Browse Source

Add doctests to FloatCore

Josh Stone 7 năm trước cách đây
mục cha
commit
aa9ceba628
1 tập tin đã thay đổi với 499 bổ sung5 xóa
  1. 499 5
      src/float.rs

+ 499 - 5
src/float.rs

@@ -12,48 +12,230 @@ use {Num, NumCast};
 /// This trait implements a subset of the `Float` trait.
 pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     /// Returns positive infinity.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T) {
+    ///     assert!(T::infinity() == x);
+    /// }
+    ///
+    /// check(f32::INFINITY);
+    /// check(f64::INFINITY);
+    /// ```
     fn infinity() -> Self;
 
     /// Returns negative infinity.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T) {
+    ///     assert!(T::neg_infinity() == x);
+    /// }
+    ///
+    /// check(f32::NEG_INFINITY);
+    /// check(f64::NEG_INFINITY);
+    /// ```
     fn neg_infinity() -> Self;
 
     /// Returns NaN.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    ///
+    /// fn check<T: FloatCore>() {
+    ///     let n = T::nan();
+    ///     assert!(n != n);
+    /// }
+    ///
+    /// check::<f32>();
+    /// check::<f64>();
+    /// ```
     fn nan() -> Self;
 
     /// Returns `-0.0`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(n: T) {
+    ///     let z = T::neg_zero();
+    ///     assert!(z.is_zero());
+    ///     assert!(T::one() / z == n);
+    /// }
+    ///
+    /// check(f32::NEG_INFINITY);
+    /// check(f64::NEG_INFINITY);
+    /// ```
     fn neg_zero() -> Self;
 
     /// Returns the smallest finite value that this type can represent.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T) {
+    ///     assert!(T::min_value() == x);
+    /// }
+    ///
+    /// check(f32::MIN);
+    /// check(f64::MIN);
+    /// ```
     fn min_value() -> Self;
 
     /// Returns the smallest positive, normalized value that this type can represent.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T) {
+    ///     assert!(T::min_positive_value() == x);
+    /// }
+    ///
+    /// check(f32::MIN_POSITIVE);
+    /// check(f64::MIN_POSITIVE);
+    /// ```
     fn min_positive_value() -> Self;
 
     /// Returns epsilon, a small positive value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T) {
+    ///     assert!(T::epsilon() == x);
+    /// }
+    ///
+    /// check(f32::EPSILON);
+    /// check(f64::EPSILON);
+    /// ```
     fn epsilon() -> Self;
 
     /// Returns the largest finite value that this type can represent.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T) {
+    ///     assert!(T::max_value() == x);
+    /// }
+    ///
+    /// check(f32::MAX);
+    /// check(f64::MAX);
+    /// ```
     fn max_value() -> Self;
 
     /// Returns `true` if the number is NaN.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, p: bool) {
+    ///     assert!(x.is_nan() == p);
+    /// }
+    ///
+    /// check(f32::NAN, true);
+    /// check(f32::INFINITY, false);
+    /// check(f64::NAN, true);
+    /// check(0.0f64, false);
+    /// ```
     #[inline]
     fn is_nan(self) -> bool {
         self != self
     }
 
     /// Returns `true` if the number is infinite.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, p: bool) {
+    ///     assert!(x.is_infinite() == p);
+    /// }
+    ///
+    /// check(f32::INFINITY, true);
+    /// check(f32::NEG_INFINITY, true);
+    /// check(f32::NAN, false);
+    /// check(f64::INFINITY, true);
+    /// check(f64::NEG_INFINITY, true);
+    /// check(0.0f64, false);
+    /// ```
     #[inline]
     fn is_infinite(self) -> bool {
         self == Self::infinity() || self == Self::neg_infinity()
     }
 
     /// Returns `true` if the number is neither infinite or NaN.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, p: bool) {
+    ///     assert!(x.is_finite() == p);
+    /// }
+    ///
+    /// check(f32::INFINITY, false);
+    /// check(f32::MAX, true);
+    /// check(f64::NEG_INFINITY, false);
+    /// check(f64::MIN_POSITIVE, true);
+    /// check(f64::NAN, false);
+    /// ```
     #[inline]
     fn is_finite(self) -> bool {
         !(self.is_nan() || self.is_infinite())
     }
 
     /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, p: bool) {
+    ///     assert!(x.is_normal() == p);
+    /// }
+    ///
+    /// check(f32::INFINITY, false);
+    /// check(f32::MAX, true);
+    /// check(f64::NEG_INFINITY, false);
+    /// check(f64::MIN_POSITIVE, true);
+    /// check(0.0f64, false);
+    /// ```
     #[inline]
     fn is_normal(self) -> bool {
         self.classify() == FpCategory::Normal
@@ -62,9 +244,49 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     /// Returns the floating point category of the number. If only one property
     /// is going to be tested, it is generally faster to use the specific
     /// predicate instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    /// use std::num::FpCategory;
+    ///
+    /// fn check<T: FloatCore>(x: T, c: FpCategory) {
+    ///     assert!(x.classify() == c);
+    /// }
+    ///
+    /// check(f32::INFINITY, FpCategory::Infinite);
+    /// check(f32::MAX, FpCategory::Normal);
+    /// check(f64::NAN, FpCategory::Nan);
+    /// check(f64::MIN_POSITIVE, FpCategory::Normal);
+    /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
+    /// check(0.0f64, FpCategory::Zero);
+    /// ```
     fn classify(self) -> FpCategory;
 
     /// Returns the largest integer less than or equal to a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.floor() == y);
+    /// }
+    ///
+    /// check(f32::INFINITY, f32::INFINITY);
+    /// check(0.9f32, 0.0);
+    /// check(1.0f32, 1.0);
+    /// check(1.1f32, 1.0);
+    /// check(-0.0f64, 0.0);
+    /// check(-0.9f64, -1.0);
+    /// check(-1.0f64, -1.0);
+    /// check(-1.1f64, -2.0);
+    /// check(f64::MIN, f64::MIN);
+    /// ```
     #[inline]
     fn floor(self) -> Self {
         let f = self.fract();
@@ -78,6 +300,27 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Returns the smallest integer greater than or equal to a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.ceil() == y);
+    /// }
+    ///
+    /// check(f32::INFINITY, f32::INFINITY);
+    /// check(0.9f32, 1.0);
+    /// check(1.0f32, 1.0);
+    /// check(1.1f32, 2.0);
+    /// check(-0.0f64, 0.0);
+    /// check(-0.9f64, -0.0);
+    /// check(-1.0f64, -1.0);
+    /// check(-1.1f64, -1.0);
+    /// check(f64::MIN, f64::MIN);
+    /// ```
     #[inline]
     fn ceil(self) -> Self {
         let f = self.fract();
@@ -91,6 +334,26 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Returns the nearest integer to a number. Round half-way cases away from `0.0`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.round() == y);
+    /// }
+    ///
+    /// check(f32::INFINITY, f32::INFINITY);
+    /// check(0.4f32, 0.0);
+    /// check(0.5f32, 1.0);
+    /// check(0.6f32, 1.0);
+    /// check(-0.4f64, 0.0);
+    /// check(-0.5f64, -1.0);
+    /// check(-0.6f64, -1.0);
+    /// check(f64::MIN, f64::MIN);
+    /// ```
     #[inline]
     fn round(self) -> Self {
         let one = Self::one();
@@ -114,6 +377,27 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Return the integer part of a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.trunc() == y);
+    /// }
+    ///
+    /// check(f32::INFINITY, f32::INFINITY);
+    /// check(0.9f32, 0.0);
+    /// check(1.0f32, 1.0);
+    /// check(1.1f32, 1.0);
+    /// check(-0.0f64, 0.0);
+    /// check(-0.9f64, -0.0);
+    /// check(-1.0f64, -1.0);
+    /// check(-1.1f64, -1.0);
+    /// check(f64::MIN, f64::MIN);
+    /// ```
     #[inline]
     fn trunc(self) -> Self {
         let f = self.fract();
@@ -125,6 +409,27 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Returns the fractional part of a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.fract() == y);
+    /// }
+    ///
+    /// check(f32::MAX, 0.0);
+    /// check(0.75f32, 0.75);
+    /// check(1.0f32, 0.0);
+    /// check(1.25f32, 0.25);
+    /// check(-0.0f64, 0.0);
+    /// check(-0.75f64, -0.75);
+    /// check(-1.0f64, 0.0);
+    /// check(-1.25f64, -0.25);
+    /// check(f64::MIN, 0.0);
+    /// ```
     #[inline]
     fn fract(self) -> Self {
         if self.is_zero() {
@@ -136,6 +441,24 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
 
     /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
     /// number is `FloatCore::nan()`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.abs() == y);
+    /// }
+    ///
+    /// check(f32::INFINITY, f32::INFINITY);
+    /// check(1.0f32, 1.0);
+    /// check(0.0f64, 0.0);
+    /// check(-0.0f64, 0.0);
+    /// check(-1.0f64, 1.0);
+    /// check(f64::MIN, f64::MAX);
+    /// ```
     #[inline]
     fn abs(self) -> Self {
         if self.is_sign_positive() {
@@ -152,6 +475,24 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
     /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
     /// - `FloatCore::nan()` if the number is `FloatCore::nan()`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.signum() == y);
+    /// }
+    ///
+    /// check(f32::INFINITY, 1.0);
+    /// check(3.0f32, 1.0);
+    /// check(0.0f32, 1.0);
+    /// check(-0.0f64, -1.0);
+    /// check(-3.0f64, -1.0);
+    /// check(f64::MIN, -1.0);
+    /// ```
     #[inline]
     fn signum(self) -> Self {
         if self.is_nan() {
@@ -164,14 +505,54 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Returns `true` if `self` is positive, including `+0.0` and
-    /// `FloatCore::infinity()`.
+    /// `FloatCore::infinity()`, and with newer versions of Rust
+    /// even `FloatCore::nan()`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, p: bool) {
+    ///     assert!(x.is_sign_positive() == p);
+    /// }
+    ///
+    /// check(f32::INFINITY, true);
+    /// check(f32::MAX, true);
+    /// check(0.0f32, true);
+    /// check(-0.0f64, false);
+    /// check(f64::NEG_INFINITY, false);
+    /// check(f64::MIN_POSITIVE, true);
+    /// check(-f64::NAN, false);
+    /// ```
     #[inline]
     fn is_sign_positive(self) -> bool {
         !self.is_sign_negative()
     }
 
     /// Returns `true` if `self` is negative, including `-0.0` and
-    /// `FloatCore::neg_infinity()`.
+    /// `FloatCore::neg_infinity()`, and with newer versions of Rust
+    /// even `-FloatCore::nan()`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, p: bool) {
+    ///     assert!(x.is_sign_negative() == p);
+    /// }
+    ///
+    /// check(f32::INFINITY, false);
+    /// check(f32::MAX, false);
+    /// check(0.0f32, false);
+    /// check(-0.0f64, true);
+    /// check(f64::NEG_INFINITY, true);
+    /// check(f64::MIN_POSITIVE, false);
+    /// check(f64::NAN, false);
+    /// ```
     #[inline]
     fn is_sign_negative(self) -> bool {
         let (_, _, sign) = self.integer_decode();
@@ -181,6 +562,22 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     /// Returns the minimum of the two numbers.
     ///
     /// If one of the arguments is NaN, then the other argument is returned.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T, min: T) {
+    ///     assert!(x.min(y) == min);
+    /// }
+    ///
+    /// check(1.0f32, 2.0, 1.0);
+    /// check(f32::NAN, 2.0, 2.0);
+    /// check(1.0f64, -2.0, -2.0);
+    /// check(1.0f64, f64::NAN, 1.0);
+    /// ```
     #[inline]
     fn min(self, other: Self) -> Self {
         if self.is_nan() {
@@ -195,6 +592,22 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     /// Returns the maximum of the two numbers.
     ///
     /// If one of the arguments is NaN, then the other argument is returned.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T, min: T) {
+    ///     assert!(x.max(y) == min);
+    /// }
+    ///
+    /// check(1.0f32, 2.0, 2.0);
+    /// check(1.0f32, f32::NAN, 1.0);
+    /// check(-1.0f64, 2.0, 2.0);
+    /// check(-1.0f64, f64::NAN, -1.0);
+    /// ```
     #[inline]
     fn max(self, other: Self) -> Self {
         if self.is_nan() {
@@ -207,6 +620,23 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Returns the reciprocal (multiplicative inverse) of the number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, y: T) {
+    ///     assert!(x.recip() == y);
+    ///     assert!(y.recip() == x);
+    /// }
+    ///
+    /// check(f32::INFINITY, 0.0);
+    /// check(2.0f32, 0.5);
+    /// check(-0.25f64, -4.0);
+    /// check(-0.0f64, f64::NEG_INFINITY);
+    /// ```
     #[inline]
     fn recip(self) -> Self {
         Self::one() / self
@@ -215,6 +645,22 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     /// Raise a number to an integer power.
     ///
     /// Using this function is generally faster than using `powf`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    ///
+    /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
+    ///     assert!(x.powi(exp) == powi);
+    /// }
+    ///
+    /// check(9.0f32, 2, 81.0);
+    /// check(1.0f32, -2, 1.0);
+    /// check(10.0f64, 20, 1e20);
+    /// check(4.0f64, -2, 0.0625);
+    /// check(-1.0f64, std::i32::MIN, 1.0);
+    /// ```
     #[inline]
     fn powi(mut self, mut exp: i32) -> Self {
         if exp < 0 {
@@ -226,14 +672,64 @@ pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
     }
 
     /// Converts to degrees, assuming the number is in radians.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(rad: T, deg: T) {
+    ///     assert!(rad.to_degrees() == deg);
+    /// }
+    ///
+    /// check(0.0f32, 0.0);
+    /// check(f32::consts::PI, 180.0);
+    /// check(f64::consts::FRAC_PI_4, 45.0);
+    /// check(f64::INFINITY, f64::INFINITY);
+    /// ```
     fn to_degrees(self) -> Self;
 
     /// Converts to radians, assuming the number is in degrees.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(deg: T, rad: T) {
+    ///     assert!(deg.to_radians() == rad);
+    /// }
+    ///
+    /// check(0.0f32, 0.0);
+    /// check(180.0, f32::consts::PI);
+    /// check(45.0, f64::consts::FRAC_PI_4);
+    /// check(f64::INFINITY, f64::INFINITY);
+    /// ```
     fn to_radians(self) -> Self;
 
     /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
     /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
-    /// The floating point encoding is documented in the [Reference][floating-point].
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use num_traits::float::FloatCore;
+    /// use std::{f32, f64};
+    ///
+    /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
+    ///     let (mantissa, exponent, sign) = x.integer_decode();
+    ///     assert_eq!(mantissa, m);
+    ///     assert_eq!(exponent, e);
+    ///     assert_eq!(sign, s);
+    /// }
+    ///
+    /// check(2.0f32, 1 << 23, -22, 1);
+    /// check(-2.0f32, 1 << 23, -22, -1);
+    /// check(f32::INFINITY, 1 << 23, 105, 1);
+    /// check(f64::NEG_INFINITY, 1 << 52, 972, -1);
+    /// ```
     fn integer_decode(self) -> (u64, i16, i8);
 }
 
@@ -1275,7 +1771,6 @@ pub trait Float
 
     /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
     /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
-    /// The floating point encoding is documented in the [Reference][floating-point].
     ///
     /// ```
     /// use num_traits::Float;
@@ -1293,7 +1788,6 @@ pub trait Float
     ///
     /// assert!(abs_difference < 1e-10);
     /// ```
-    /// [floating-point]: ../../../../../reference.html#machine-types
     fn integer_decode(self) -> (u64, i16, i8);
 }