|
@@ -0,0 +1,924 @@
|
|
|
+use std::ops::Neg;
|
|
|
+
|
|
|
+use {Num, NumCast, Float};
|
|
|
+
|
|
|
+// NOTE: These doctests have the same issue as those in src/float.rs.
|
|
|
+// They're testing the inherent methods directly, and not those of `Real`.
|
|
|
+
|
|
|
+/// A trait for real number types that do not necessarily have
|
|
|
+/// floating-point-specific characteristics such as NaN and infinity.
|
|
|
+///
|
|
|
+/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
|
|
|
+/// for a list of data types that could meaningfully implement this trait.
|
|
|
+pub trait Real
|
|
|
+ : Num
|
|
|
+ + Copy
|
|
|
+ + NumCast
|
|
|
+ + PartialOrd
|
|
|
+ + Neg<Output = Self>
|
|
|
+{
|
|
|
+ /// Returns the smallest finite value that this type can represent.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x: f64 = Real::min_value();
|
|
|
+ ///
|
|
|
+ /// assert_eq!(x, f64::MIN);
|
|
|
+ /// ```
|
|
|
+ fn min_value() -> Self;
|
|
|
+
|
|
|
+ /// Returns the smallest positive, normalized value that this type can represent.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x: f64 = Real::min_positive_value();
|
|
|
+ ///
|
|
|
+ /// assert_eq!(x, f64::MIN_POSITIVE);
|
|
|
+ /// ```
|
|
|
+ fn min_positive_value() -> Self;
|
|
|
+
|
|
|
+ /// Returns epsilon, a small positive value.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x: f64 = Real::epsilon();
|
|
|
+ ///
|
|
|
+ /// assert_eq!(x, f64::EPSILON);
|
|
|
+ /// ```
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// The default implementation will panic if `f32::EPSILON` cannot
|
|
|
+ /// be cast to `Self`.
|
|
|
+ fn epsilon() -> Self;
|
|
|
+
|
|
|
+ /// Returns the largest finite value that this type can represent.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x: f64 = Real::max_value();
|
|
|
+ /// assert_eq!(x, f64::MAX);
|
|
|
+ /// ```
|
|
|
+ fn max_value() -> Self;
|
|
|
+
|
|
|
+ /// Returns the largest integer less than or equal to a number.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let f = 3.99;
|
|
|
+ /// let g = 3.0;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(f.floor(), 3.0);
|
|
|
+ /// assert_eq!(g.floor(), 3.0);
|
|
|
+ /// ```
|
|
|
+ fn floor(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the smallest integer greater than or equal to a number.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let f = 3.01;
|
|
|
+ /// let g = 4.0;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(f.ceil(), 4.0);
|
|
|
+ /// assert_eq!(g.ceil(), 4.0);
|
|
|
+ /// ```
|
|
|
+ fn ceil(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the nearest integer to a number. Round half-way cases away from
|
|
|
+ /// `0.0`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let f = 3.3;
|
|
|
+ /// let g = -3.3;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(f.round(), 3.0);
|
|
|
+ /// assert_eq!(g.round(), -3.0);
|
|
|
+ /// ```
|
|
|
+ fn round(self) -> Self;
|
|
|
+
|
|
|
+ /// Return the integer part of a number.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let f = 3.3;
|
|
|
+ /// let g = -3.7;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(f.trunc(), 3.0);
|
|
|
+ /// assert_eq!(g.trunc(), -3.0);
|
|
|
+ /// ```
|
|
|
+ fn trunc(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the fractional part of a number.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 3.5;
|
|
|
+ /// let y = -3.5;
|
|
|
+ /// let abs_difference_x = (x.fract() - 0.5).abs();
|
|
|
+ /// let abs_difference_y = (y.fract() - (-0.5)).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference_x < 1e-10);
|
|
|
+ /// assert!(abs_difference_y < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn fract(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the absolute value of `self`. Returns `Float::nan()` if the
|
|
|
+ /// number is `Float::nan()`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x = 3.5;
|
|
|
+ /// let y = -3.5;
|
|
|
+ ///
|
|
|
+ /// let abs_difference_x = (x.abs() - x).abs();
|
|
|
+ /// let abs_difference_y = (y.abs() - (-y)).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference_x < 1e-10);
|
|
|
+ /// assert!(abs_difference_y < 1e-10);
|
|
|
+ ///
|
|
|
+ /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
|
|
|
+ /// ```
|
|
|
+ fn abs(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns a number that represents the sign of `self`.
|
|
|
+ ///
|
|
|
+ /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
|
|
|
+ /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
|
|
|
+ /// - `Float::nan()` if the number is `Float::nan()`
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let f = 3.5;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(f.signum(), 1.0);
|
|
|
+ /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
|
|
|
+ ///
|
|
|
+ /// assert!(f64::NAN.signum().is_nan());
|
|
|
+ /// ```
|
|
|
+ fn signum(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns `true` if `self` is positive, including `+0.0`,
|
|
|
+ /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let neg_nan: f64 = -f64::NAN;
|
|
|
+ ///
|
|
|
+ /// let f = 7.0;
|
|
|
+ /// let g = -7.0;
|
|
|
+ ///
|
|
|
+ /// assert!(f.is_sign_positive());
|
|
|
+ /// assert!(!g.is_sign_positive());
|
|
|
+ /// assert!(!neg_nan.is_sign_positive());
|
|
|
+ /// ```
|
|
|
+ fn is_sign_positive(self) -> bool;
|
|
|
+
|
|
|
+ /// Returns `true` if `self` is negative, including `-0.0`,
|
|
|
+ /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let nan: f64 = f64::NAN;
|
|
|
+ ///
|
|
|
+ /// let f = 7.0;
|
|
|
+ /// let g = -7.0;
|
|
|
+ ///
|
|
|
+ /// assert!(!f.is_sign_negative());
|
|
|
+ /// assert!(g.is_sign_negative());
|
|
|
+ /// assert!(!nan.is_sign_negative());
|
|
|
+ /// ```
|
|
|
+ fn is_sign_negative(self) -> bool;
|
|
|
+
|
|
|
+ /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
|
|
|
+ /// error. This produces a more accurate result with better performance than
|
|
|
+ /// a separate multiplication operation followed by an add.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let m = 10.0;
|
|
|
+ /// let x = 4.0;
|
|
|
+ /// let b = 60.0;
|
|
|
+ ///
|
|
|
+ /// // 100.0
|
|
|
+ /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn mul_add(self, a: Self, b: Self) -> Self;
|
|
|
+
|
|
|
+ /// Take the reciprocal (inverse) of a number, `1/x`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 2.0;
|
|
|
+ /// let abs_difference = (x.recip() - (1.0/x)).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn recip(self) -> Self;
|
|
|
+
|
|
|
+ /// Raise a number to an integer power.
|
|
|
+ ///
|
|
|
+ /// Using this function is generally faster than using `powf`
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 2.0;
|
|
|
+ /// let abs_difference = (x.powi(2) - x*x).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn powi(self, n: i32) -> Self;
|
|
|
+
|
|
|
+ /// Raise a number to a real number power.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 2.0;
|
|
|
+ /// let abs_difference = (x.powf(2.0) - x*x).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn powf(self, n: Self) -> Self;
|
|
|
+
|
|
|
+ /// Take the square root of a number.
|
|
|
+ ///
|
|
|
+ /// Returns NaN if `self` is a negative floating-point number.
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let positive = 4.0;
|
|
|
+ /// let negative = -4.0;
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (positive.sqrt() - 2.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
|
|
|
+ /// ```
|
|
|
+ fn sqrt(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns `e^(self)`, (the exponential function).
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let one = 1.0;
|
|
|
+ /// // e^1
|
|
|
+ /// let e = one.exp();
|
|
|
+ ///
|
|
|
+ /// // ln(e) - 1 == 0
|
|
|
+ /// let abs_difference = (e.ln() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn exp(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns `2^(self)`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let f = 2.0;
|
|
|
+ ///
|
|
|
+ /// // 2^2 - 4 == 0
|
|
|
+ /// let abs_difference = (f.exp2() - 4.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn exp2(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the natural logarithm of the number.
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let one = 1.0;
|
|
|
+ /// // e^1
|
|
|
+ /// let e = one.exp();
|
|
|
+ ///
|
|
|
+ /// // ln(e) - 1 == 0
|
|
|
+ /// let abs_difference = (e.ln() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn ln(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the logarithm of the number with respect to an arbitrary base.
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let ten = 10.0;
|
|
|
+ /// let two = 2.0;
|
|
|
+ ///
|
|
|
+ /// // log10(10) - 1 == 0
|
|
|
+ /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// // log2(2) - 1 == 0
|
|
|
+ /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference_10 < 1e-10);
|
|
|
+ /// assert!(abs_difference_2 < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn log(self, base: Self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the base 2 logarithm of the number.
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let two = 2.0;
|
|
|
+ ///
|
|
|
+ /// // log2(2) - 1 == 0
|
|
|
+ /// let abs_difference = (two.log2() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn log2(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the base 10 logarithm of the number.
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
|
|
|
+ ///
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let ten = 10.0;
|
|
|
+ ///
|
|
|
+ /// // log10(10) - 1 == 0
|
|
|
+ /// let abs_difference = (ten.log10() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn log10(self) -> Self;
|
|
|
+
|
|
|
+ /// Converts radians to degrees.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use std::f64::consts;
|
|
|
+ ///
|
|
|
+ /// let angle = consts::PI;
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (angle.to_degrees() - 180.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn to_degrees(self) -> Self;
|
|
|
+
|
|
|
+ /// Converts degrees to radians.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use std::f64::consts;
|
|
|
+ ///
|
|
|
+ /// let angle = 180.0_f64;
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (angle.to_radians() - consts::PI).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn to_radians(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the maximum of the two numbers.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 1.0;
|
|
|
+ /// let y = 2.0;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(x.max(y), y);
|
|
|
+ /// ```
|
|
|
+ fn max(self, other: Self) -> Self;
|
|
|
+
|
|
|
+ /// Returns the minimum of the two numbers.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 1.0;
|
|
|
+ /// let y = 2.0;
|
|
|
+ ///
|
|
|
+ /// assert_eq!(x.min(y), x);
|
|
|
+ /// ```
|
|
|
+ fn min(self, other: Self) -> Self;
|
|
|
+
|
|
|
+ /// The positive difference of two numbers.
|
|
|
+ ///
|
|
|
+ /// * If `self <= other`: `0:0`
|
|
|
+ /// * Else: `self - other`
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 3.0;
|
|
|
+ /// let y = -3.0;
|
|
|
+ ///
|
|
|
+ /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
|
|
|
+ /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference_x < 1e-10);
|
|
|
+ /// assert!(abs_difference_y < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn abs_sub(self, other: Self) -> Self;
|
|
|
+
|
|
|
+ /// Take the cubic root of a number.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 8.0;
|
|
|
+ ///
|
|
|
+ /// // x^(1/3) - 2 == 0
|
|
|
+ /// let abs_difference = (x.cbrt() - 2.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn cbrt(self) -> Self;
|
|
|
+
|
|
|
+ /// Calculate the length of the hypotenuse of a right-angle triangle given
|
|
|
+ /// legs of length `x` and `y`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 2.0;
|
|
|
+ /// let y = 3.0;
|
|
|
+ ///
|
|
|
+ /// // sqrt(x^2 + y^2)
|
|
|
+ /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn hypot(self, other: Self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the sine of a number (in radians).
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x = f64::consts::PI/2.0;
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (x.sin() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn sin(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the cosine of a number (in radians).
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x = 2.0*f64::consts::PI;
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (x.cos() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn cos(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the tangent of a number (in radians).
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x = f64::consts::PI/4.0;
|
|
|
+ /// let abs_difference = (x.tan() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-14);
|
|
|
+ /// ```
|
|
|
+ fn tan(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the arcsine of a number. Return value is in radians in
|
|
|
+ /// the range [-pi/2, pi/2] or NaN if the number is outside the range
|
|
|
+ /// [-1, 1].
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If this type does not support a NaN representation, this function should panic
|
|
|
+ /// if the number is outside the range [-1, 1].
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let f = f64::consts::PI / 2.0;
|
|
|
+ ///
|
|
|
+ /// // asin(sin(pi/2))
|
|
|
+ /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn asin(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the arccosine of a number. Return value is in radians in
|
|
|
+ /// the range [0, pi] or NaN if the number is outside the range
|
|
|
+ /// [-1, 1].
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If this type does not support a NaN representation, this function should panic
|
|
|
+ /// if the number is outside the range [-1, 1].
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let f = f64::consts::PI / 4.0;
|
|
|
+ ///
|
|
|
+ /// // acos(cos(pi/4))
|
|
|
+ /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn acos(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the arctangent of a number. Return value is in radians in the
|
|
|
+ /// range [-pi/2, pi/2];
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let f = 1.0;
|
|
|
+ ///
|
|
|
+ /// // atan(tan(1))
|
|
|
+ /// let abs_difference = (f.tan().atan() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn atan(self) -> Self;
|
|
|
+
|
|
|
+ /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
|
|
|
+ ///
|
|
|
+ /// * `x = 0`, `y = 0`: `0`
|
|
|
+ /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
|
|
|
+ /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
|
|
|
+ /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let pi = f64::consts::PI;
|
|
|
+ /// // All angles from horizontal right (+x)
|
|
|
+ /// // 45 deg counter-clockwise
|
|
|
+ /// let x1 = 3.0;
|
|
|
+ /// let y1 = -3.0;
|
|
|
+ ///
|
|
|
+ /// // 135 deg clockwise
|
|
|
+ /// let x2 = -3.0;
|
|
|
+ /// let y2 = 3.0;
|
|
|
+ ///
|
|
|
+ /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
|
|
|
+ /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference_1 < 1e-10);
|
|
|
+ /// assert!(abs_difference_2 < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn atan2(self, other: Self) -> Self;
|
|
|
+
|
|
|
+ /// Simultaneously computes the sine and cosine of the number, `x`. Returns
|
|
|
+ /// `(sin(x), cos(x))`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x = f64::consts::PI/4.0;
|
|
|
+ /// let f = x.sin_cos();
|
|
|
+ ///
|
|
|
+ /// let abs_difference_0 = (f.0 - x.sin()).abs();
|
|
|
+ /// let abs_difference_1 = (f.1 - x.cos()).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference_0 < 1e-10);
|
|
|
+ /// assert!(abs_difference_0 < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn sin_cos(self) -> (Self, Self);
|
|
|
+
|
|
|
+ /// Returns `e^(self) - 1` in a way that is accurate even if the
|
|
|
+ /// number is close to zero.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 7.0;
|
|
|
+ ///
|
|
|
+ /// // e^(ln(7)) - 1
|
|
|
+ /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn exp_m1(self) -> Self;
|
|
|
+
|
|
|
+ /// Returns `ln(1+n)` (natural logarithm) more accurately than if
|
|
|
+ /// the operations were performed separately.
|
|
|
+ ///
|
|
|
+ /// # Panics
|
|
|
+ ///
|
|
|
+ /// If this type does not support a NaN representation, this function should panic
|
|
|
+ /// if `self-1 <= 0`.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let x = f64::consts::E - 1.0;
|
|
|
+ ///
|
|
|
+ /// // ln(1 + (e - 1)) == ln(e) == 1
|
|
|
+ /// let abs_difference = (x.ln_1p() - 1.0).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn ln_1p(self) -> Self;
|
|
|
+
|
|
|
+ /// Hyperbolic sine function.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let e = f64::consts::E;
|
|
|
+ /// let x = 1.0;
|
|
|
+ ///
|
|
|
+ /// let f = x.sinh();
|
|
|
+ /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
|
|
|
+ /// let g = (e*e - 1.0)/(2.0*e);
|
|
|
+ /// let abs_difference = (f - g).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1e-10);
|
|
|
+ /// ```
|
|
|
+ fn sinh(self) -> Self;
|
|
|
+
|
|
|
+ /// Hyperbolic cosine function.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let e = f64::consts::E;
|
|
|
+ /// let x = 1.0;
|
|
|
+ /// let f = x.cosh();
|
|
|
+ /// // Solving cosh() at 1 gives this result
|
|
|
+ /// let g = (e*e + 1.0)/(2.0*e);
|
|
|
+ /// let abs_difference = (f - g).abs();
|
|
|
+ ///
|
|
|
+ /// // Same result
|
|
|
+ /// assert!(abs_difference < 1.0e-10);
|
|
|
+ /// ```
|
|
|
+ fn cosh(self) -> Self;
|
|
|
+
|
|
|
+ /// Hyperbolic tangent function.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let e = f64::consts::E;
|
|
|
+ /// let x = 1.0;
|
|
|
+ ///
|
|
|
+ /// let f = x.tanh();
|
|
|
+ /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
|
|
|
+ /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
|
|
|
+ /// let abs_difference = (f - g).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1.0e-10);
|
|
|
+ /// ```
|
|
|
+ fn tanh(self) -> Self;
|
|
|
+
|
|
|
+ /// Inverse hyperbolic sine function.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 1.0;
|
|
|
+ /// let f = x.sinh().asinh();
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (f - x).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1.0e-10);
|
|
|
+ /// ```
|
|
|
+ fn asinh(self) -> Self;
|
|
|
+
|
|
|
+ /// Inverse hyperbolic cosine function.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ ///
|
|
|
+ /// let x = 1.0;
|
|
|
+ /// let f = x.cosh().acosh();
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (f - x).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1.0e-10);
|
|
|
+ /// ```
|
|
|
+ fn acosh(self) -> Self;
|
|
|
+
|
|
|
+ /// Inverse hyperbolic tangent function.
|
|
|
+ ///
|
|
|
+ /// ```
|
|
|
+ /// use num_traits::real::Real;
|
|
|
+ /// use std::f64;
|
|
|
+ ///
|
|
|
+ /// let e = f64::consts::E;
|
|
|
+ /// let f = e.tanh().atanh();
|
|
|
+ ///
|
|
|
+ /// let abs_difference = (f - e).abs();
|
|
|
+ ///
|
|
|
+ /// assert!(abs_difference < 1.0e-10);
|
|
|
+ /// ```
|
|
|
+ fn atanh(self) -> Self;
|
|
|
+}
|
|
|
+
|
|
|
+impl<T: Float> Real for T {
|
|
|
+ fn min_value() -> Self {
|
|
|
+ Self::min_value()
|
|
|
+ }
|
|
|
+ fn min_positive_value() -> Self {
|
|
|
+ Self::min_positive_value()
|
|
|
+ }
|
|
|
+ fn epsilon() -> Self {
|
|
|
+ Self::epsilon()
|
|
|
+ }
|
|
|
+ fn max_value() -> Self {
|
|
|
+ Self::max_value()
|
|
|
+ }
|
|
|
+ fn floor(self) -> Self {
|
|
|
+ self.floor()
|
|
|
+ }
|
|
|
+ fn ceil(self) -> Self {
|
|
|
+ self.ceil()
|
|
|
+ }
|
|
|
+ fn round(self) -> Self {
|
|
|
+ self.round()
|
|
|
+ }
|
|
|
+ fn trunc(self) -> Self {
|
|
|
+ self.trunc()
|
|
|
+ }
|
|
|
+ fn fract(self) -> Self {
|
|
|
+ self.fract()
|
|
|
+ }
|
|
|
+ fn abs(self) -> Self {
|
|
|
+ self.abs()
|
|
|
+ }
|
|
|
+ fn signum(self) -> Self {
|
|
|
+ self.signum()
|
|
|
+ }
|
|
|
+ fn is_sign_positive(self) -> bool {
|
|
|
+ self.is_sign_positive()
|
|
|
+ }
|
|
|
+ fn is_sign_negative(self) -> bool {
|
|
|
+ self.is_sign_negative()
|
|
|
+ }
|
|
|
+ fn mul_add(self, a: Self, b: Self) -> Self {
|
|
|
+ self.mul_add(a, b)
|
|
|
+ }
|
|
|
+ fn recip(self) -> Self {
|
|
|
+ self.recip()
|
|
|
+ }
|
|
|
+ fn powi(self, n: i32) -> Self {
|
|
|
+ self.powi(n)
|
|
|
+ }
|
|
|
+ fn powf(self, n: Self) -> Self {
|
|
|
+ self.powf(n)
|
|
|
+ }
|
|
|
+ fn sqrt(self) -> Self {
|
|
|
+ self.sqrt()
|
|
|
+ }
|
|
|
+ fn exp(self) -> Self {
|
|
|
+ self.exp()
|
|
|
+ }
|
|
|
+ fn exp2(self) -> Self {
|
|
|
+ self.exp2()
|
|
|
+ }
|
|
|
+ fn ln(self) -> Self {
|
|
|
+ self.ln()
|
|
|
+ }
|
|
|
+ fn log(self, base: Self) -> Self {
|
|
|
+ self.log(base)
|
|
|
+ }
|
|
|
+ fn log2(self) -> Self {
|
|
|
+ self.log2()
|
|
|
+ }
|
|
|
+ fn log10(self) -> Self {
|
|
|
+ self.log10()
|
|
|
+ }
|
|
|
+ fn to_degrees(self) -> Self {
|
|
|
+ self.to_degrees()
|
|
|
+ }
|
|
|
+ fn to_radians(self) -> Self {
|
|
|
+ self.to_radians()
|
|
|
+ }
|
|
|
+ fn max(self, other: Self) -> Self {
|
|
|
+ self.max(other)
|
|
|
+ }
|
|
|
+ fn min(self, other: Self) -> Self {
|
|
|
+ self.min(other)
|
|
|
+ }
|
|
|
+ fn abs_sub(self, other: Self) -> Self {
|
|
|
+ self.abs_sub(other)
|
|
|
+ }
|
|
|
+ fn cbrt(self) -> Self {
|
|
|
+ self.cbrt()
|
|
|
+ }
|
|
|
+ fn hypot(self, other: Self) -> Self {
|
|
|
+ self.hypot(other)
|
|
|
+ }
|
|
|
+ fn sin(self) -> Self {
|
|
|
+ self.sin()
|
|
|
+ }
|
|
|
+ fn cos(self) -> Self {
|
|
|
+ self.cos()
|
|
|
+ }
|
|
|
+ fn tan(self) -> Self {
|
|
|
+ self.tan()
|
|
|
+ }
|
|
|
+ fn asin(self) -> Self {
|
|
|
+ self.asin()
|
|
|
+ }
|
|
|
+ fn acos(self) -> Self {
|
|
|
+ self.acos()
|
|
|
+ }
|
|
|
+ fn atan(self) -> Self {
|
|
|
+ self.atan()
|
|
|
+ }
|
|
|
+ fn atan2(self, other: Self) -> Self {
|
|
|
+ self.atan2(other)
|
|
|
+ }
|
|
|
+ fn sin_cos(self) -> (Self, Self) {
|
|
|
+ self.sin_cos()
|
|
|
+ }
|
|
|
+ fn exp_m1(self) -> Self {
|
|
|
+ self.exp_m1()
|
|
|
+ }
|
|
|
+ fn ln_1p(self) -> Self {
|
|
|
+ self.ln_1p()
|
|
|
+ }
|
|
|
+ fn sinh(self) -> Self {
|
|
|
+ self.sinh()
|
|
|
+ }
|
|
|
+ fn cosh(self) -> Self {
|
|
|
+ self.cosh()
|
|
|
+ }
|
|
|
+ fn tanh(self) -> Self {
|
|
|
+ self.tanh()
|
|
|
+ }
|
|
|
+ fn asinh(self) -> Self {
|
|
|
+ self.asinh()
|
|
|
+ }
|
|
|
+ fn acosh(self) -> Self {
|
|
|
+ self.acosh()
|
|
|
+ }
|
|
|
+ fn atanh(self) -> Self {
|
|
|
+ self.atanh()
|
|
|
+ }
|
|
|
+}
|