|
@@ -665,6 +665,47 @@ impl_integer_for_usize!(u32, test_integer_u32);
|
|
|
impl_integer_for_usize!(u64, test_integer_u64);
|
|
|
impl_integer_for_usize!(usize, test_integer_usize);
|
|
|
|
|
|
+/// An iterator over binomial coefficients.
|
|
|
+pub struct BinomialCoeff<T> {
|
|
|
+ a: T,
|
|
|
+ n: T,
|
|
|
+ k: T,
|
|
|
+}
|
|
|
+
|
|
|
+impl<T> BinomialCoeff<T>
|
|
|
+ where T: Integer,
|
|
|
+{
|
|
|
+ /// For a given n, iterate over all binomial coefficients ((k, n - k), binomial(n, k)).
|
|
|
+ pub fn new(n: T) -> BinomialCoeff<T> {
|
|
|
+ BinomialCoeff {
|
|
|
+ k: T::zero(), a: T::one(), n: n
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+impl<T> Iterator for BinomialCoeff<T>
|
|
|
+ where T: Integer + Clone,
|
|
|
+ for<'a> &'a T: std::cmp::PartialEq<&'a T>
|
|
|
+{
|
|
|
+ type Item = ((T, T), T);
|
|
|
+
|
|
|
+ fn next(&mut self) -> Option<((T, T), T)> {
|
|
|
+ if &self.k > &self.n {
|
|
|
+ return None;
|
|
|
+ }
|
|
|
+ self.a = if &self.k != &T::zero() {
|
|
|
+ (self.a.clone() * (self.n.clone() - self.k.clone() + T::one())) / self.k.clone()
|
|
|
+ } else {
|
|
|
+ T::one()
|
|
|
+ };
|
|
|
+ let r = Some(
|
|
|
+ ((self.k.clone(), self.n.clone() - self.k.clone()),
|
|
|
+ self.a.clone()));
|
|
|
+ self.k = self.k.clone() + T::one();
|
|
|
+ r
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
/// Calculate r * a / b, avoiding overflows and fractions.
|
|
|
fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
|
|
|
// See http://blog.plover.com/math/choose-2.html for the idea.
|
|
@@ -722,6 +763,46 @@ fn test_lcm_overflow() {
|
|
|
check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
|
|
|
}
|
|
|
|
|
|
+#[test]
|
|
|
+fn test_binomial_coeff() {
|
|
|
+ macro_rules! check_simple {
|
|
|
+ ($t:ty) => { {
|
|
|
+ let n: $t = 3;
|
|
|
+ let c: Vec<_> = BinomialCoeff::new(n).collect();
|
|
|
+ let expected = vec![((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)];
|
|
|
+ assert_eq!(c, expected);
|
|
|
+ } }
|
|
|
+ }
|
|
|
+
|
|
|
+ check_simple!(u8);
|
|
|
+ check_simple!(i8);
|
|
|
+ check_simple!(u16);
|
|
|
+ check_simple!(i16);
|
|
|
+ check_simple!(u32);
|
|
|
+ check_simple!(i32);
|
|
|
+ check_simple!(u64);
|
|
|
+ check_simple!(i64);
|
|
|
+
|
|
|
+ macro_rules! check_binomial {
|
|
|
+ ($t:ty, $n:expr) => { {
|
|
|
+ let n: $t = $n;
|
|
|
+ let c: Vec<_> = BinomialCoeff::new(n).collect();
|
|
|
+ for &((k, _), b) in &c {
|
|
|
+ assert_eq!(b, binomial(n, k));
|
|
|
+ }
|
|
|
+ } }
|
|
|
+ }
|
|
|
+
|
|
|
+ check_binomial!(u8, 6);
|
|
|
+ check_binomial!(i8, 6);
|
|
|
+ check_binomial!(u16, 10);
|
|
|
+ check_binomial!(i16, 10);
|
|
|
+ check_binomial!(u32, 10);
|
|
|
+ check_binomial!(i32, 10);
|
|
|
+ check_binomial!(u64, 10);
|
|
|
+ check_binomial!(i64, 10);
|
|
|
+}
|
|
|
+
|
|
|
#[test]
|
|
|
fn test_binomial() {
|
|
|
macro_rules! check {
|