|
@@ -1,16 +1,221 @@
|
|
|
-#[cfg(feature = "std")]
|
|
|
-use std::mem;
|
|
|
-#[cfg(feature = "std")]
|
|
|
-use std::ops::Neg;
|
|
|
-#[cfg(feature = "std")]
|
|
|
-use std::num::FpCategory;
|
|
|
+use core::mem;
|
|
|
+use core::ops::Neg;
|
|
|
+use core::num::FpCategory;
|
|
|
|
|
|
// Used for default implementation of `epsilon`
|
|
|
#[cfg(feature = "std")]
|
|
|
use std::f32;
|
|
|
|
|
|
+use {Num, ToPrimitive};
|
|
|
#[cfg(feature = "std")]
|
|
|
-use {Num, NumCast};
|
|
|
+use NumCast;
|
|
|
+
|
|
|
+/// Generic trait for floating point numbers that works with `no_std`.
|
|
|
+///
|
|
|
+/// This trait implements a subset of the `Float` trait.
|
|
|
+pub trait CoreFloat: Num + Neg<Output = Self> + PartialOrd + Copy {
|
|
|
+ /// Returns positive infinity.
|
|
|
+ #[inline]
|
|
|
+ fn infinity() -> Self;
|
|
|
+
|
|
|
+ /// Returns negative infinity.
|
|
|
+ #[inline]
|
|
|
+ fn neg_infinity() -> Self;
|
|
|
+
|
|
|
+ /// Returns NaN.
|
|
|
+ #[inline]
|
|
|
+ fn nan() -> Self;
|
|
|
+
|
|
|
+ /// Returns `true` if the number is NaN.
|
|
|
+ #[inline]
|
|
|
+ fn is_nan(self) -> bool {
|
|
|
+ self != self
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns `true` if the number is infinite.
|
|
|
+ #[inline]
|
|
|
+ fn is_infinite(self) -> bool {
|
|
|
+ self == Self::infinity() || self == Self::neg_infinity()
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns `true` if the number is neither infinite or NaN.
|
|
|
+ #[inline]
|
|
|
+ fn is_finite(self) -> bool {
|
|
|
+ !(self.is_nan() || self.is_infinite())
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
|
|
|
+ #[inline]
|
|
|
+ fn is_normal(self) -> bool {
|
|
|
+ self.classify() == FpCategory::Normal
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns the floating point category of the number. If only one property
|
|
|
+ /// is going to be tested, it is generally faster to use the specific
|
|
|
+ /// predicate instead.
|
|
|
+ #[inline]
|
|
|
+ fn classify(self) -> FpCategory;
|
|
|
+
|
|
|
+ /// Computes the absolute value of `self`. Returns `CoreFloat::nan()` if the
|
|
|
+ /// number is `CoreFloat::nan()`.
|
|
|
+ #[inline]
|
|
|
+ fn abs(self) -> Self {
|
|
|
+ if self.is_sign_positive() {
|
|
|
+ return self;
|
|
|
+ }
|
|
|
+ if self.is_sign_negative() {
|
|
|
+ return -self;
|
|
|
+ }
|
|
|
+ Self::nan()
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns a number that represents the sign of `self`.
|
|
|
+ ///
|
|
|
+ /// - `1.0` if the number is positive, `+0.0` or `CoreFloat::infinity()`
|
|
|
+ /// - `-1.0` if the number is negative, `-0.0` or `CoreFloat::neg_infinity()`
|
|
|
+ /// - `CoreFloat::nan()` if the number is `CoreFloat::nan()`
|
|
|
+ #[inline]
|
|
|
+ fn signum(self) -> Self {
|
|
|
+ if self.is_sign_positive() {
|
|
|
+ return Self::one();
|
|
|
+ }
|
|
|
+ if self.is_sign_negative() {
|
|
|
+ return -Self::one();
|
|
|
+ }
|
|
|
+ Self::nan()
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns `true` if `self` is positive, including `+0.0` and
|
|
|
+ /// `CoreFloat::infinity()`.
|
|
|
+ #[inline]
|
|
|
+ fn is_sign_positive(self) -> bool {
|
|
|
+ self > Self::zero() || (Self::one() / self) == Self::infinity()
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns `true` if `self` is negative, including `-0.0` and
|
|
|
+ /// `CoreFloat::neg_infinity()`.
|
|
|
+ #[inline]
|
|
|
+ fn is_sign_negative(self) -> bool {
|
|
|
+ self < Self::zero() || (Self::one() / self) == Self::neg_infinity()
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns the minimum of the two numbers.
|
|
|
+ ///
|
|
|
+ /// If one of the arguments is NaN, then the other argument is returned.
|
|
|
+ #[inline]
|
|
|
+ fn min(self, other: Self) -> Self {
|
|
|
+ if self.is_nan() {
|
|
|
+ return other;
|
|
|
+ }
|
|
|
+ if other.is_nan() {
|
|
|
+ return self;
|
|
|
+ }
|
|
|
+ if self < other { self } else { other }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns the maximum of the two numbers.
|
|
|
+ ///
|
|
|
+ /// If one of the arguments is NaN, then the other argument is returned.
|
|
|
+ #[inline]
|
|
|
+ fn max(self, other: Self) -> Self {
|
|
|
+ if self.is_nan() {
|
|
|
+ return other;
|
|
|
+ }
|
|
|
+ if other.is_nan() {
|
|
|
+ return self;
|
|
|
+ }
|
|
|
+ if self > other { self } else { other }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Returns the reciprocal (multiplicative inverse) of the number.
|
|
|
+ #[inline]
|
|
|
+ fn recip(self) -> Self {
|
|
|
+ Self::one() / self
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Raise a number to an integer power.
|
|
|
+ ///
|
|
|
+ /// Using this function is generally faster than using `powf`
|
|
|
+ #[inline]
|
|
|
+ fn powi(mut self, mut exp: i32) -> Self {
|
|
|
+ if exp < 0 {
|
|
|
+ exp = -exp;
|
|
|
+ self = self.recip();
|
|
|
+ }
|
|
|
+ // It should always be possible to convert a positive `i32` to a `usize`.
|
|
|
+ super::pow(self, exp.to_usize().unwrap())
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Converts to degrees, assuming the number is in radians.
|
|
|
+ #[inline]
|
|
|
+ fn to_degrees(self) -> Self;
|
|
|
+
|
|
|
+ /// Converts to radians, assuming the number is in degrees.
|
|
|
+ #[inline]
|
|
|
+ fn to_radians(self) -> Self;
|
|
|
+}
|
|
|
+
|
|
|
+impl CoreFloat for f32 {
|
|
|
+ fn infinity() -> Self {
|
|
|
+ ::core::f32::INFINITY
|
|
|
+ }
|
|
|
+ fn neg_infinity() -> Self {
|
|
|
+ ::core::f32::NEG_INFINITY
|
|
|
+ }
|
|
|
+ fn nan() -> Self {
|
|
|
+ ::core::f32::NAN
|
|
|
+ }
|
|
|
+ fn classify(self) -> FpCategory {
|
|
|
+ const EXP_MASK: u32 = 0x7f800000;
|
|
|
+ const MAN_MASK: u32 = 0x007fffff;
|
|
|
+
|
|
|
+ let bits: u32 = unsafe { mem::transmute(self) };
|
|
|
+ match (bits & MAN_MASK, bits & EXP_MASK) {
|
|
|
+ (0, 0) => FpCategory::Zero,
|
|
|
+ (_, 0) => FpCategory::Subnormal,
|
|
|
+ (0, EXP_MASK) => FpCategory::Infinite,
|
|
|
+ (_, EXP_MASK) => FpCategory::Nan,
|
|
|
+ _ => FpCategory::Normal,
|
|
|
+ }
|
|
|
+ }
|
|
|
+ fn to_degrees(self) -> Self {
|
|
|
+ self * (180.0 / ::core::f32::consts::PI)
|
|
|
+ }
|
|
|
+ fn to_radians(self) -> Self {
|
|
|
+ self * (::core::f32::consts::PI / 180.0)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+impl CoreFloat for f64 {
|
|
|
+ fn infinity() -> Self {
|
|
|
+ ::core::f64::INFINITY
|
|
|
+ }
|
|
|
+ fn neg_infinity() -> Self {
|
|
|
+ ::core::f64::NEG_INFINITY
|
|
|
+ }
|
|
|
+ fn nan() -> Self {
|
|
|
+ ::core::f64::NAN
|
|
|
+ }
|
|
|
+ fn classify(self) -> FpCategory {
|
|
|
+ const EXP_MASK: u64 = 0x7ff0000000000000;
|
|
|
+ const MAN_MASK: u64 = 0x000fffffffffffff;
|
|
|
+
|
|
|
+ let bits: u64 = unsafe { mem::transmute(self) };
|
|
|
+ match (bits & MAN_MASK, bits & EXP_MASK) {
|
|
|
+ (0, 0) => FpCategory::Zero,
|
|
|
+ (_, 0) => FpCategory::Subnormal,
|
|
|
+ (0, EXP_MASK) => FpCategory::Infinite,
|
|
|
+ (_, EXP_MASK) => FpCategory::Nan,
|
|
|
+ _ => FpCategory::Normal,
|
|
|
+ }
|
|
|
+ }
|
|
|
+ fn to_degrees(self) -> Self {
|
|
|
+ self * (180.0 / ::core::f64::consts::PI)
|
|
|
+ }
|
|
|
+ fn to_radians(self) -> Self {
|
|
|
+ self * (::core::f64::consts::PI / 180.0)
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
// FIXME: these doctests aren't actually helpful, because they're using and
|
|
|
// testing the inherent methods directly, not going through `Float`.
|
|
@@ -1328,25 +1533,40 @@ float_const_impl! {
|
|
|
SQRT_2,
|
|
|
}
|
|
|
|
|
|
-#[cfg(all(test, feature = "std"))]
|
|
|
+#[cfg(test)]
|
|
|
mod tests {
|
|
|
- use Float;
|
|
|
+ use core::f64::consts;
|
|
|
+
|
|
|
+ const DEG_RAD_PAIRS: [(f64, f64); 7] = [
|
|
|
+ (0.0, 0.),
|
|
|
+ (22.5, consts::FRAC_PI_8),
|
|
|
+ (30.0, consts::FRAC_PI_6),
|
|
|
+ (45.0, consts::FRAC_PI_4),
|
|
|
+ (60.0, consts::FRAC_PI_3),
|
|
|
+ (90.0, consts::FRAC_PI_2),
|
|
|
+ (180.0, consts::PI),
|
|
|
+ ];
|
|
|
|
|
|
#[test]
|
|
|
fn convert_deg_rad() {
|
|
|
- use core::f64::consts;
|
|
|
-
|
|
|
- const DEG_RAD_PAIRS: [(f64, f64); 7] = [
|
|
|
- (0.0, 0.),
|
|
|
- (22.5, consts::FRAC_PI_8),
|
|
|
- (30.0, consts::FRAC_PI_6),
|
|
|
- (45.0, consts::FRAC_PI_4),
|
|
|
- (60.0, consts::FRAC_PI_3),
|
|
|
- (90.0, consts::FRAC_PI_2),
|
|
|
- (180.0, consts::PI),
|
|
|
- ];
|
|
|
+ use CoreFloat;
|
|
|
|
|
|
for &(deg, rad) in &DEG_RAD_PAIRS {
|
|
|
+ assert!((CoreFloat::to_degrees(rad) - deg).abs() < 1e-6);
|
|
|
+ assert!((CoreFloat::to_radians(deg) - rad).abs() < 1e-6);
|
|
|
+
|
|
|
+ let (deg, rad) = (deg as f32, rad as f32);
|
|
|
+ assert!((CoreFloat::to_degrees(rad) - deg).abs() < 1e-6);
|
|
|
+ assert!((CoreFloat::to_radians(deg) - rad).abs() < 1e-6);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ #[cfg(feature = "std")]
|
|
|
+ #[test]
|
|
|
+ fn convert_deg_rad_std() {
|
|
|
+ for &(deg, rad) in &DEG_RAD_PAIRS {
|
|
|
+ use Float;
|
|
|
+
|
|
|
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
|
|
|
assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
|
|
|
|