|
@@ -217,15 +217,41 @@ macro_rules! impl_integer_for_isize {
|
|
|
/// `other`. The result is always positive.
|
|
|
#[inline]
|
|
|
fn gcd(&self, other: &$T) -> $T {
|
|
|
- // Use Euclid's algorithm
|
|
|
+ // Use Stein's algorithm
|
|
|
let mut m = *self;
|
|
|
let mut n = *other;
|
|
|
+ if m == 0 || n == 0 { return (m | n).abs() }
|
|
|
+
|
|
|
+ // find common factors of 2
|
|
|
+ let shift = (m | n).trailing_zeros();
|
|
|
+
|
|
|
+ // The algorithm needs positive numbers, but the minimum value
|
|
|
+ // can't be represented as a positive one.
|
|
|
+ // It's also a power of two, so the gcd can be
|
|
|
+ // calculated by bitshifting in that case
|
|
|
+
|
|
|
+ // Assuming two's complement, the number created by the shift
|
|
|
+ // is positive for all numbers except gcd = abs(min value)
|
|
|
+ // The call to .abs() causes a panic in debug mode
|
|
|
+ if m == <$T>::min_value() || n == <$T>::min_value() {
|
|
|
+ return (1 << shift).abs()
|
|
|
+ }
|
|
|
+
|
|
|
+ // guaranteed to be positive now, rest like unsigned algorithm
|
|
|
+ m = m.abs();
|
|
|
+ n = n.abs();
|
|
|
+
|
|
|
+ // divide n and m by 2 until odd
|
|
|
+ // m inside loop
|
|
|
+ n >>= n.trailing_zeros();
|
|
|
+
|
|
|
while m != 0 {
|
|
|
- let temp = m;
|
|
|
- m = n % temp;
|
|
|
- n = temp;
|
|
|
+ m >>= m.trailing_zeros();
|
|
|
+ if n > m { ::std::mem::swap(&mut n, &mut m) }
|
|
|
+ m -= n;
|
|
|
}
|
|
|
- n.abs()
|
|
|
+
|
|
|
+ n << shift
|
|
|
}
|
|
|
|
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
|
@@ -334,6 +360,47 @@ macro_rules! impl_integer_for_isize {
|
|
|
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
|
|
|
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
|
|
|
}
|
|
|
+ #[test]
|
|
|
+ fn test_gcd_cmp_with_euclidean() {
|
|
|
+ fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
|
|
|
+ while m != 0 {
|
|
|
+ ::std::mem::swap(&mut m, &mut n);
|
|
|
+ m %= n;
|
|
|
+ }
|
|
|
+
|
|
|
+ n.abs()
|
|
|
+ }
|
|
|
+
|
|
|
+ // gcd(-128, b) = 128 is not representable as positive value
|
|
|
+ // for i8
|
|
|
+ for i in -127..127 {
|
|
|
+ for j in -127..127 {
|
|
|
+ assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // last value
|
|
|
+ // FIXME: Use inclusive ranges for above loop when implemented
|
|
|
+ let i = 127;
|
|
|
+ for j in -127..127 {
|
|
|
+ assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
|
|
+ }
|
|
|
+ assert_eq!(127.gcd(&127), 127);
|
|
|
+ }
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ #[should_panic]
|
|
|
+ fn test_gcd_min_val_min_val() {
|
|
|
+ let min = <$T>::min_value();
|
|
|
+ min.gcd(&min);
|
|
|
+ }
|
|
|
+
|
|
|
+ #[test]
|
|
|
+ #[should_panic]
|
|
|
+ fn test_gcd_min_val_0() {
|
|
|
+ let min = <$T>::min_value();
|
|
|
+ min.gcd(&0);
|
|
|
+ }
|
|
|
|
|
|
#[test]
|
|
|
fn test_lcm() {
|
|
@@ -396,15 +463,25 @@ macro_rules! impl_integer_for_usize {
|
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
|
|
#[inline]
|
|
|
fn gcd(&self, other: &$T) -> $T {
|
|
|
- // Use Euclid's algorithm
|
|
|
+ // Use Stein's algorithm
|
|
|
let mut m = *self;
|
|
|
let mut n = *other;
|
|
|
+ if m == 0 || n == 0 { return m | n }
|
|
|
+
|
|
|
+ // find common factors of 2
|
|
|
+ let shift = (m | n).trailing_zeros();
|
|
|
+
|
|
|
+ // divide n and m by 2 until odd
|
|
|
+ // m inside loop
|
|
|
+ n >>= n.trailing_zeros();
|
|
|
+
|
|
|
while m != 0 {
|
|
|
- let temp = m;
|
|
|
- m = n % temp;
|
|
|
- n = temp;
|
|
|
+ m >>= m.trailing_zeros();
|
|
|
+ if n > m { ::std::mem::swap(&mut n, &mut m) }
|
|
|
+ m -= n;
|
|
|
}
|
|
|
- n
|
|
|
+
|
|
|
+ n << shift
|
|
|
}
|
|
|
|
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
|
@@ -462,6 +539,31 @@ macro_rules! impl_integer_for_usize {
|
|
|
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
|
|
}
|
|
|
|
|
|
+ #[test]
|
|
|
+ fn test_gcd_cmp_with_euclidean() {
|
|
|
+ fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
|
|
|
+ while m != 0 {
|
|
|
+ ::std::mem::swap(&mut m, &mut n);
|
|
|
+ m %= n;
|
|
|
+ }
|
|
|
+ n
|
|
|
+ }
|
|
|
+
|
|
|
+ for i in 0..255 {
|
|
|
+ for j in 0..255 {
|
|
|
+ assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // last value
|
|
|
+ // FIXME: Use inclusive ranges for above loop when implemented
|
|
|
+ let i = 255;
|
|
|
+ for j in 0..255 {
|
|
|
+ assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
|
|
+ }
|
|
|
+ assert_eq!(255.gcd(&255), 255);
|
|
|
+ }
|
|
|
+
|
|
|
#[test]
|
|
|
fn test_lcm() {
|
|
|
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|