|
@@ -1,85 +1,132 @@
|
|
|
use core::ops::{Div, Rem};
|
|
|
-pub trait DivRemEuclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
|
|
|
+pub trait DivEuclid: Sized + Div<Self, Output = Self> {
|
|
|
/// Calculates Euclidean division, the matching method for `rem_euclid`.
|
|
|
///
|
|
|
/// This computes the integer `n` such that
|
|
|
- /// `self = n * rhs + self.rem_euclid(rhs)`.
|
|
|
- /// In other words, the result is `self / rhs` rounded to the integer `n`
|
|
|
- /// such that `self >= n * rhs`.
|
|
|
+ /// `self = n * v + self.rem_euclid(v)`.
|
|
|
+ /// In other words, the result is `self / v` rounded to the integer `n`
|
|
|
+ /// such that `self >= n * v`.
|
|
|
///
|
|
|
/// # Examples
|
|
|
///
|
|
|
/// ```
|
|
|
- /// use num_traits::DivRemEuclid;
|
|
|
+ /// use num_traits::DivEuclid;
|
|
|
///
|
|
|
/// let a: i32 = 7;
|
|
|
/// let b: i32 = 4;
|
|
|
- /// assert_eq!(DivRemEuclid::div_euclid(&a,&b), 1); // 7 > 4 * 1
|
|
|
- /// assert_eq!(DivRemEuclid::div_euclid(&-a,&b), -2); // -7 >= 4 * -2
|
|
|
- /// assert_eq!(DivRemEuclid::div_euclid(&a,&-b), -1); // 7 >= -4 * -1
|
|
|
- /// assert_eq!(DivRemEuclid::div_euclid(&-a,&-b), 2); // -7 >= -4 * 2
|
|
|
+ /// assert_eq!(DivEuclid::div_euclid(a,b), 1); // 7 > 4 * 1
|
|
|
+ /// assert_eq!(DivEuclid::div_euclid(-a,b), -2); // -7 >= 4 * -2
|
|
|
+ /// assert_eq!(DivEuclid::div_euclid(a,-b), -1); // 7 >= -4 * -1
|
|
|
+ /// assert_eq!(DivEuclid::div_euclid(-a,-b), 2); // -7 >= -4 * 2
|
|
|
/// ```
|
|
|
- fn div_euclid(&self, v: &Self) -> Self;
|
|
|
-
|
|
|
- /// Calculates the least nonnegative remainder of `self (mod rhs)`.
|
|
|
+ fn div_euclid(self, v: Self) -> Self;
|
|
|
+}
|
|
|
+pub trait RemEuclid: Sized + Rem<Self, Output = Self> {
|
|
|
+ /// Calculates the least nonnegative remainder of `self (mod v)`.
|
|
|
///
|
|
|
- /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
|
|
|
+ /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in
|
|
|
/// most cases. However, due to a floating point round-off error it can
|
|
|
- /// result in `r == rhs.abs()`, violating the mathematical definition, if
|
|
|
- /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
|
|
|
+ /// result in `r == v.abs()`, violating the mathematical definition, if
|
|
|
+ /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`.
|
|
|
/// This result is not an element of the function's codomain, but it is the
|
|
|
/// closest floating point number in the real numbers and thus fulfills the
|
|
|
- /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
|
|
|
+ /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)`
|
|
|
/// approximatively.
|
|
|
///
|
|
|
/// # Examples
|
|
|
///
|
|
|
/// ```
|
|
|
- /// use num_traits::DivRemEuclid;
|
|
|
+ /// use num_traits::RemEuclid;
|
|
|
///
|
|
|
/// let a: i32 = 7;
|
|
|
/// let b: i32 = 4;
|
|
|
- /// assert_eq!(DivRemEuclid::rem_euclid(&a,&b), 3);
|
|
|
- /// assert_eq!(DivRemEuclid::rem_euclid(&-a,&b), 1);
|
|
|
- /// assert_eq!(DivRemEuclid::rem_euclid(&a,&-b), 3);
|
|
|
- /// assert_eq!(DivRemEuclid::rem_euclid(&-a,&-b), 1);
|
|
|
+ /// assert_eq!(RemEuclid::rem_euclid(a,b), 3);
|
|
|
+ /// assert_eq!(RemEuclid::rem_euclid(-a,b), 1);
|
|
|
+ /// assert_eq!(RemEuclid::rem_euclid(a,-b), 3);
|
|
|
+ /// assert_eq!(RemEuclid::rem_euclid(-a,-b), 1);
|
|
|
/// ```
|
|
|
- fn rem_euclid(&self, v: &Self) -> Self;
|
|
|
+ fn rem_euclid(self, v: Self) -> Self;
|
|
|
}
|
|
|
-macro_rules! div_rem_euclid_impl {
|
|
|
- ($trait_name:ident,$method:ident,$method_2:ident for $($t:ty)*) => {$(
|
|
|
+macro_rules! div_euclid_int_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
impl $trait_name for $t {
|
|
|
#[inline]
|
|
|
- fn $method(&self, v: &$t) -> Self {
|
|
|
- <$t>::$method(*self, *v)
|
|
|
+ fn div_euclid(self, v: $t) -> Self {
|
|
|
+ let q = self / v;
|
|
|
+ if self % v < 0 {
|
|
|
+ return if v > 0 { q - 1 } else { q + 1 }
|
|
|
+ }
|
|
|
+ q
|
|
|
}
|
|
|
-
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+macro_rules! div_euclid_uint_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
#[inline]
|
|
|
- fn $method_2(&self, v: &$t) -> Self {
|
|
|
- <$t>::$method_2(*self, *v)
|
|
|
+ fn div_euclid(self, v: $t) -> Self {
|
|
|
+ self / v
|
|
|
}
|
|
|
-
|
|
|
}
|
|
|
)*}
|
|
|
}
|
|
|
-div_rem_euclid_impl!(DivRemEuclid,div_euclid,rem_euclid for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
|
|
|
+macro_rules! rem_euclid_int_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
+ #[inline]
|
|
|
+ fn rem_euclid(self, v: $t) -> Self {
|
|
|
+ let r = self % v;
|
|
|
+ if r < 0 {
|
|
|
+ if v < 0 {
|
|
|
+ r - v
|
|
|
+ } else {
|
|
|
+ r + v
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ r
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+macro_rules! rem_euclid_uint_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
+ #[inline]
|
|
|
+ fn rem_euclid(self, v: $t) -> Self {
|
|
|
+ self % v
|
|
|
+ }
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+div_euclid_int_impl!(DivEuclid for i8 i16 i32 i64);
|
|
|
+div_euclid_uint_impl!(DivEuclid for isize usize u8 u16 u32 u64);
|
|
|
+rem_euclid_int_impl!(RemEuclid for i8 i16 i32 i64);
|
|
|
+rem_euclid_uint_impl!(RemEuclid for isize usize u8 u16 u32 u64);
|
|
|
#[cfg(has_i128)]
|
|
|
-div_rem_euclid_impl!(DivRemEuclid,div_euclid,rem_euclid for i128 u128);
|
|
|
+div_euclid_int_impl!(DivEuclid for i128);
|
|
|
+div_euclid_uint_impl!(DivEuclid for u128);
|
|
|
+rem_euclid_int_impl!(RemEuclid for i128);
|
|
|
+rem_euclid_uint_impl!(RemEuclid for u128);
|
|
|
|
|
|
#[cfg(any(feature = "std", feature = "libm"))]
|
|
|
-impl DivRemEuclid for f32 {
|
|
|
- fn div_euclid(&self, rhs: &f32) -> f32 {
|
|
|
- let q = <f32 as ::Float>::trunc(self / rhs);
|
|
|
- if self % rhs < 0.0 {
|
|
|
- return if *rhs > 0.0 { q - 1.0 } else { q + 1.0 };
|
|
|
+impl DivEuclid for f32 {
|
|
|
+ fn div_euclid(self, v: f32) -> f32 {
|
|
|
+ let q = <f32 as ::Float>::trunc(self / v);
|
|
|
+ if self % v < 0.0 {
|
|
|
+ return if v > 0.0 { q - 1.0 } else { q + 1.0 };
|
|
|
}
|
|
|
q
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- fn rem_euclid(&self, rhs: &f32) -> f32 {
|
|
|
- let r = self % rhs;
|
|
|
+#[cfg(any(feature = "std", feature = "libm"))]
|
|
|
+impl RemEuclid for f32 {
|
|
|
+ fn rem_euclid(self, v: f32) -> f32 {
|
|
|
+ let r = self % v;
|
|
|
if r < 0.0 {
|
|
|
- r + <f32 as ::Float>::abs(*rhs)
|
|
|
+ r + <f32 as ::Float>::abs(v)
|
|
|
} else {
|
|
|
r
|
|
|
}
|
|
@@ -87,53 +134,102 @@ impl DivRemEuclid for f32 {
|
|
|
}
|
|
|
|
|
|
#[cfg(any(feature = "std", feature = "libm"))]
|
|
|
-impl DivRemEuclid for f64 {
|
|
|
- fn div_euclid(&self, rhs: &f64) -> f64 {
|
|
|
- let q = <f64 as ::Float>::trunc(self / rhs);
|
|
|
- if self % rhs < 0.0 {
|
|
|
- return if *rhs > 0.0 { q - 1.0 } else { q + 1.0 };
|
|
|
+impl DivEuclid for f64 {
|
|
|
+ fn div_euclid(self, v: f64) -> f64 {
|
|
|
+ let q = <f64 as ::Float>::trunc(self / v);
|
|
|
+ if self % v < 0.0 {
|
|
|
+ return if v > 0.0 { q - 1.0 } else { q + 1.0 };
|
|
|
}
|
|
|
q
|
|
|
}
|
|
|
-
|
|
|
- fn rem_euclid(&self, rhs: &f64) -> f64 {
|
|
|
- let r = self % rhs;
|
|
|
+}
|
|
|
+#[cfg(any(feature = "std", feature = "libm"))]
|
|
|
+impl RemEuclid for f64 {
|
|
|
+ fn rem_euclid(self, v: f64) -> f64 {
|
|
|
+ let r = self % v;
|
|
|
if r < 0.0 {
|
|
|
- r + <f64 as ::Float>::abs(*rhs)
|
|
|
+ r + <f64 as ::Float>::abs(v)
|
|
|
} else {
|
|
|
r
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-pub trait CheckedDivRemEuclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
|
|
|
+pub trait CheckedDivEuclid: DivEuclid {
|
|
|
/// Performs euclid division that returns `None` instead of panicking on division by zero
|
|
|
/// and instead of wrapping around on underflow and overflow.
|
|
|
- fn checked_div_euclid(&self, v: &Self) -> Option<Self>;
|
|
|
-
|
|
|
+ fn checked_div_euclid(self, v: Self) -> Option<Self>;
|
|
|
+}
|
|
|
+pub trait CheckedRemEuclid: RemEuclid {
|
|
|
/// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and
|
|
|
/// division by zero. If any of that happens, `None` is returned.
|
|
|
- fn checked_rem_euclid(&self, v: &Self) -> Option<Self>;
|
|
|
+ fn checked_rem_euclid(self, v: Self) -> Option<Self>;
|
|
|
}
|
|
|
-
|
|
|
-macro_rules! checked_div_rem_euclid_impl {
|
|
|
- ($trait_name:ident,$method:ident,$method_2:ident for $($t:ty)*) => {$(
|
|
|
+macro_rules! checked_div_euclid_int_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
impl $trait_name for $t {
|
|
|
#[inline]
|
|
|
- fn $method(&self, v: &$t) -> Option<$t> {
|
|
|
- <$t>::$method(*self, *v)
|
|
|
+ fn checked_div_euclid(self, v: $t) -> Option<$t> {
|
|
|
+ if v == 0 || (self == Self::MIN && v == -1) {
|
|
|
+ None
|
|
|
+ } else {
|
|
|
+ Some(DivEuclid::div_euclid(self,v))
|
|
|
+ }
|
|
|
}
|
|
|
-
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+macro_rules! checked_div_euclid_uint_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
+ #[inline]
|
|
|
+ fn checked_div_euclid(self, v: $t) -> Option<$t> {
|
|
|
+ if v == 0{
|
|
|
+ None
|
|
|
+ } else {
|
|
|
+ Some(DivEuclid::div_euclid(self,v))
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+macro_rules! checked_rem_euclid_int_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
+ #[inline]
|
|
|
+ fn checked_rem_euclid(self, v: $t) -> Option<$t> {
|
|
|
+ if v == 0 || (self == Self::MIN && v == -1) {
|
|
|
+ None
|
|
|
+ } else {
|
|
|
+ Some(RemEuclid::rem_euclid(self,v))
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ )*}
|
|
|
+}
|
|
|
+macro_rules! checked_rem_euclid_uint_impl {
|
|
|
+ ($trait_name:ident for $($t:ty)*) => {$(
|
|
|
+ impl $trait_name for $t {
|
|
|
#[inline]
|
|
|
- fn $method_2(&self, v: &$t) -> Option<$t> {
|
|
|
- <$t>::$method_2(*self, *v)
|
|
|
+ fn checked_rem_euclid(self, v: $t) -> Option<$t> {
|
|
|
+ if v == 0{
|
|
|
+ None
|
|
|
+ } else {
|
|
|
+ Some(RemEuclid::rem_euclid(self,v))
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
)*}
|
|
|
}
|
|
|
-checked_div_rem_euclid_impl!(CheckedDivRemEuclid,checked_div_euclid,checked_rem_euclid for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
|
|
|
+checked_div_euclid_int_impl!(CheckedDivEuclid for i8 i16 i32 i64);
|
|
|
+checked_div_euclid_uint_impl!(CheckedDivEuclid for isize usize u8 u16 u32 u64);
|
|
|
+checked_rem_euclid_int_impl!(CheckedRemEuclid for i8 i16 i32 i64);
|
|
|
+checked_rem_euclid_uint_impl!(CheckedRemEuclid for isize usize u8 u16 u32 u64);
|
|
|
#[cfg(has_i128)]
|
|
|
-checked_div_rem_euclid_impl!(CheckedDivRemEuclid,checked_div_euclid,checked_rem_euclid for i128 u128);
|
|
|
+checked_div_euclid_int_impl!(CheckedDivEuclid for i128);
|
|
|
+checked_div_euclid_uint_impl!(CheckedDivEuclid for u128);
|
|
|
+checked_rem_euclid_int_impl!(CheckedRemEuclid for i128);
|
|
|
+checked_rem_euclid_uint_impl!(CheckedRemEuclid for u128);
|
|
|
|
|
|
#[cfg(test)]
|
|
|
mod tests {
|
|
@@ -147,8 +243,8 @@ mod tests {
|
|
|
{
|
|
|
let x: $t = 10;
|
|
|
let y: $t = 3;
|
|
|
- assert_eq!(DivRemEuclid::div_euclid(&x,&y),3);
|
|
|
- assert_eq!(DivRemEuclid::rem_euclid(&x,&y),1);
|
|
|
+ assert_eq!(DivEuclid::div_euclid(x,y),3);
|
|
|
+ assert_eq!(RemEuclid::rem_euclid(x,y),1);
|
|
|
}
|
|
|
)+
|
|
|
};
|
|
@@ -165,13 +261,13 @@ mod tests {
|
|
|
{
|
|
|
let x: $t = 10;
|
|
|
let y: $t = -3;
|
|
|
- assert_eq!(DivRemEuclid::div_euclid(&x,&y),-3);
|
|
|
- assert_eq!(DivRemEuclid::div_euclid(&-x,&y),4);
|
|
|
- assert_eq!(DivRemEuclid::rem_euclid(&x,&y),1);
|
|
|
- assert_eq!(DivRemEuclid::rem_euclid(&-x,&y),2);
|
|
|
+ assert_eq!(DivEuclid::div_euclid(x,y),-3);
|
|
|
+ assert_eq!(DivEuclid::div_euclid(-x,y),4);
|
|
|
+ assert_eq!(RemEuclid::rem_euclid(x,y),1);
|
|
|
+ assert_eq!(RemEuclid::rem_euclid(-x,y),2);
|
|
|
let x: $t = $t::MIN+1;
|
|
|
let y: $t = -1;
|
|
|
- assert_eq!(DivRemEuclid::div_euclid(&x,&y),$t::MAX);
|
|
|
+ assert_eq!(DivEuclid::div_euclid(x,y),$t::MAX);
|
|
|
}
|
|
|
)+
|
|
|
};
|
|
@@ -189,13 +285,13 @@ mod tests {
|
|
|
{
|
|
|
let x: $t = 12.1;
|
|
|
let y: $t = 3.2;
|
|
|
- assert!(DivRemEuclid::div_euclid(&x,&y)*y+DivRemEuclid::rem_euclid(&x,&y)-x
|
|
|
+ assert!(DivEuclid::div_euclid(x,y)*y+RemEuclid::rem_euclid(x,y)-x
|
|
|
<=46.4 * $t::EPSILON);
|
|
|
- assert!(DivRemEuclid::div_euclid(&x,&-y)*-y+DivRemEuclid::rem_euclid(&x,&-y)-x
|
|
|
+ assert!(DivEuclid::div_euclid(x,-y)*-y+RemEuclid::rem_euclid(x,-y)-x
|
|
|
<= 46.4 * $t::EPSILON);
|
|
|
- assert!(DivRemEuclid::div_euclid(&-x,&y)*y+DivRemEuclid::rem_euclid(&-x,&y)-(-x)
|
|
|
+ assert!(DivEuclid::div_euclid(-x,y)*y+RemEuclid::rem_euclid(-x,y)-(-x)
|
|
|
<= 46.4 * $t::EPSILON);
|
|
|
- assert!(DivRemEuclid::div_euclid(&-x,&-y)*-y+DivRemEuclid::rem_euclid(&-x,&-y)-(-x)
|
|
|
+ assert!(DivEuclid::div_euclid(-x,-y)*-y+RemEuclid::rem_euclid(-x,-y)-(-x)
|
|
|
<= 46.4 * $t::EPSILON);
|
|
|
}
|
|
|
)+
|
|
@@ -211,10 +307,10 @@ mod tests {
|
|
|
($($t:ident)+) => {
|
|
|
$(
|
|
|
{
|
|
|
- assert_eq!(CheckedDivRemEuclid::checked_div_euclid(&$t::MIN,&-1),None);
|
|
|
- assert_eq!(CheckedDivRemEuclid::checked_rem_euclid(&$t::MIN,&-1),None);
|
|
|
- assert_eq!(CheckedDivRemEuclid::checked_div_euclid(&1,&0),None);
|
|
|
- assert_eq!(CheckedDivRemEuclid::checked_rem_euclid(&1,&0),None);
|
|
|
+ assert_eq!(CheckedDivEuclid::checked_div_euclid($t::MIN,-1),None);
|
|
|
+ assert_eq!(CheckedRemEuclid::checked_rem_euclid($t::MIN,-1),None);
|
|
|
+ assert_eq!(CheckedDivEuclid::checked_div_euclid(1,0),None);
|
|
|
+ assert_eq!(CheckedRemEuclid::checked_rem_euclid(1,0),None);
|
|
|
}
|
|
|
)+
|
|
|
};
|