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn div(self, rhs: &Ratio<T>) -> Ratio<T> {
|
|
|
- Ratio::new(self.numer.clone() * rhs.denom.clone(), self.denom.clone() * rhs.numer.clone())
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
|
|
|
-macro_rules! arith_impl {
|
|
|
- (impl $imp:ident, $method:ident) => {
|
|
|
- forward_all_binop!(impl $imp, $method);
|
|
|
- impl<'a, 'b, T: Clone + Integer>
|
|
|
- $imp<&'b Ratio<T>> for &'a Ratio<T> {
|
|
|
- type Output = Ratio<T>;
|
|
|
- #[inline]
|
|
|
- fn $method(self, rhs: &Ratio<T>) -> Ratio<T> {
|
|
|
- Ratio::new((self.numer.clone() * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer.clone()),
|
|
|
- self.denom.clone() * rhs.denom.clone())
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// a/b + c/d = (a*d + b*c)/(b*d)
|
|
|
-arith_impl!(impl Add, add);
|
|
|
-
|
|
|
-// a/b - c/d = (a*d - b*c)/(b*d)
|
|
|
-arith_impl!(impl Sub, sub);
|
|
|
-
|
|
|
-// a/b % c/d = (a*d % b*c)/(b*d)
|
|
|
-arith_impl!(impl Rem, rem);
|
|
|
-
|
|
|
-impl<T> Neg for Ratio<T>
|
|
|
- where T: Clone + Integer + Neg<Output = T>
|
|
|
-{
|
|
|
- type Output = Ratio<T>;
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn neg(self) -> Ratio<T> {
|
|
|
- Ratio::new_raw(-self.numer, self.denom)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<'a, T> Neg for &'a Ratio<T>
|
|
|
- where T: Clone + Integer + Neg<Output = T>
|
|
|
-{
|
|
|
- type Output = Ratio<T>;
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn neg(self) -> Ratio<T> {
|
|
|
- -self.clone()
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* Constants */
|
|
|
-impl<T: Clone + Integer>
|
|
|
- Zero for Ratio<T> {
|
|
|
- #[inline]
|
|
|
- fn zero() -> Ratio<T> {
|
|
|
- Ratio::new_raw(Zero::zero(), One::one())
|
|
|
- }
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn is_zero(&self) -> bool {
|
|
|
- self.numer.is_zero()
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer>
|
|
|
- One for Ratio<T> {
|
|
|
- #[inline]
|
|
|
- fn one() -> Ratio<T> {
|
|
|
- Ratio::new_raw(One::one(), One::one())
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer> Num for Ratio<T> {
|
|
|
- type FromStrRadixErr = ParseRatioError;
|
|
|
-
|
|
|
- /// Parses `numer/denom` where the numbers are in base `radix`.
|
|
|
- fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
|
|
|
- let split: Vec<&str> = s.splitn(2, '/').collect();
|
|
|
- if split.len() < 2 {
|
|
|
- Err(ParseRatioError{kind: RatioErrorKind::ParseError})
|
|
|
- } else {
|
|
|
- let a_result: Result<T, _> = T::from_str_radix(
|
|
|
- split[0],
|
|
|
- radix).map_err(|_| ParseRatioError{kind: RatioErrorKind::ParseError});
|
|
|
- a_result.and_then(|a| {
|
|
|
- let b_result: Result<T, _> =
|
|
|
- T::from_str_radix(split[1], radix).map_err(
|
|
|
- |_| ParseRatioError{kind: RatioErrorKind::ParseError});
|
|
|
- b_result.and_then(|b| if b.is_zero() {
|
|
|
- Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})
|
|
|
- } else {
|
|
|
- Ok(Ratio::new(a.clone(), b.clone()))
|
|
|
- })
|
|
|
- })
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
|
|
|
- #[inline]
|
|
|
- fn abs(&self) -> Ratio<T> {
|
|
|
- if self.is_negative() { -self.clone() } else { self.clone() }
|
|
|
- }
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
|
|
|
- if *self <= *other { Zero::zero() } else { self - other }
|
|
|
- }
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn signum(&self) -> Ratio<T> {
|
|
|
- if self.is_positive() {
|
|
|
- Self::one()
|
|
|
- } else if self.is_zero() {
|
|
|
- Self::zero()
|
|
|
- } else {
|
|
|
- - Self::one()
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn is_positive(&self) -> bool { !self.is_negative() }
|
|
|
-
|
|
|
- #[inline]
|
|
|
- fn is_negative(&self) -> bool {
|
|
|
- self.numer.is_negative() ^ self.denom.is_negative()
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* String conversions */
|
|
|
-impl<T> fmt::Display for Ratio<T> where
|
|
|
- T: fmt::Display + Eq + One
|
|
|
-{
|
|
|
- /// Renders as `numer/denom`. If denom=1, renders as numer.
|
|
|
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
|
- if self.denom == One::one() {
|
|
|
- write!(f, "{}", self.numer)
|
|
|
- } else {
|
|
|
- write!(f, "{}/{}", self.numer, self.denom)
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
|
|
|
- type Err = ParseRatioError;
|
|
|
-
|
|
|
- /// Parses `numer/denom` or just `numer`.
|
|
|
- fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
|
|
|
- let mut split = s.splitn(2, '/');
|
|
|
-
|
|
|
- let n = try!(split.next().ok_or(
|
|
|
- ParseRatioError{kind: RatioErrorKind::ParseError}));
|
|
|
- let num = try!(FromStr::from_str(n).map_err(
|
|
|
- |_| ParseRatioError{kind: RatioErrorKind::ParseError}));
|
|
|
-
|
|
|
- let d = split.next().unwrap_or("1");
|
|
|
- let den = try!(FromStr::from_str(d).map_err(
|
|
|
- |_| ParseRatioError{kind: RatioErrorKind::ParseError}));
|
|
|
-
|
|
|
- if Zero::is_zero(&den) {
|
|
|
- Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})
|
|
|
- } else {
|
|
|
- Ok(Ratio::new(num, den))
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-#[cfg(feature = "serde")]
|
|
|
-impl<T> serde::Serialize for Ratio<T>
|
|
|
- where T: serde::Serialize + Clone + Integer + PartialOrd
|
|
|
-{
|
|
|
- fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where
|
|
|
- S: serde::Serializer
|
|
|
- {
|
|
|
- (self.numer(), self.denom()).serialize(serializer)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-#[cfg(feature = "serde")]
|
|
|
-impl<T> serde::Deserialize for Ratio<T>
|
|
|
- where T: serde::Deserialize + Clone + Integer + PartialOrd
|
|
|
-{
|
|
|
- fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error> where
|
|
|
- D: serde::Deserializer,
|
|
|
- {
|
|
|
- let (numer, denom) = try!(serde::Deserialize::deserialize(deserializer));
|
|
|
- if denom == Zero::zero() {
|
|
|
- Err(serde::de::Error::invalid_value("denominator is zero"))
|
|
|
- } else {
|
|
|
- Ok(Ratio::new_raw(numer, denom))
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// FIXME: Bubble up specific errors
|
|
|
-#[derive(Copy, Clone, Debug, PartialEq)]
|
|
|
-pub struct ParseRatioError { kind: RatioErrorKind }
|
|
|
-
|
|
|
-#[derive(Copy, Clone, Debug, PartialEq)]
|
|
|
-enum RatioErrorKind {
|
|
|
- ParseError,
|
|
|
- ZeroDenominator,
|
|
|
-}
|
|
|
-
|
|
|
-impl fmt::Display for ParseRatioError {
|
|
|
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
|
- self.description().fmt(f)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-impl Error for ParseRatioError {
|
|
|
- fn description(&self) -> &str { self.kind.description() }
|
|
|
-}
|
|
|
-
|
|
|
-impl RatioErrorKind {
|
|
|
- fn description(&self) -> &'static str {
|
|
|
- match *self {
|
|
|
- RatioErrorKind::ParseError => "failed to parse integer",
|
|
|
- RatioErrorKind::ZeroDenominator => "zero value denominator",
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-#[cfg(test)]
|
|
|
-mod test {
|
|
|
-
|
|
|
- use super::{Ratio, Rational};
|
|
|
- #[cfg(feature = "bigint")]
|
|
|
- use super::BigRational;
|
|
|
- use std::str::FromStr;
|
|
|
- use std::i32;
|
|
|
- use {Zero, One, Signed, FromPrimitive, Float};
|
|
|
-
|
|
|
- pub const _0 : Rational = Ratio { numer: 0, denom: 1};
|
|
|
- pub const _1 : Rational = Ratio { numer: 1, denom: 1};
|
|
|
- pub const _2: Rational = Ratio { numer: 2, denom: 1};
|
|
|
- pub const _1_2: Rational = Ratio { numer: 1, denom: 2};
|
|
|
- pub const _3_2: Rational = Ratio { numer: 3, denom: 2};
|
|
|
- pub const _NEG1_2: Rational = Ratio { numer: -1, denom: 2};
|
|
|
- pub const _1_3: Rational = Ratio { numer: 1, denom: 3};
|
|
|
- pub const _NEG1_3: Rational = Ratio { numer: -1, denom: 3};
|
|
|
- pub const _2_3: Rational = Ratio { numer: 2, denom: 3};
|
|
|
- pub const _NEG2_3: Rational = Ratio { numer: -2, denom: 3};
|
|
|
-
|
|
|
- #[cfg(feature = "bigint")]
|
|
|
- pub fn to_big(n: Rational) -> BigRational {
|
|
|
- Ratio::new(
|
|
|
- FromPrimitive::from_isize(n.numer).unwrap(),
|
|
|
- FromPrimitive::from_isize(n.denom).unwrap()
|
|
|
- )
|
|
|
- }
|
|
|
- #[cfg(not(feature = "bigint"))]
|
|
|
- pub fn to_big(n: Rational) -> Rational {
|
|
|
- Ratio::new(
|
|
|
- FromPrimitive::from_isize(n.numer).unwrap(),
|
|
|
- FromPrimitive::from_isize(n.denom).unwrap()
|
|
|
- )
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_test_constants() {
|
|
|
- // check our constants are what Ratio::new etc. would make.
|
|
|
- assert_eq!(_0, Zero::zero());
|
|
|
- assert_eq!(_1, One::one());
|
|
|
- assert_eq!(_2, Ratio::from_integer(2));
|
|
|
- assert_eq!(_1_2, Ratio::new(1,2));
|
|
|
- assert_eq!(_3_2, Ratio::new(3,2));
|
|
|
- assert_eq!(_NEG1_2, Ratio::new(-1,2));
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_new_reduce() {
|
|
|
- let one22 = Ratio::new(2,2);
|
|
|
-
|
|
|
- assert_eq!(one22, One::one());
|
|
|
- }
|
|
|
- #[test]
|
|
|
- #[should_panic]
|
|
|
- fn test_new_zero() {
|
|
|
- let _a = Ratio::new(1,0);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_cmp() {
|
|
|
- assert!(_0 == _0 && _1 == _1);
|
|
|
- assert!(_0 != _1 && _1 != _0);
|
|
|
- assert!(_0 < _1 && !(_1 < _0));
|
|
|
- assert!(_1 > _0 && !(_0 > _1));
|
|
|
-
|
|
|
- assert!(_0 <= _0 && _1 <= _1);
|
|
|
- assert!(_0 <= _1 && !(_1 <= _0));
|
|
|
-
|
|
|
- assert!(_0 >= _0 && _1 >= _1);
|
|
|
- assert!(_1 >= _0 && !(_0 >= _1));
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_cmp_overflow() {
|
|
|
- use std::cmp::Ordering;
|
|
|
-
|
|
|
- // issue #7 example:
|
|
|
- let big = Ratio::new(128u8, 1);
|
|
|
- let small = big.recip();
|
|
|
- assert!(big > small);
|
|
|
-
|
|
|
- // try a few that are closer together
|
|
|
- // (some matching numer, some matching denom, some neither)
|
|
|
- let ratios = vec![
|
|
|
- Ratio::new(125_i8, 127_i8),
|
|
|
- Ratio::new(63_i8, 64_i8),
|
|
|
- Ratio::new(124_i8, 125_i8),
|
|
|
- Ratio::new(125_i8, 126_i8),
|
|
|
- Ratio::new(126_i8, 127_i8),
|
|
|
- Ratio::new(127_i8, 126_i8),
|
|
|
- ];
|
|
|
-
|
|
|
- fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
|
|
|
- println!("comparing {} and {}", a, b);
|
|
|
- assert_eq!(a.cmp(&b), ord);
|
|
|
- assert_eq!(b.cmp(&a), ord.reverse());
|
|
|
- }
|
|
|
-
|
|
|
- for (i, &a) in ratios.iter().enumerate() {
|
|
|
- check_cmp(a, a, Ordering::Equal);
|
|
|
- check_cmp(-a, a, Ordering::Less);
|
|
|
- for &b in &ratios[i+1..] {
|
|
|
- check_cmp(a, b, Ordering::Less);
|
|
|
- check_cmp(-a, -b, Ordering::Greater);
|
|
|
- check_cmp(a.recip(), b.recip(), Ordering::Greater);
|
|
|
- check_cmp(-a.recip(), -b.recip(), Ordering::Less);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_to_integer() {
|
|
|
- assert_eq!(_0.to_integer(), 0);
|
|
|
- assert_eq!(_1.to_integer(), 1);
|
|
|
- assert_eq!(_2.to_integer(), 2);
|
|
|
- assert_eq!(_1_2.to_integer(), 0);
|
|
|
- assert_eq!(_3_2.to_integer(), 1);
|
|
|
- assert_eq!(_NEG1_2.to_integer(), 0);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_numer() {
|
|
|
- assert_eq!(_0.numer(), &0);
|
|
|
- assert_eq!(_1.numer(), &1);
|
|
|
- assert_eq!(_2.numer(), &2);
|
|
|
- assert_eq!(_1_2.numer(), &1);
|
|
|
- assert_eq!(_3_2.numer(), &3);
|
|
|
- assert_eq!(_NEG1_2.numer(), &(-1));
|
|
|
- }
|
|
|
- #[test]
|
|
|
- fn test_denom() {
|
|
|
- assert_eq!(_0.denom(), &1);
|
|
|
- assert_eq!(_1.denom(), &1);
|
|
|
- assert_eq!(_2.denom(), &1);
|
|
|
- assert_eq!(_1_2.denom(), &2);
|
|
|
- assert_eq!(_3_2.denom(), &2);
|
|
|
- assert_eq!(_NEG1_2.denom(), &2);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_is_integer() {
|
|
|
- assert!(_0.is_integer());
|
|
|
- assert!(_1.is_integer());
|
|
|
- assert!(_2.is_integer());
|
|
|
- assert!(!_1_2.is_integer());
|
|
|
- assert!(!_3_2.is_integer());
|
|
|
- assert!(!_NEG1_2.is_integer());
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_show() {
|
|
|
- assert_eq!(format!("{}", _2), "2".to_string());
|
|
|
- assert_eq!(format!("{}", _1_2), "1/2".to_string());
|
|
|
- assert_eq!(format!("{}", _0), "0".to_string());
|
|
|
- assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string());
|
|
|
- }
|
|
|
-
|
|
|
- mod arith {
|
|
|
- use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big};
|
|
|
- use super::super::{Ratio, Rational};
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_add() {
|
|
|
- fn test(a: Rational, b: Rational, c: Rational) {
|
|
|
- assert_eq!(a + b, c);
|
|
|
- assert_eq!(to_big(a) + to_big(b), to_big(c));
|
|
|
- }
|
|
|
-
|
|
|
- test(_1, _1_2, _3_2);
|
|
|
- test(_1, _1, _2);
|
|
|
- test(_1_2, _3_2, _2);
|
|
|
- test(_1_2, _NEG1_2, _0);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_sub() {
|
|
|
- fn test(a: Rational, b: Rational, c: Rational) {
|
|
|
- assert_eq!(a - b, c);
|
|
|
- assert_eq!(to_big(a) - to_big(b), to_big(c))
|
|
|
- }
|
|
|
-
|
|
|
- test(_1, _1_2, _1_2);
|
|
|
- test(_3_2, _1_2, _1);
|
|
|
- test(_1, _NEG1_2, _3_2);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_mul() {
|
|
|
- fn test(a: Rational, b: Rational, c: Rational) {
|
|
|
- assert_eq!(a * b, c);
|
|
|
- assert_eq!(to_big(a) * to_big(b), to_big(c))
|
|
|
- }
|
|
|
-
|
|
|
- test(_1, _1_2, _1_2);
|
|
|
- test(_1_2, _3_2, Ratio::new(3,4));
|
|
|
- test(_1_2, _NEG1_2, Ratio::new(-1, 4));
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_div() {
|
|
|
- fn test(a: Rational, b: Rational, c: Rational) {
|
|
|
- assert_eq!(a / b, c);
|
|
|
- assert_eq!(to_big(a) / to_big(b), to_big(c))
|
|
|
- }
|
|
|
-
|
|
|
- test(_1, _1_2, _2);
|
|
|
- test(_3_2, _1_2, _1 + _2);
|
|
|
- test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_rem() {
|
|
|
- fn test(a: Rational, b: Rational, c: Rational) {
|
|
|
- assert_eq!(a % b, c);
|
|
|
- assert_eq!(to_big(a) % to_big(b), to_big(c))
|
|
|
- }
|
|
|
-
|
|
|
- test(_3_2, _1, _1_2);
|
|
|
- test(_2, _NEG1_2, _0);
|
|
|
- test(_1_2, _2, _1_2);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_neg() {
|
|
|
- fn test(a: Rational, b: Rational) {
|
|
|
- assert_eq!(-a, b);
|
|
|
- assert_eq!(-to_big(a), to_big(b))
|
|
|
- }
|
|
|
-
|
|
|
- test(_0, _0);
|
|
|
- test(_1_2, _NEG1_2);
|
|
|
- test(-_1, _1);
|
|
|
- }
|
|
|
- #[test]
|
|
|
- fn test_zero() {
|
|
|
- assert_eq!(_0 + _0, _0);
|
|
|
- assert_eq!(_0 * _0, _0);
|
|
|
- assert_eq!(_0 * _1, _0);
|
|
|
- assert_eq!(_0 / _NEG1_2, _0);
|
|
|
- assert_eq!(_0 - _0, _0);
|
|
|
- }
|
|
|
- #[test]
|
|
|
- #[should_panic]
|
|
|
- fn test_div_0() {
|
|
|
- let _a = _1 / _0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_round() {
|
|
|
- assert_eq!(_1_3.ceil(), _1);
|
|
|
- assert_eq!(_1_3.floor(), _0);
|
|
|
- assert_eq!(_1_3.round(), _0);
|
|
|
- assert_eq!(_1_3.trunc(), _0);
|
|
|
-
|
|
|
- assert_eq!(_NEG1_3.ceil(), _0);
|
|
|
- assert_eq!(_NEG1_3.floor(), -_1);
|
|
|
- assert_eq!(_NEG1_3.round(), _0);
|
|
|
- assert_eq!(_NEG1_3.trunc(), _0);
|
|
|
-
|
|
|
- assert_eq!(_2_3.ceil(), _1);
|
|
|
- assert_eq!(_2_3.floor(), _0);
|
|
|
- assert_eq!(_2_3.round(), _1);
|
|
|
- assert_eq!(_2_3.trunc(), _0);
|
|
|
-
|
|
|
- assert_eq!(_NEG2_3.ceil(), _0);
|
|
|
- assert_eq!(_NEG2_3.floor(), -_1);
|
|
|
- assert_eq!(_NEG2_3.round(), -_1);
|
|
|
- assert_eq!(_NEG2_3.trunc(), _0);
|
|
|
-
|
|
|
- assert_eq!(_1_2.ceil(), _1);
|
|
|
- assert_eq!(_1_2.floor(), _0);
|
|
|
- assert_eq!(_1_2.round(), _1);
|
|
|
- assert_eq!(_1_2.trunc(), _0);
|
|
|
-
|
|
|
- assert_eq!(_NEG1_2.ceil(), _0);
|
|
|
- assert_eq!(_NEG1_2.floor(), -_1);
|
|
|
- assert_eq!(_NEG1_2.round(), -_1);
|
|
|
- assert_eq!(_NEG1_2.trunc(), _0);
|
|
|
-
|
|
|
- assert_eq!(_1.ceil(), _1);
|
|
|
- assert_eq!(_1.floor(), _1);
|
|
|
- assert_eq!(_1.round(), _1);
|
|
|
- assert_eq!(_1.trunc(), _1);
|
|
|
-
|
|
|
- // Overflow checks
|
|
|
-
|
|
|
- let _neg1 = Ratio::from_integer(-1);
|
|
|
- let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1);
|
|
|
- let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX);
|
|
|
- let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1);
|
|
|
- let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2);
|
|
|
- let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX);
|
|
|
- let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2);
|
|
|
- let _large_rat7 = Ratio::new(1, i32::MIN+1);
|
|
|
- let _large_rat8 = Ratio::new(1, i32::MAX);
|
|
|
-
|
|
|
- assert_eq!(_large_rat1.round(), One::one());
|
|
|
- assert_eq!(_large_rat2.round(), One::one());
|
|
|
- assert_eq!(_large_rat3.round(), One::one());
|
|
|
- assert_eq!(_large_rat4.round(), One::one());
|
|
|
- assert_eq!(_large_rat5.round(), _neg1);
|
|
|
- assert_eq!(_large_rat6.round(), _neg1);
|
|
|
- assert_eq!(_large_rat7.round(), Zero::zero());
|
|
|
- assert_eq!(_large_rat8.round(), Zero::zero());
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_fract() {
|
|
|
- assert_eq!(_1.fract(), _0);
|
|
|
- assert_eq!(_NEG1_2.fract(), _NEG1_2);
|
|
|
- assert_eq!(_1_2.fract(), _1_2);
|
|
|
- assert_eq!(_3_2.fract(), _1_2);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_recip() {
|
|
|
- assert_eq!(_1 * _1.recip(), _1);
|
|
|
- assert_eq!(_2 * _2.recip(), _1);
|
|
|
- assert_eq!(_1_2 * _1_2.recip(), _1);
|
|
|
- assert_eq!(_3_2 * _3_2.recip(), _1);
|
|
|
- assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_pow() {
|
|
|
- assert_eq!(_1_2.pow(2), Ratio::new(1, 4));
|
|
|
- assert_eq!(_1_2.pow(-2), Ratio::new(4, 1));
|
|
|
- assert_eq!(_1.pow(1), _1);
|
|
|
- assert_eq!(_NEG1_2.pow(2), _1_2.pow(2));
|
|
|
- assert_eq!(_NEG1_2.pow(3), -_1_2.pow(3));
|
|
|
- assert_eq!(_3_2.pow(0), _1);
|
|
|
- assert_eq!(_3_2.pow(-1), _3_2.recip());
|
|
|
- assert_eq!(_3_2.pow(3), Ratio::new(27, 8));
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_to_from_str() {
|
|
|
- fn test(r: Rational, s: String) {
|
|
|
- assert_eq!(FromStr::from_str(&s), Ok(r));
|
|
|
- assert_eq!(r.to_string(), s);
|
|
|
- }
|
|
|
- test(_1, "1".to_string());
|
|
|
- test(_0, "0".to_string());
|
|
|
- test(_1_2, "1/2".to_string());
|
|
|
- test(_3_2, "3/2".to_string());
|
|
|
- test(_2, "2".to_string());
|
|
|
- test(_NEG1_2, "-1/2".to_string());
|
|
|
- }
|
|
|
- #[test]
|
|
|
- fn test_from_str_fail() {
|
|
|
- fn test(s: &str) {
|
|
|
- let rational: Result<Rational, _> = FromStr::from_str(s);
|
|
|
- assert!(rational.is_err());
|
|
|
- }
|
|
|
-
|
|
|
- let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "1/0"];
|
|
|
- for &s in xs.iter() {
|
|
|
- test(s);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- #[cfg(feature = "bigint")]
|
|
|
- #[test]
|
|
|
- fn test_from_float() {
|
|
|
- fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
|
|
|
- let ratio: BigRational = Ratio::from_float(given).unwrap();
|
|
|
- assert_eq!(ratio, Ratio::new(
|
|
|
- FromStr::from_str(numer).unwrap(),
|
|
|
- FromStr::from_str(denom).unwrap()));
|
|
|
- }
|
|
|
-
|
|
|
- // f32
|
|
|
- test(3.14159265359f32, ("13176795", "4194304"));
|
|
|
- test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
|
|
|
- test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
|
|
|
- test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));
|
|
|
- test(684729.48391f32, ("1369459", "2"));
|
|
|
- test(-8573.5918555f32, ("-4389679", "512"));
|
|
|
-
|
|
|
- // f64
|
|
|
- test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
|
|
|
- test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
|
|
|
- test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
|
|
|
- test(684729.48391f64, ("367611342500051", "536870912"));
|
|
|
- test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
|
|
|
- test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));
|
|
|
- }
|
|
|
-
|
|
|
- #[cfg(feature = "bigint")]
|
|
|
- #[test]
|
|
|
- fn test_from_float_fail() {
|
|
|
- use std::{f32, f64};
|
|
|
-
|
|
|
- assert_eq!(Ratio::from_float(f32::NAN), None);
|
|
|
- assert_eq!(Ratio::from_float(f32::INFINITY), None);
|
|
|
- assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
|
|
|
- assert_eq!(Ratio::from_float(f64::NAN), None);
|
|
|
- assert_eq!(Ratio::from_float(f64::INFINITY), None);
|
|
|
- assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_signed() {
|
|
|
- assert_eq!(_NEG1_2.abs(), _1_2);
|
|
|
- assert_eq!(_3_2.abs_sub(&_1_2), _1);
|
|
|
- assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
|
|
|
- assert_eq!(_1_2.signum(), One::one());
|
|
|
- assert_eq!(_NEG1_2.signum(), - ::one::<Ratio<isize>>());
|
|
|
- assert!(_NEG1_2.is_negative());
|
|
|
- assert!(! _NEG1_2.is_positive());
|
|
|
- assert!(! _1_2.is_negative());
|
|
|
- }
|
|
|
-
|
|
|
- #[test]
|
|
|
- fn test_hash() {
|
|
|
- assert!(::hash(&_0) != ::hash(&_1));
|
|
|
- assert!(::hash(&_0) != ::hash(&_3_2));
|
|
|
- }
|
|
|
-}
|