|
@@ -220,18 +220,23 @@ macro_rules! impl_to_primitive_float_to_signed_int {
|
|
|
($f:ident : $( fn $method:ident -> $i:ident ; )*) => {$(
|
|
|
#[inline]
|
|
|
fn $method(&self) -> Option<$i> {
|
|
|
- let t = self.trunc(); // round toward zero.
|
|
|
- // MIN is a power of two, which we can cast and compare directly.
|
|
|
- if t >= $i::MIN as $f {
|
|
|
- // The mantissa might not be able to represent all digits of MAX.
|
|
|
- let sig_bits = size_of::<$i>() as u32 * 8 - 1;
|
|
|
- let max = if sig_bits > $f::MANTISSA_DIGITS {
|
|
|
- let lost_bits = sig_bits - $f::MANTISSA_DIGITS;
|
|
|
- $i::MAX & !((1 << lost_bits) - 1)
|
|
|
- } else {
|
|
|
- $i::MAX
|
|
|
- };
|
|
|
- if t <= max as $f {
|
|
|
+ // Float as int truncates toward zero, so we want to allow values
|
|
|
+ // in the exclusive range `(MIN-1, MAX+1)`.
|
|
|
+ if size_of::<$f>() > size_of::<$i>() {
|
|
|
+ // With a larger size, we can represent the range exactly.
|
|
|
+ const MIN_M1: $f = $i::MIN as $f - 1.0;
|
|
|
+ const MAX_P1: $f = $i::MAX as $f + 1.0;
|
|
|
+ if *self > MIN_M1 && *self < MAX_P1 {
|
|
|
+ return Some(*self as $i);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // We can't represent `MIN-1` exactly, but there's no fractional part
|
|
|
+ // at this magnitude, so we can just use a `MIN` inclusive boundary.
|
|
|
+ const MIN: $f = $i::MIN as $f;
|
|
|
+ // We can't represent `MAX` exactly, but it will round up to exactly
|
|
|
+ // `MAX+1` (a power of two) when we cast it.
|
|
|
+ const MAX_P1: $f = $i::MAX as $f;
|
|
|
+ if *self >= MIN && *self < MAX_P1 {
|
|
|
return Some(*self as $i);
|
|
|
}
|
|
|
}
|
|
@@ -244,17 +249,19 @@ macro_rules! impl_to_primitive_float_to_unsigned_int {
|
|
|
($f:ident : $( fn $method:ident -> $u:ident ; )*) => {$(
|
|
|
#[inline]
|
|
|
fn $method(&self) -> Option<$u> {
|
|
|
- let t = self.trunc(); // round toward zero.
|
|
|
- if t >= 0.0 {
|
|
|
- // The mantissa might not be able to represent all digits of MAX.
|
|
|
- let sig_bits = size_of::<$u>() as u32 * 8;
|
|
|
- let max = if sig_bits > $f::MANTISSA_DIGITS {
|
|
|
- let lost_bits = sig_bits - $f::MANTISSA_DIGITS;
|
|
|
- $u::MAX & !((1 << lost_bits) - 1)
|
|
|
- } else {
|
|
|
- $u::MAX
|
|
|
- };
|
|
|
- if t <= max as $f {
|
|
|
+ // Float as int truncates toward zero, so we want to allow values
|
|
|
+ // in the exclusive range `(-1, MAX+1)`.
|
|
|
+ if size_of::<$f>() > size_of::<$u>() {
|
|
|
+ // With a larger size, we can represent the range exactly.
|
|
|
+ const MAX_P1: $f = $u::MAX as $f + 1.0;
|
|
|
+ if *self > -1.0 && *self < MAX_P1 {
|
|
|
+ return Some(*self as $u);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // We can't represent `MAX` exactly, but it will round up to exactly
|
|
|
+ // `MAX+1` (a power of two) when we cast it.
|
|
|
+ const MAX_P1: $f = $u::MAX as $f;
|
|
|
+ if *self > -1.0 && *self < MAX_P1 {
|
|
|
return Some(*self as $u);
|
|
|
}
|
|
|
}
|