|
@@ -66,7 +66,7 @@ use std::iter::repeat;
|
|
|
use std::num::ParseIntError;
|
|
|
use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub};
|
|
|
use std::str::{self, FromStr};
|
|
|
-use std::{cmp, fmt, hash, mem};
|
|
|
+use std::{cmp, fmt, hash};
|
|
|
use std::cmp::Ordering::{self, Less, Greater, Equal};
|
|
|
use std::{i64, u64};
|
|
|
|
|
@@ -1194,33 +1194,121 @@ impl_to_biguint!(u16, FromPrimitive::from_u16);
|
|
|
impl_to_biguint!(u32, FromPrimitive::from_u32);
|
|
|
impl_to_biguint!(u64, FromPrimitive::from_u64);
|
|
|
|
|
|
-fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> {
|
|
|
- if radix < 2 || radix > 36 {
|
|
|
- panic!("invalid radix: {}", radix);
|
|
|
+// Extract bitwise digits that evenly divide BigDigit
|
|
|
+fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
|
|
|
+ debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0);
|
|
|
+
|
|
|
+ let last_i = u.data.len() - 1;
|
|
|
+ let mask: BigDigit = (1 << bits) - 1;
|
|
|
+ let digits_per_big_digit = big_digit::BITS / bits;
|
|
|
+ let digits = (u.bits() + bits - 1) / bits;
|
|
|
+ let mut res = Vec::with_capacity(digits);
|
|
|
+
|
|
|
+ for mut r in u.data[..last_i].iter().cloned() {
|
|
|
+ for _ in 0..digits_per_big_digit {
|
|
|
+ res.push((r & mask) as u8);
|
|
|
+ r >>= bits;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- if u.is_zero() {
|
|
|
- vec![b'0']
|
|
|
- } else {
|
|
|
- let mut res = Vec::new();
|
|
|
- let mut digits = u.clone();
|
|
|
+ let mut r = u.data[last_i];
|
|
|
+ while r != 0 {
|
|
|
+ res.push((r & mask) as u8);
|
|
|
+ r >>= bits;
|
|
|
+ }
|
|
|
+
|
|
|
+ res
|
|
|
+}
|
|
|
+
|
|
|
+// Extract bitwise digits that don't evenly divide BigDigit
|
|
|
+fn to_inexact_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
|
|
|
+ debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0);
|
|
|
+
|
|
|
+ let last_i = u.data.len() - 1;
|
|
|
+ let mask: DoubleBigDigit = (1 << bits) - 1;
|
|
|
+ let digits = (u.bits() + bits - 1) / bits;
|
|
|
+ let mut res = Vec::with_capacity(digits);
|
|
|
+
|
|
|
+ let mut r = 0;
|
|
|
+ let mut rbits = 0;
|
|
|
+ for hi in u.data[..last_i].iter().cloned() {
|
|
|
+ r |= (hi as DoubleBigDigit) << rbits;
|
|
|
+ rbits += big_digit::BITS;
|
|
|
|
|
|
- while digits != Zero::zero() {
|
|
|
- let (q, r) = div_rem_digit(digits, radix as BigDigit);
|
|
|
- res.push(to_digit(r as u8));
|
|
|
- digits = q;
|
|
|
+ while rbits >= bits {
|
|
|
+ res.push((r & mask) as u8);
|
|
|
+ r >>= bits;
|
|
|
+ rbits -= bits;
|
|
|
}
|
|
|
+ }
|
|
|
+
|
|
|
+ r |= (u.data[last_i] as DoubleBigDigit) << rbits;
|
|
|
+ while r != 0 {
|
|
|
+ res.push((r & mask) as u8);
|
|
|
+ r >>= bits;
|
|
|
+ }
|
|
|
+
|
|
|
+ res
|
|
|
+}
|
|
|
+
|
|
|
+// Extract little-endian radix digits
|
|
|
+#[inline(always)] // forced inline to get const-prop for radix=10
|
|
|
+fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec<u8> {
|
|
|
+ debug_assert!(!u.is_zero() && !radix.is_power_of_two());
|
|
|
|
|
|
- res
|
|
|
+ let mut res = Vec::new();
|
|
|
+ let mut digits = u.clone();
|
|
|
+ let (base, power) = get_radix_base(radix);
|
|
|
+ debug_assert!(base < (1 << 32));
|
|
|
+ let base = base as BigDigit;
|
|
|
+
|
|
|
+ while digits.data.len() > 1 {
|
|
|
+ let (q, mut r) = div_rem_digit(digits, base);
|
|
|
+ for _ in 0..power {
|
|
|
+ res.push((r % radix) as u8);
|
|
|
+ r /= radix;
|
|
|
+ }
|
|
|
+ digits = q;
|
|
|
+ }
|
|
|
+
|
|
|
+ let mut r = digits.data[0];
|
|
|
+ while r != 0 {
|
|
|
+ res.push((r % radix) as u8);
|
|
|
+ r /= radix;
|
|
|
}
|
|
|
+
|
|
|
+ res
|
|
|
}
|
|
|
|
|
|
-fn to_digit(b: u8) -> u8 {
|
|
|
- match b {
|
|
|
- 0 ... 9 => b'0' + b,
|
|
|
- 10 ... 35 => b'a' - 10 + b,
|
|
|
- _ => panic!("invalid digit: {}", b)
|
|
|
+fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> {
|
|
|
+ assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
|
|
|
+
|
|
|
+ if u.is_zero() {
|
|
|
+ return vec![b'0']
|
|
|
+ }
|
|
|
+
|
|
|
+ let mut res = if radix.is_power_of_two() {
|
|
|
+ // Powers of two can use bitwise masks and shifting instead of division
|
|
|
+ let bits = radix.trailing_zeros() as usize;
|
|
|
+ if big_digit::BITS % bits == 0 {
|
|
|
+ to_bitwise_digits_le(u, bits)
|
|
|
+ } else {
|
|
|
+ to_inexact_bitwise_digits_le(u, bits)
|
|
|
+ }
|
|
|
+ } else if radix == 10 {
|
|
|
+ // 10 is so common that it's worth separating out for const-propagation.
|
|
|
+ // Optimizers can often turn constant division into a faster multiplication.
|
|
|
+ to_radix_digits_le(u, 10)
|
|
|
+ } else {
|
|
|
+ to_radix_digits_le(u, radix)
|
|
|
+ };
|
|
|
+
|
|
|
+ // Now convert everything to ASCII digits.
|
|
|
+ for r in &mut res {
|
|
|
+ const DIGITS: &'static [u8; 36] = b"0123456789abcdefghijklmnopqrstuvwxyz";
|
|
|
+ *r = DIGITS[*r as usize];
|
|
|
}
|
|
|
+ res
|
|
|
}
|
|
|
|
|
|
impl BigUint {
|
|
@@ -1289,24 +1377,10 @@ impl BigUint {
|
|
|
/// ```
|
|
|
#[inline]
|
|
|
pub fn to_bytes_le(&self) -> Vec<u8> {
|
|
|
- let mut result = Vec::new();
|
|
|
- for word in self.data.iter() {
|
|
|
- let mut w = *word;
|
|
|
- for _ in 0..mem::size_of::<BigDigit>() {
|
|
|
- let b = (w & 0xFF) as u8;
|
|
|
- w = w >> 8;
|
|
|
- result.push(b);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- while let Some(&0) = result.last() {
|
|
|
- result.pop();
|
|
|
- }
|
|
|
-
|
|
|
- if result.is_empty() {
|
|
|
+ if self.is_zero() {
|
|
|
vec![0]
|
|
|
} else {
|
|
|
- result
|
|
|
+ to_bitwise_digits_le(self, 8)
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -1431,26 +1505,57 @@ impl BigUint {
|
|
|
}
|
|
|
|
|
|
// `DoubleBigDigit` size dependent
|
|
|
+/// Returns the greatest power of the radix <= BigDigit::MAX + 1
|
|
|
#[inline]
|
|
|
fn get_radix_base(radix: u32) -> (DoubleBigDigit, usize) {
|
|
|
- match radix {
|
|
|
- 2 => (4294967296, 32),
|
|
|
- 3 => (3486784401, 20),
|
|
|
- 4 => (4294967296, 16),
|
|
|
- 5 => (1220703125, 13),
|
|
|
- 6 => (2176782336, 12),
|
|
|
- 7 => (1977326743, 11),
|
|
|
- 8 => (1073741824, 10),
|
|
|
- 9 => (3486784401, 10),
|
|
|
- 10 => (1000000000, 9),
|
|
|
- 11 => (2357947691, 9),
|
|
|
- 12 => (429981696, 8),
|
|
|
- 13 => (815730721, 8),
|
|
|
- 14 => (1475789056, 8),
|
|
|
- 15 => (2562890625, 8),
|
|
|
- 16 => (4294967296, 8),
|
|
|
- _ => panic!("The radix must be within (1, 16]")
|
|
|
- }
|
|
|
+ // To generate this table:
|
|
|
+ // let target = std::u32::max as u64 + 1;
|
|
|
+ // for radix in 2u64..37 {
|
|
|
+ // let power = (target as f64).log(radix as f64) as u32;
|
|
|
+ // let base = radix.pow(power);
|
|
|
+ // println!("({:10}, {:2}), // {:2}", base, power, radix);
|
|
|
+ // }
|
|
|
+ const BASES: [(DoubleBigDigit, usize); 37] = [
|
|
|
+ (0, 0), (0, 0),
|
|
|
+ (4294967296, 32), // 2
|
|
|
+ (3486784401, 20), // 3
|
|
|
+ (4294967296, 16), // 4
|
|
|
+ (1220703125, 13), // 5
|
|
|
+ (2176782336, 12), // 6
|
|
|
+ (1977326743, 11), // 7
|
|
|
+ (1073741824, 10), // 8
|
|
|
+ (3486784401, 10), // 9
|
|
|
+ (1000000000, 9), // 10
|
|
|
+ (2357947691, 9), // 11
|
|
|
+ ( 429981696, 8), // 12
|
|
|
+ ( 815730721, 8), // 13
|
|
|
+ (1475789056, 8), // 14
|
|
|
+ (2562890625, 8), // 15
|
|
|
+ (4294967296, 8), // 16
|
|
|
+ ( 410338673, 7), // 17
|
|
|
+ ( 612220032, 7), // 18
|
|
|
+ ( 893871739, 7), // 19
|
|
|
+ (1280000000, 7), // 20
|
|
|
+ (1801088541, 7), // 21
|
|
|
+ (2494357888, 7), // 22
|
|
|
+ (3404825447, 7), // 23
|
|
|
+ ( 191102976, 6), // 24
|
|
|
+ ( 244140625, 6), // 25
|
|
|
+ ( 308915776, 6), // 26
|
|
|
+ ( 387420489, 6), // 27
|
|
|
+ ( 481890304, 6), // 28
|
|
|
+ ( 594823321, 6), // 29
|
|
|
+ ( 729000000, 6), // 30
|
|
|
+ ( 887503681, 6), // 31
|
|
|
+ (1073741824, 6), // 32
|
|
|
+ (1291467969, 6), // 33
|
|
|
+ (1544804416, 6), // 34
|
|
|
+ (1838265625, 6), // 35
|
|
|
+ (2176782336, 6), // 36
|
|
|
+ ];
|
|
|
+
|
|
|
+ assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
|
|
|
+ BASES[radix as usize]
|
|
|
}
|
|
|
|
|
|
/// A Sign is a `BigInt`'s composing element.
|
|
@@ -3242,6 +3347,11 @@ mod biguint_tests {
|
|
|
format!("3{}2{}1",
|
|
|
repeat("0").take(bits / 2 - 1).collect::<String>(),
|
|
|
repeat("0").take(bits / 2 - 1).collect::<String>())),
|
|
|
+ (8, match bits {
|
|
|
+ 32 => "6000000000100000000001".to_string(),
|
|
|
+ 16 => "140000400001".to_string(),
|
|
|
+ _ => panic!()
|
|
|
+ }),
|
|
|
(10, match bits {
|
|
|
32 => "55340232229718589441".to_string(),
|
|
|
16 => "12885032961".to_string(),
|
|
@@ -3286,6 +3396,16 @@ mod biguint_tests {
|
|
|
assert_eq!(minus_one, None);
|
|
|
}
|
|
|
|
|
|
+ #[test]
|
|
|
+ fn test_all_str_radix() {
|
|
|
+ let n = BigUint::new((0..10).collect());
|
|
|
+ for radix in 2..37 {
|
|
|
+ let s = n.to_str_radix(radix);
|
|
|
+ let x = BigUint::from_str_radix(&s, radix);
|
|
|
+ assert_eq!(x.unwrap(), n);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
#[test]
|
|
|
fn test_factor() {
|
|
|
fn factor(n: usize) -> BigUint {
|