|
@@ -4,8 +4,7 @@ use traits::Zero;
|
|
|
use biguint::BigUint;
|
|
|
|
|
|
struct MontyReducer<'a> {
|
|
|
- p: &'a BigUint,
|
|
|
- n: Vec<u32>,
|
|
|
+ n: &'a BigUint,
|
|
|
n0inv: u32
|
|
|
}
|
|
|
|
|
@@ -46,10 +45,9 @@ fn inv_mod_u32(num: u32) -> u32 {
|
|
|
}
|
|
|
|
|
|
impl<'a> MontyReducer<'a> {
|
|
|
- fn new(p: &'a BigUint) -> Self {
|
|
|
- let n : Vec<u32> = p.data.clone();
|
|
|
- let n0inv = inv_mod_u32(n[0]);
|
|
|
- MontyReducer { p: p, n: n, n0inv: n0inv }
|
|
|
+ fn new(n: &'a BigUint) -> Self {
|
|
|
+ let n0inv = inv_mod_u32(n.data[0]);
|
|
|
+ MontyReducer { n: n, n0inv: n0inv }
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -59,7 +57,7 @@ impl<'a> MontyReducer<'a> {
|
|
|
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 2.6
|
|
|
fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
|
|
|
let mut c = a.data;
|
|
|
- let n = &mr.n;
|
|
|
+ let n = &mr.n.data;
|
|
|
let n_size = n.len();
|
|
|
|
|
|
// Allocate sufficient work space
|
|
@@ -84,10 +82,10 @@ fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
|
|
|
let ret = BigUint::new(c[n_size..].to_vec());
|
|
|
|
|
|
// 5: if R >= β^n then return R-N else return R.
|
|
|
- if &ret < mr.p {
|
|
|
+ if &ret < mr.n {
|
|
|
ret
|
|
|
} else {
|
|
|
- ret - mr.p
|
|
|
+ ret - mr.n
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -106,15 +104,15 @@ pub fn monty_modpow(a: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint{
|
|
|
let mr = MontyReducer::new(modulus);
|
|
|
|
|
|
// Calculate the Montgomery parameter
|
|
|
- let mut v = vec![0; mr.p.data.len()];
|
|
|
+ let mut v = vec![0; modulus.data.len()];
|
|
|
v.push(1);
|
|
|
let r = BigUint::new(v);
|
|
|
|
|
|
// Map the base to the Montgomery domain
|
|
|
- let mut apri = a * &r % mr.p;
|
|
|
+ let mut apri = a * &r % modulus;
|
|
|
|
|
|
// Binary exponentiation
|
|
|
- let mut ans = &r % mr.p;
|
|
|
+ let mut ans = &r % modulus;
|
|
|
let mut e = exp.clone();
|
|
|
while !e.is_zero() {
|
|
|
if e.is_odd() {
|