Pārlūkot izejas kodu

Re-export all items from num-traits 0.2

Josh Stone 7 gadi atpakaļ
vecāks
revīzija
d95b3ed642
16 mainītis faili ar 50 papildinājumiem un 4481 dzēšanām
  1. 1 0
      .travis.yml
  2. 7 2
      Cargo.toml
  3. 3 0
      README.md
  4. 0 99
      src/bounds.rs
  5. 0 591
      src/cast.rs
  6. 0 1344
      src/float.rs
  7. 0 148
      src/identities.rs
  8. 0 376
      src/int.rs
  9. 39 400
      src/lib.rs
  10. 0 162
      src/ops/checked.rs
  11. 0 3
      src/ops/mod.rs
  12. 0 28
      src/ops/saturating.rs
  13. 0 127
      src/ops/wrapping.rs
  14. 0 73
      src/pow.rs
  15. 0 924
      src/real.rs
  16. 0 204
      src/sign.rs

+ 1 - 0
.travis.yml

@@ -14,6 +14,7 @@ notifications:
 branches:
   only:
     - master
+    - num-traits-0.1.x
     - next
     - staging
     - trying

+ 7 - 2
Cargo.toml

@@ -8,7 +8,12 @@ categories = [ "algorithms", "science" ]
 license = "MIT/Apache-2.0"
 repository = "https://github.com/rust-num/num-traits"
 name = "num-traits"
-version = "0.1.42"
+version = "0.1.43"
 readme = "README.md"
 
-[dependencies]
+[lib]
+doctest = false # multiple rlib candidates for `num_traits` found
+
+[dependencies.num-traits]
+git = "https://github.com/rust-num/num-traits"
+version = "0.2.0-pre"

+ 3 - 0
README.md

@@ -6,6 +6,9 @@
 
 Numeric traits for generic mathematics in Rust.
 
+This version of the crate only exists to re-export compatible
+items from `num-traits` 0.2.  Please consider updating!
+
 ## Usage
 
 Add this to your `Cargo.toml`:

+ 0 - 99
src/bounds.rs

@@ -1,99 +0,0 @@
-use std::{usize, u8, u16, u32, u64};
-use std::{isize, i8, i16, i32, i64};
-use std::{f32, f64};
-use std::num::Wrapping;
-
-/// Numbers which have upper and lower bounds
-pub trait Bounded {
-    // FIXME (#5527): These should be associated constants
-    /// returns the smallest finite number this type can represent
-    fn min_value() -> Self;
-    /// returns the largest finite number this type can represent
-    fn max_value() -> Self;
-}
-
-macro_rules! bounded_impl {
-    ($t:ty, $min:expr, $max:expr) => {
-        impl Bounded for $t {
-            #[inline]
-            fn min_value() -> $t { $min }
-
-            #[inline]
-            fn max_value() -> $t { $max }
-        }
-    }
-}
-
-bounded_impl!(usize, usize::MIN, usize::MAX);
-bounded_impl!(u8,    u8::MIN,    u8::MAX);
-bounded_impl!(u16,   u16::MIN,   u16::MAX);
-bounded_impl!(u32,   u32::MIN,   u32::MAX);
-bounded_impl!(u64,   u64::MIN,   u64::MAX);
-
-bounded_impl!(isize, isize::MIN, isize::MAX);
-bounded_impl!(i8,    i8::MIN,    i8::MAX);
-bounded_impl!(i16,   i16::MIN,   i16::MAX);
-bounded_impl!(i32,   i32::MIN,   i32::MAX);
-bounded_impl!(i64,   i64::MIN,   i64::MAX);
-
-impl<T: Bounded> Bounded for Wrapping<T> {
-    fn min_value() -> Self { Wrapping(T::min_value()) }
-    fn max_value() -> Self { Wrapping(T::max_value()) }
-}
-
-bounded_impl!(f32, f32::MIN, f32::MAX);
-
-macro_rules! for_each_tuple_ {
-    ( $m:ident !! ) => (
-        $m! { }
-    );
-    ( $m:ident !! $h:ident, $($t:ident,)* ) => (
-        $m! { $h $($t)* }
-        for_each_tuple_! { $m !! $($t,)* }
-    );
-}
-macro_rules! for_each_tuple {
-    ( $m:ident ) => (
-        for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
-    );
-}
-
-macro_rules! bounded_tuple {
-    ( $($name:ident)* ) => (
-        impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
-            #[inline]
-            fn min_value() -> Self {
-                ($($name::min_value(),)*)
-            }
-            #[inline]
-            fn max_value() -> Self {
-                ($($name::max_value(),)*)
-            }
-        }
-    );
-}
-
-for_each_tuple!(bounded_tuple);
-bounded_impl!(f64, f64::MIN, f64::MAX);
-
-
-#[test]
-fn wrapping_bounded() {
-    macro_rules! test_wrapping_bounded {
-        ($($t:ty)+) => {
-            $(
-                assert_eq!(Wrapping::<$t>::min_value().0, <$t>::min_value());
-                assert_eq!(Wrapping::<$t>::max_value().0, <$t>::max_value());
-            )+
-        };
-    }
-
-    test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
-}
-
-#[test]
-fn wrapping_is_bounded() {
-    fn require_bounded<T: Bounded>(_: &T) {}
-    require_bounded(&Wrapping(42_u32));
-    require_bounded(&Wrapping(-42));
-}

+ 0 - 591
src/cast.rs

@@ -1,591 +0,0 @@
-use std::mem::size_of;
-use std::num::Wrapping;
-
-use identities::Zero;
-use bounds::Bounded;
-
-/// A generic trait for converting a value to a number.
-pub trait ToPrimitive {
-    /// Converts the value of `self` to an `isize`.
-    #[inline]
-    fn to_isize(&self) -> Option<isize> {
-        self.to_i64().and_then(|x| x.to_isize())
-    }
-
-    /// Converts the value of `self` to an `i8`.
-    #[inline]
-    fn to_i8(&self) -> Option<i8> {
-        self.to_i64().and_then(|x| x.to_i8())
-    }
-
-    /// Converts the value of `self` to an `i16`.
-    #[inline]
-    fn to_i16(&self) -> Option<i16> {
-        self.to_i64().and_then(|x| x.to_i16())
-    }
-
-    /// Converts the value of `self` to an `i32`.
-    #[inline]
-    fn to_i32(&self) -> Option<i32> {
-        self.to_i64().and_then(|x| x.to_i32())
-    }
-
-    /// Converts the value of `self` to an `i64`.
-    fn to_i64(&self) -> Option<i64>;
-
-    /// Converts the value of `self` to a `usize`.
-    #[inline]
-    fn to_usize(&self) -> Option<usize> {
-        self.to_u64().and_then(|x| x.to_usize())
-    }
-
-    /// Converts the value of `self` to an `u8`.
-    #[inline]
-    fn to_u8(&self) -> Option<u8> {
-        self.to_u64().and_then(|x| x.to_u8())
-    }
-
-    /// Converts the value of `self` to an `u16`.
-    #[inline]
-    fn to_u16(&self) -> Option<u16> {
-        self.to_u64().and_then(|x| x.to_u16())
-    }
-
-    /// Converts the value of `self` to an `u32`.
-    #[inline]
-    fn to_u32(&self) -> Option<u32> {
-        self.to_u64().and_then(|x| x.to_u32())
-    }
-
-    /// Converts the value of `self` to an `u64`.
-    #[inline]
-    fn to_u64(&self) -> Option<u64>;
-
-    /// Converts the value of `self` to an `f32`.
-    #[inline]
-    fn to_f32(&self) -> Option<f32> {
-        self.to_f64().and_then(|x| x.to_f32())
-    }
-
-    /// Converts the value of `self` to an `f64`.
-    #[inline]
-    fn to_f64(&self) -> Option<f64> {
-        self.to_i64().and_then(|x| x.to_f64())
-    }
-}
-
-macro_rules! impl_to_primitive_int_to_int {
-    ($SrcT:ty, $DstT:ty, $slf:expr) => (
-        {
-            if size_of::<$SrcT>() <= size_of::<$DstT>() {
-                Some($slf as $DstT)
-            } else {
-                let n = $slf as i64;
-                let min_value: $DstT = Bounded::min_value();
-                let max_value: $DstT = Bounded::max_value();
-                if min_value as i64 <= n && n <= max_value as i64 {
-                    Some($slf as $DstT)
-                } else {
-                    None
-                }
-            }
-        }
-    )
-}
-
-macro_rules! impl_to_primitive_int_to_uint {
-    ($SrcT:ty, $DstT:ty, $slf:expr) => (
-        {
-            let zero: $SrcT = Zero::zero();
-            let max_value: $DstT = Bounded::max_value();
-            if zero <= $slf && $slf as u64 <= max_value as u64 {
-                Some($slf as $DstT)
-            } else {
-                None
-            }
-        }
-    )
-}
-
-macro_rules! impl_to_primitive_int {
-    ($T:ty) => (
-        impl ToPrimitive for $T {
-            #[inline]
-            fn to_isize(&self) -> Option<isize> { impl_to_primitive_int_to_int!($T, isize, *self) }
-            #[inline]
-            fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
-            #[inline]
-            fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
-            #[inline]
-            fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
-            #[inline]
-            fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
-
-            #[inline]
-            fn to_usize(&self) -> Option<usize> { impl_to_primitive_int_to_uint!($T, usize, *self) }
-            #[inline]
-            fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
-            #[inline]
-            fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
-            #[inline]
-            fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
-            #[inline]
-            fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
-
-            #[inline]
-            fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
-            #[inline]
-            fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
-        }
-    )
-}
-
-impl_to_primitive_int!(isize);
-impl_to_primitive_int!(i8);
-impl_to_primitive_int!(i16);
-impl_to_primitive_int!(i32);
-impl_to_primitive_int!(i64);
-
-macro_rules! impl_to_primitive_uint_to_int {
-    ($DstT:ty, $slf:expr) => (
-        {
-            let max_value: $DstT = Bounded::max_value();
-            if $slf as u64 <= max_value as u64 {
-                Some($slf as $DstT)
-            } else {
-                None
-            }
-        }
-    )
-}
-
-macro_rules! impl_to_primitive_uint_to_uint {
-    ($SrcT:ty, $DstT:ty, $slf:expr) => (
-        {
-            if size_of::<$SrcT>() <= size_of::<$DstT>() {
-                Some($slf as $DstT)
-            } else {
-                let zero: $SrcT = Zero::zero();
-                let max_value: $DstT = Bounded::max_value();
-                if zero <= $slf && $slf as u64 <= max_value as u64 {
-                    Some($slf as $DstT)
-                } else {
-                    None
-                }
-            }
-        }
-    )
-}
-
-macro_rules! impl_to_primitive_uint {
-    ($T:ty) => (
-        impl ToPrimitive for $T {
-            #[inline]
-            fn to_isize(&self) -> Option<isize> { impl_to_primitive_uint_to_int!(isize, *self) }
-            #[inline]
-            fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
-            #[inline]
-            fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
-            #[inline]
-            fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
-            #[inline]
-            fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
-
-            #[inline]
-            fn to_usize(&self) -> Option<usize> {
-                impl_to_primitive_uint_to_uint!($T, usize, *self)
-            }
-            #[inline]
-            fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
-            #[inline]
-            fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
-            #[inline]
-            fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
-            #[inline]
-            fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
-
-            #[inline]
-            fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
-            #[inline]
-            fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
-        }
-    )
-}
-
-impl_to_primitive_uint!(usize);
-impl_to_primitive_uint!(u8);
-impl_to_primitive_uint!(u16);
-impl_to_primitive_uint!(u32);
-impl_to_primitive_uint!(u64);
-
-macro_rules! impl_to_primitive_float_to_float {
-    ($SrcT:ident, $DstT:ident, $slf:expr) => (
-        if size_of::<$SrcT>() <= size_of::<$DstT>() {
-            Some($slf as $DstT)
-        } else {
-            // Make sure the value is in range for the cast.
-            // NaN and +-inf are cast as they are.
-            let n = $slf as f64;
-            let max_value: $DstT = ::std::$DstT::MAX;
-            if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) {
-                Some($slf as $DstT)
-            } else {
-                None
-            }
-        }
-    )
-}
-
-macro_rules! impl_to_primitive_float {
-    ($T:ident) => (
-        impl ToPrimitive for $T {
-            #[inline]
-            fn to_isize(&self) -> Option<isize> { Some(*self as isize) }
-            #[inline]
-            fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
-            #[inline]
-            fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
-            #[inline]
-            fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
-            #[inline]
-            fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
-
-            #[inline]
-            fn to_usize(&self) -> Option<usize> { Some(*self as usize) }
-            #[inline]
-            fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
-            #[inline]
-            fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
-            #[inline]
-            fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
-            #[inline]
-            fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
-
-            #[inline]
-            fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
-            #[inline]
-            fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
-        }
-    )
-}
-
-impl_to_primitive_float!(f32);
-impl_to_primitive_float!(f64);
-
-/// A generic trait for converting a number to a value.
-pub trait FromPrimitive: Sized {
-    /// Convert an `isize` to return an optional value of this type. If the
-    /// value cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_isize(n: isize) -> Option<Self> {
-        FromPrimitive::from_i64(n as i64)
-    }
-
-    /// Convert an `i8` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_i8(n: i8) -> Option<Self> {
-        FromPrimitive::from_i64(n as i64)
-    }
-
-    /// Convert an `i16` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_i16(n: i16) -> Option<Self> {
-        FromPrimitive::from_i64(n as i64)
-    }
-
-    /// Convert an `i32` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_i32(n: i32) -> Option<Self> {
-        FromPrimitive::from_i64(n as i64)
-    }
-
-    /// Convert an `i64` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    fn from_i64(n: i64) -> Option<Self>;
-
-    /// Convert a `usize` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_usize(n: usize) -> Option<Self> {
-        FromPrimitive::from_u64(n as u64)
-    }
-
-    /// Convert an `u8` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_u8(n: u8) -> Option<Self> {
-        FromPrimitive::from_u64(n as u64)
-    }
-
-    /// Convert an `u16` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_u16(n: u16) -> Option<Self> {
-        FromPrimitive::from_u64(n as u64)
-    }
-
-    /// Convert an `u32` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_u32(n: u32) -> Option<Self> {
-        FromPrimitive::from_u64(n as u64)
-    }
-
-    /// Convert an `u64` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    fn from_u64(n: u64) -> Option<Self>;
-
-    /// Convert a `f32` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_f32(n: f32) -> Option<Self> {
-        FromPrimitive::from_f64(n as f64)
-    }
-
-    /// Convert a `f64` to return an optional value of this type. If the
-    /// type cannot be represented by this value, the `None` is returned.
-    #[inline]
-    fn from_f64(n: f64) -> Option<Self> {
-        FromPrimitive::from_i64(n as i64)
-    }
-}
-
-macro_rules! impl_from_primitive {
-    ($T:ty, $to_ty:ident) => (
-        #[allow(deprecated)]
-        impl FromPrimitive for $T {
-            #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
-
-            #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
-
-            #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
-            #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
-        }
-    )
-}
-
-impl_from_primitive!(isize, to_isize);
-impl_from_primitive!(i8,    to_i8);
-impl_from_primitive!(i16,   to_i16);
-impl_from_primitive!(i32,   to_i32);
-impl_from_primitive!(i64,   to_i64);
-impl_from_primitive!(usize, to_usize);
-impl_from_primitive!(u8,    to_u8);
-impl_from_primitive!(u16,   to_u16);
-impl_from_primitive!(u32,   to_u32);
-impl_from_primitive!(u64,   to_u64);
-impl_from_primitive!(f32,   to_f32);
-impl_from_primitive!(f64,   to_f64);
-
-
-impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
-    fn to_i64(&self) -> Option<i64> { self.0.to_i64() }
-    fn to_u64(&self) -> Option<u64> { self.0.to_u64() }
-}
-impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
-    fn from_u64(n: u64) -> Option<Self> { T::from_u64(n).map(Wrapping) }
-    fn from_i64(n: i64) -> Option<Self> { T::from_i64(n).map(Wrapping) }
-}
-
-
-/// Cast from one machine scalar to another.
-///
-/// # Examples
-///
-/// ```
-/// # use num_traits as num;
-/// let twenty: f32 = num::cast(0x14).unwrap();
-/// assert_eq!(twenty, 20f32);
-/// ```
-///
-#[inline]
-pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
-    NumCast::from(n)
-}
-
-/// An interface for casting between machine scalars.
-pub trait NumCast: Sized + ToPrimitive {
-    /// Creates a number from another value that can be converted into
-    /// a primitive via the `ToPrimitive` trait.
-    fn from<T: ToPrimitive>(n: T) -> Option<Self>;
-}
-
-macro_rules! impl_num_cast {
-    ($T:ty, $conv:ident) => (
-        impl NumCast for $T {
-            #[inline]
-            #[allow(deprecated)]
-            fn from<N: ToPrimitive>(n: N) -> Option<$T> {
-                // `$conv` could be generated using `concat_idents!`, but that
-                // macro seems to be broken at the moment
-                n.$conv()
-            }
-        }
-    )
-}
-
-impl_num_cast!(u8,    to_u8);
-impl_num_cast!(u16,   to_u16);
-impl_num_cast!(u32,   to_u32);
-impl_num_cast!(u64,   to_u64);
-impl_num_cast!(usize, to_usize);
-impl_num_cast!(i8,    to_i8);
-impl_num_cast!(i16,   to_i16);
-impl_num_cast!(i32,   to_i32);
-impl_num_cast!(i64,   to_i64);
-impl_num_cast!(isize, to_isize);
-impl_num_cast!(f32,   to_f32);
-impl_num_cast!(f64,   to_f64);
-
-impl<T: NumCast> NumCast for Wrapping<T> {
-    fn from<U: ToPrimitive>(n: U) -> Option<Self> {
-        T::from(n).map(Wrapping)
-    }
-}
-
-/// A generic interface for casting between machine scalars with the
-/// `as` operator, which admits narrowing and precision loss.
-/// Implementers of this trait AsPrimitive should behave like a primitive
-/// numeric type (e.g. a newtype around another primitive), and the
-/// intended conversion must never fail.
-///
-/// # Examples
-///
-/// ```
-/// # use num_traits::AsPrimitive;
-/// let three: i32 = (3.14159265f32).as_();
-/// assert_eq!(three, 3);
-/// ```
-/// 
-/// # Safety
-/// 
-/// Currently, some uses of the `as` operator are not entirely safe.
-/// In particular, it is undefined behavior if:
-/// 
-/// - A truncated floating point value cannot fit in the target integer
-///   type ([#10184](https://github.com/rust-lang/rust/issues/10184));
-/// 
-/// ```ignore
-/// # use num_traits::AsPrimitive;
-/// let x: u8 = (1.04E+17).as_(); // UB
-/// ```
-/// 
-/// - Or a floating point value does not fit in another floating
-///   point type ([#15536](https://github.com/rust-lang/rust/issues/15536)).
-///
-/// ```ignore
-/// # use num_traits::AsPrimitive;
-/// let x: f32 = (1e300f64).as_(); // UB
-/// ```
-/// 
-pub trait AsPrimitive<T>: 'static + Copy
-where
-    T: 'static + Copy
-{
-    /// Convert a value to another, using the `as` operator.
-    fn as_(self) -> T;
-}
-
-macro_rules! impl_as_primitive {
-    ($T: ty => $( $U: ty ),* ) => {
-        $(
-        impl AsPrimitive<$U> for $T {
-            #[inline] fn as_(self) -> $U { self as $U }
-        }
-        )*
-    };
-}
-
-impl_as_primitive!(u8 => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(i8 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(u16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(i16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(u32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(i32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(u64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(i64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(usize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(isize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(f32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(f64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
-impl_as_primitive!(char => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64);
-impl_as_primitive!(bool => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64);
-
-#[test]
-fn to_primitive_float() {
-    use std::f32;
-    use std::f64;
-
-    let f32_toolarge = 1e39f64;
-    assert_eq!(f32_toolarge.to_f32(), None);
-    assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX));
-    assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX));
-    assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY));
-    assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY));
-    assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan()));
-}
-
-#[test]
-fn wrapping_to_primitive() {
-    macro_rules! test_wrapping_to_primitive {
-        ($($t:ty)+) => {
-            $({
-                let i: $t = 0;
-                let w = Wrapping(i);
-                assert_eq!(i.to_u8(),    w.to_u8());
-                assert_eq!(i.to_u16(),   w.to_u16());
-                assert_eq!(i.to_u32(),   w.to_u32());
-                assert_eq!(i.to_u64(),   w.to_u64());
-                assert_eq!(i.to_usize(), w.to_usize());
-                assert_eq!(i.to_i8(),    w.to_i8());
-                assert_eq!(i.to_i16(),   w.to_i16());
-                assert_eq!(i.to_i32(),   w.to_i32());
-                assert_eq!(i.to_i64(),   w.to_i64());
-                assert_eq!(i.to_isize(), w.to_isize());
-                assert_eq!(i.to_f32(),   w.to_f32());
-                assert_eq!(i.to_f64(),   w.to_f64());
-            })+
-        };
-    }
-
-    test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
-}
-
-#[test]
-fn wrapping_is_toprimitive() {
-    fn require_toprimitive<T: ToPrimitive>(_: &T) {}
-    require_toprimitive(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_fromprimitive() {
-    fn require_fromprimitive<T: FromPrimitive>(_: &T) {}
-    require_fromprimitive(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_numcast() {
-    fn require_numcast<T: NumCast>(_: &T) {}
-    require_numcast(&Wrapping(42));
-}
-
-#[test]
-fn as_primitive() {
-    let x: f32 = (1.625f64).as_();
-    assert_eq!(x, 1.625f32);
-
-    let x: f32 = (3.14159265358979323846f64).as_();
-    assert_eq!(x, 3.1415927f32);
-
-    let x: u8 = (768i16).as_();
-    assert_eq!(x, 0);
-}

+ 0 - 1344
src/float.rs

@@ -1,1344 +0,0 @@
-use std::mem;
-use std::ops::Neg;
-use std::num::FpCategory;
-
-// Used for default implementation of `epsilon`
-use std::f32;
-
-use {Num, NumCast};
-
-// FIXME: these doctests aren't actually helpful, because they're using and
-// testing the inherent methods directly, not going through `Float`.
-
-pub trait Float
-    : Num
-    + Copy
-    + NumCast
-    + PartialOrd
-    + Neg<Output = Self>
-{
-    /// Returns the `NaN` value.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let nan: f32 = Float::nan();
-    ///
-    /// assert!(nan.is_nan());
-    /// ```
-    fn nan() -> Self;
-    /// Returns the infinite value.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f32;
-    ///
-    /// let infinity: f32 = Float::infinity();
-    ///
-    /// assert!(infinity.is_infinite());
-    /// assert!(!infinity.is_finite());
-    /// assert!(infinity > f32::MAX);
-    /// ```
-    fn infinity() -> Self;
-    /// Returns the negative infinite value.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f32;
-    ///
-    /// let neg_infinity: f32 = Float::neg_infinity();
-    ///
-    /// assert!(neg_infinity.is_infinite());
-    /// assert!(!neg_infinity.is_finite());
-    /// assert!(neg_infinity < f32::MIN);
-    /// ```
-    fn neg_infinity() -> Self;
-    /// Returns `-0.0`.
-    ///
-    /// ```
-    /// use num_traits::{Zero, Float};
-    ///
-    /// let inf: f32 = Float::infinity();
-    /// let zero: f32 = Zero::zero();
-    /// let neg_zero: f32 = Float::neg_zero();
-    ///
-    /// assert_eq!(zero, neg_zero);
-    /// assert_eq!(7.0f32/inf, zero);
-    /// assert_eq!(zero * 10.0, zero);
-    /// ```
-    fn neg_zero() -> Self;
-
-    /// Returns the smallest finite value that this type can represent.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Float::min_value();
-    ///
-    /// assert_eq!(x, f64::MIN);
-    /// ```
-    fn min_value() -> Self;
-
-    /// Returns the smallest positive, normalized value that this type can represent.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Float::min_positive_value();
-    ///
-    /// assert_eq!(x, f64::MIN_POSITIVE);
-    /// ```
-    fn min_positive_value() -> Self;
-
-    /// Returns epsilon, a small positive value.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Float::epsilon();
-    ///
-    /// assert_eq!(x, f64::EPSILON);
-    /// ```
-    ///
-    /// # Panics
-    ///
-    /// The default implementation will panic if `f32::EPSILON` cannot
-    /// be cast to `Self`.
-    fn epsilon() -> Self {
-        Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
-    }
-
-    /// Returns the largest finite value that this type can represent.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Float::max_value();
-    /// assert_eq!(x, f64::MAX);
-    /// ```
-    fn max_value() -> Self;
-
-    /// Returns `true` if this value is `NaN` and false otherwise.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let nan = f64::NAN;
-    /// let f = 7.0;
-    ///
-    /// assert!(nan.is_nan());
-    /// assert!(!f.is_nan());
-    /// ```
-    fn is_nan(self) -> bool;
-
-    /// Returns `true` if this value is positive infinity or negative infinity and
-    /// false otherwise.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f32;
-    ///
-    /// let f = 7.0f32;
-    /// let inf: f32 = Float::infinity();
-    /// let neg_inf: f32 = Float::neg_infinity();
-    /// let nan: f32 = f32::NAN;
-    ///
-    /// assert!(!f.is_infinite());
-    /// assert!(!nan.is_infinite());
-    ///
-    /// assert!(inf.is_infinite());
-    /// assert!(neg_inf.is_infinite());
-    /// ```
-    fn is_infinite(self) -> bool;
-
-    /// Returns `true` if this number is neither infinite nor `NaN`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f32;
-    ///
-    /// let f = 7.0f32;
-    /// let inf: f32 = Float::infinity();
-    /// let neg_inf: f32 = Float::neg_infinity();
-    /// let nan: f32 = f32::NAN;
-    ///
-    /// assert!(f.is_finite());
-    ///
-    /// assert!(!nan.is_finite());
-    /// assert!(!inf.is_finite());
-    /// assert!(!neg_inf.is_finite());
-    /// ```
-    fn is_finite(self) -> bool;
-
-    /// Returns `true` if the number is neither zero, infinite,
-    /// [subnormal][subnormal], or `NaN`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f32;
-    ///
-    /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
-    /// let max = f32::MAX;
-    /// let lower_than_min = 1.0e-40_f32;
-    /// let zero = 0.0f32;
-    ///
-    /// assert!(min.is_normal());
-    /// assert!(max.is_normal());
-    ///
-    /// assert!(!zero.is_normal());
-    /// assert!(!f32::NAN.is_normal());
-    /// assert!(!f32::INFINITY.is_normal());
-    /// // Values between `0` and `min` are Subnormal.
-    /// assert!(!lower_than_min.is_normal());
-    /// ```
-    /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
-    fn is_normal(self) -> bool;
-
-    /// Returns the floating point category of the number. If only one property
-    /// is going to be tested, it is generally faster to use the specific
-    /// predicate instead.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::num::FpCategory;
-    /// use std::f32;
-    ///
-    /// let num = 12.4f32;
-    /// let inf = f32::INFINITY;
-    ///
-    /// assert_eq!(num.classify(), FpCategory::Normal);
-    /// assert_eq!(inf.classify(), FpCategory::Infinite);
-    /// ```
-    fn classify(self) -> FpCategory;
-
-    /// Returns the largest integer less than or equal to a number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let f = 3.99;
-    /// let g = 3.0;
-    ///
-    /// assert_eq!(f.floor(), 3.0);
-    /// assert_eq!(g.floor(), 3.0);
-    /// ```
-    fn floor(self) -> Self;
-
-    /// Returns the smallest integer greater than or equal to a number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let f = 3.01;
-    /// let g = 4.0;
-    ///
-    /// assert_eq!(f.ceil(), 4.0);
-    /// assert_eq!(g.ceil(), 4.0);
-    /// ```
-    fn ceil(self) -> Self;
-
-    /// Returns the nearest integer to a number. Round half-way cases away from
-    /// `0.0`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let f = 3.3;
-    /// let g = -3.3;
-    ///
-    /// assert_eq!(f.round(), 3.0);
-    /// assert_eq!(g.round(), -3.0);
-    /// ```
-    fn round(self) -> Self;
-
-    /// Return the integer part of a number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let f = 3.3;
-    /// let g = -3.7;
-    ///
-    /// assert_eq!(f.trunc(), 3.0);
-    /// assert_eq!(g.trunc(), -3.0);
-    /// ```
-    fn trunc(self) -> Self;
-
-    /// Returns the fractional part of a number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 3.5;
-    /// let y = -3.5;
-    /// let abs_difference_x = (x.fract() - 0.5).abs();
-    /// let abs_difference_y = (y.fract() - (-0.5)).abs();
-    ///
-    /// assert!(abs_difference_x < 1e-10);
-    /// assert!(abs_difference_y < 1e-10);
-    /// ```
-    fn fract(self) -> Self;
-
-    /// Computes the absolute value of `self`. Returns `Float::nan()` if the
-    /// number is `Float::nan()`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x = 3.5;
-    /// let y = -3.5;
-    ///
-    /// let abs_difference_x = (x.abs() - x).abs();
-    /// let abs_difference_y = (y.abs() - (-y)).abs();
-    ///
-    /// assert!(abs_difference_x < 1e-10);
-    /// assert!(abs_difference_y < 1e-10);
-    ///
-    /// assert!(f64::NAN.abs().is_nan());
-    /// ```
-    fn abs(self) -> Self;
-
-    /// Returns a number that represents the sign of `self`.
-    ///
-    /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
-    /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
-    /// - `Float::nan()` if the number is `Float::nan()`
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let f = 3.5;
-    ///
-    /// assert_eq!(f.signum(), 1.0);
-    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
-    ///
-    /// assert!(f64::NAN.signum().is_nan());
-    /// ```
-    fn signum(self) -> Self;
-
-    /// Returns `true` if `self` is positive, including `+0.0`,
-    /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let neg_nan: f64 = -f64::NAN;
-    ///
-    /// let f = 7.0;
-    /// let g = -7.0;
-    ///
-    /// assert!(f.is_sign_positive());
-    /// assert!(!g.is_sign_positive());
-    /// assert!(!neg_nan.is_sign_positive());
-    /// ```
-    fn is_sign_positive(self) -> bool;
-
-    /// Returns `true` if `self` is negative, including `-0.0`,
-    /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let nan: f64 = f64::NAN;
-    ///
-    /// let f = 7.0;
-    /// let g = -7.0;
-    ///
-    /// assert!(!f.is_sign_negative());
-    /// assert!(g.is_sign_negative());
-    /// assert!(!nan.is_sign_negative());
-    /// ```
-    fn is_sign_negative(self) -> bool;
-
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
-    /// error. This produces a more accurate result with better performance than
-    /// a separate multiplication operation followed by an add.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let m = 10.0;
-    /// let x = 4.0;
-    /// let b = 60.0;
-    ///
-    /// // 100.0
-    /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn mul_add(self, a: Self, b: Self) -> Self;
-    /// Take the reciprocal (inverse) of a number, `1/x`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 2.0;
-    /// let abs_difference = (x.recip() - (1.0/x)).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn recip(self) -> Self;
-
-    /// Raise a number to an integer power.
-    ///
-    /// Using this function is generally faster than using `powf`
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 2.0;
-    /// let abs_difference = (x.powi(2) - x*x).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn powi(self, n: i32) -> Self;
-
-    /// Raise a number to a floating point power.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 2.0;
-    /// let abs_difference = (x.powf(2.0) - x*x).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn powf(self, n: Self) -> Self;
-
-    /// Take the square root of a number.
-    ///
-    /// Returns NaN if `self` is a negative number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let positive = 4.0;
-    /// let negative = -4.0;
-    ///
-    /// let abs_difference = (positive.sqrt() - 2.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// assert!(negative.sqrt().is_nan());
-    /// ```
-    fn sqrt(self) -> Self;
-
-    /// Returns `e^(self)`, (the exponential function).
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let one = 1.0;
-    /// // e^1
-    /// let e = one.exp();
-    ///
-    /// // ln(e) - 1 == 0
-    /// let abs_difference = (e.ln() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn exp(self) -> Self;
-
-    /// Returns `2^(self)`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let f = 2.0;
-    ///
-    /// // 2^2 - 4 == 0
-    /// let abs_difference = (f.exp2() - 4.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn exp2(self) -> Self;
-
-    /// Returns the natural logarithm of the number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let one = 1.0;
-    /// // e^1
-    /// let e = one.exp();
-    ///
-    /// // ln(e) - 1 == 0
-    /// let abs_difference = (e.ln() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn ln(self) -> Self;
-
-    /// Returns the logarithm of the number with respect to an arbitrary base.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let ten = 10.0;
-    /// let two = 2.0;
-    ///
-    /// // log10(10) - 1 == 0
-    /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
-    ///
-    /// // log2(2) - 1 == 0
-    /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
-    ///
-    /// assert!(abs_difference_10 < 1e-10);
-    /// assert!(abs_difference_2 < 1e-10);
-    /// ```
-    fn log(self, base: Self) -> Self;
-
-    /// Returns the base 2 logarithm of the number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let two = 2.0;
-    ///
-    /// // log2(2) - 1 == 0
-    /// let abs_difference = (two.log2() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn log2(self) -> Self;
-
-    /// Returns the base 10 logarithm of the number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let ten = 10.0;
-    ///
-    /// // log10(10) - 1 == 0
-    /// let abs_difference = (ten.log10() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn log10(self) -> Self;
-
-    /// Converts radians to degrees.
-    ///
-    /// ```
-    /// use std::f64::consts;
-    ///
-    /// let angle = consts::PI;
-    ///
-    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    #[inline]
-    fn to_degrees(self) -> Self {
-        let halfpi = Self::zero().acos();
-        let ninety = Self::from(90u8).unwrap();
-        self * ninety / halfpi
-    }
-
-    /// Converts degrees to radians.
-    ///
-    /// ```
-    /// use std::f64::consts;
-    ///
-    /// let angle = 180.0_f64;
-    ///
-    /// let abs_difference = (angle.to_radians() - consts::PI).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    #[inline]
-    fn to_radians(self) -> Self {
-        let halfpi = Self::zero().acos();
-        let ninety = Self::from(90u8).unwrap();
-        self * halfpi / ninety
-    }
-
-    /// Returns the maximum of the two numbers.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 1.0;
-    /// let y = 2.0;
-    ///
-    /// assert_eq!(x.max(y), y);
-    /// ```
-    fn max(self, other: Self) -> Self;
-
-    /// Returns the minimum of the two numbers.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 1.0;
-    /// let y = 2.0;
-    ///
-    /// assert_eq!(x.min(y), x);
-    /// ```
-    fn min(self, other: Self) -> Self;
-
-    /// The positive difference of two numbers.
-    ///
-    /// * If `self <= other`: `0:0`
-    /// * Else: `self - other`
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 3.0;
-    /// let y = -3.0;
-    ///
-    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
-    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
-    ///
-    /// assert!(abs_difference_x < 1e-10);
-    /// assert!(abs_difference_y < 1e-10);
-    /// ```
-    fn abs_sub(self, other: Self) -> Self;
-
-    /// Take the cubic root of a number.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 8.0;
-    ///
-    /// // x^(1/3) - 2 == 0
-    /// let abs_difference = (x.cbrt() - 2.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn cbrt(self) -> Self;
-
-    /// Calculate the length of the hypotenuse of a right-angle triangle given
-    /// legs of length `x` and `y`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 2.0;
-    /// let y = 3.0;
-    ///
-    /// // sqrt(x^2 + y^2)
-    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn hypot(self, other: Self) -> Self;
-
-    /// Computes the sine of a number (in radians).
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::PI/2.0;
-    ///
-    /// let abs_difference = (x.sin() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn sin(self) -> Self;
-
-    /// Computes the cosine of a number (in radians).
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x = 2.0*f64::consts::PI;
-    ///
-    /// let abs_difference = (x.cos() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn cos(self) -> Self;
-
-    /// Computes the tangent of a number (in radians).
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::PI/4.0;
-    /// let abs_difference = (x.tan() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-14);
-    /// ```
-    fn tan(self) -> Self;
-
-    /// Computes the arcsine of a number. Return value is in radians in
-    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
-    /// [-1, 1].
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let f = f64::consts::PI / 2.0;
-    ///
-    /// // asin(sin(pi/2))
-    /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn asin(self) -> Self;
-
-    /// Computes the arccosine of a number. Return value is in radians in
-    /// the range [0, pi] or NaN if the number is outside the range
-    /// [-1, 1].
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let f = f64::consts::PI / 4.0;
-    ///
-    /// // acos(cos(pi/4))
-    /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn acos(self) -> Self;
-
-    /// Computes the arctangent of a number. Return value is in radians in the
-    /// range [-pi/2, pi/2];
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let f = 1.0;
-    ///
-    /// // atan(tan(1))
-    /// let abs_difference = (f.tan().atan() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn atan(self) -> Self;
-
-    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
-    ///
-    /// * `x = 0`, `y = 0`: `0`
-    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
-    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
-    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let pi = f64::consts::PI;
-    /// // All angles from horizontal right (+x)
-    /// // 45 deg counter-clockwise
-    /// let x1 = 3.0;
-    /// let y1 = -3.0;
-    ///
-    /// // 135 deg clockwise
-    /// let x2 = -3.0;
-    /// let y2 = 3.0;
-    ///
-    /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
-    /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
-    ///
-    /// assert!(abs_difference_1 < 1e-10);
-    /// assert!(abs_difference_2 < 1e-10);
-    /// ```
-    fn atan2(self, other: Self) -> Self;
-
-    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
-    /// `(sin(x), cos(x))`.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::PI/4.0;
-    /// let f = x.sin_cos();
-    ///
-    /// let abs_difference_0 = (f.0 - x.sin()).abs();
-    /// let abs_difference_1 = (f.1 - x.cos()).abs();
-    ///
-    /// assert!(abs_difference_0 < 1e-10);
-    /// assert!(abs_difference_0 < 1e-10);
-    /// ```
-    fn sin_cos(self) -> (Self, Self);
-
-    /// Returns `e^(self) - 1` in a way that is accurate even if the
-    /// number is close to zero.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 7.0;
-    ///
-    /// // e^(ln(7)) - 1
-    /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn exp_m1(self) -> Self;
-
-    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
-    /// the operations were performed separately.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::E - 1.0;
-    ///
-    /// // ln(1 + (e - 1)) == ln(e) == 1
-    /// let abs_difference = (x.ln_1p() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn ln_1p(self) -> Self;
-
-    /// Hyperbolic sine function.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let x = 1.0;
-    ///
-    /// let f = x.sinh();
-    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
-    /// let g = (e*e - 1.0)/(2.0*e);
-    /// let abs_difference = (f - g).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn sinh(self) -> Self;
-
-    /// Hyperbolic cosine function.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let x = 1.0;
-    /// let f = x.cosh();
-    /// // Solving cosh() at 1 gives this result
-    /// let g = (e*e + 1.0)/(2.0*e);
-    /// let abs_difference = (f - g).abs();
-    ///
-    /// // Same result
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn cosh(self) -> Self;
-
-    /// Hyperbolic tangent function.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let x = 1.0;
-    ///
-    /// let f = x.tanh();
-    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
-    /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
-    /// let abs_difference = (f - g).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn tanh(self) -> Self;
-
-    /// Inverse hyperbolic sine function.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 1.0;
-    /// let f = x.sinh().asinh();
-    ///
-    /// let abs_difference = (f - x).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn asinh(self) -> Self;
-
-    /// Inverse hyperbolic cosine function.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let x = 1.0;
-    /// let f = x.cosh().acosh();
-    ///
-    /// let abs_difference = (f - x).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn acosh(self) -> Self;
-
-    /// Inverse hyperbolic tangent function.
-    ///
-    /// ```
-    /// use num_traits::Float;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let f = e.tanh().atanh();
-    ///
-    /// let abs_difference = (f - e).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn atanh(self) -> Self;
-
-
-    /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
-    /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
-    /// The floating point encoding is documented in the [Reference][floating-point].
-    ///
-    /// ```
-    /// use num_traits::Float;
-    ///
-    /// let num = 2.0f32;
-    ///
-    /// // (8388608, -22, 1)
-    /// let (mantissa, exponent, sign) = Float::integer_decode(num);
-    /// let sign_f = sign as f32;
-    /// let mantissa_f = mantissa as f32;
-    /// let exponent_f = num.powf(exponent as f32);
-    ///
-    /// // 1 * 8388608 * 2^(-22) == 2
-    /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    /// [floating-point]: ../../../../../reference.html#machine-types
-    fn integer_decode(self) -> (u64, i16, i8);
-}
-
-macro_rules! float_impl {
-    ($T:ident $decode:ident) => (
-        impl Float for $T {
-            #[inline]
-            fn nan() -> Self {
-                ::std::$T::NAN
-            }
-
-            #[inline]
-            fn infinity() -> Self {
-                ::std::$T::INFINITY
-            }
-
-            #[inline]
-            fn neg_infinity() -> Self {
-                ::std::$T::NEG_INFINITY
-            }
-
-            #[inline]
-            fn neg_zero() -> Self {
-                -0.0
-            }
-
-            #[inline]
-            fn min_value() -> Self {
-                ::std::$T::MIN
-            }
-
-            #[inline]
-            fn min_positive_value() -> Self {
-                ::std::$T::MIN_POSITIVE
-            }
-
-            #[inline]
-            fn epsilon() -> Self {
-                ::std::$T::EPSILON
-            }
-
-            #[inline]
-            fn max_value() -> Self {
-                ::std::$T::MAX
-            }
-
-            #[inline]
-            fn is_nan(self) -> bool {
-                <$T>::is_nan(self)
-            }
-
-            #[inline]
-            fn is_infinite(self) -> bool {
-                <$T>::is_infinite(self)
-            }
-
-            #[inline]
-            fn is_finite(self) -> bool {
-                <$T>::is_finite(self)
-            }
-
-            #[inline]
-            fn is_normal(self) -> bool {
-                <$T>::is_normal(self)
-            }
-
-            #[inline]
-            fn classify(self) -> FpCategory {
-                <$T>::classify(self)
-            }
-
-            #[inline]
-            fn floor(self) -> Self {
-                <$T>::floor(self)
-            }
-
-            #[inline]
-            fn ceil(self) -> Self {
-                <$T>::ceil(self)
-            }
-
-            #[inline]
-            fn round(self) -> Self {
-                <$T>::round(self)
-            }
-
-            #[inline]
-            fn trunc(self) -> Self {
-                <$T>::trunc(self)
-            }
-
-            #[inline]
-            fn fract(self) -> Self {
-                <$T>::fract(self)
-            }
-
-            #[inline]
-            fn abs(self) -> Self {
-                <$T>::abs(self)
-            }
-
-            #[inline]
-            fn signum(self) -> Self {
-                <$T>::signum(self)
-            }
-
-            #[inline]
-            fn is_sign_positive(self) -> bool {
-                <$T>::is_sign_positive(self)
-            }
-
-            #[inline]
-            fn is_sign_negative(self) -> bool {
-                <$T>::is_sign_negative(self)
-            }
-
-            #[inline]
-            fn mul_add(self, a: Self, b: Self) -> Self {
-                <$T>::mul_add(self, a, b)
-            }
-
-            #[inline]
-            fn recip(self) -> Self {
-                <$T>::recip(self)
-            }
-
-            #[inline]
-            fn powi(self, n: i32) -> Self {
-                <$T>::powi(self, n)
-            }
-
-            #[inline]
-            fn powf(self, n: Self) -> Self {
-                <$T>::powf(self, n)
-            }
-
-            #[inline]
-            fn sqrt(self) -> Self {
-                <$T>::sqrt(self)
-            }
-
-            #[inline]
-            fn exp(self) -> Self {
-                <$T>::exp(self)
-            }
-
-            #[inline]
-            fn exp2(self) -> Self {
-                <$T>::exp2(self)
-            }
-
-            #[inline]
-            fn ln(self) -> Self {
-                <$T>::ln(self)
-            }
-
-            #[inline]
-            fn log(self, base: Self) -> Self {
-                <$T>::log(self, base)
-            }
-
-            #[inline]
-            fn log2(self) -> Self {
-                <$T>::log2(self)
-            }
-
-            #[inline]
-            fn log10(self) -> Self {
-                <$T>::log10(self)
-            }
-
-            #[inline]
-            fn to_degrees(self) -> Self {
-                // NB: `f32` didn't stabilize this until 1.7
-                // <$T>::to_degrees(self)
-                self * (180. / ::std::$T::consts::PI)
-            }
-
-            #[inline]
-            fn to_radians(self) -> Self {
-                // NB: `f32` didn't stabilize this until 1.7
-                // <$T>::to_radians(self)
-                self * (::std::$T::consts::PI / 180.)
-            }
-
-            #[inline]
-            fn max(self, other: Self) -> Self {
-                <$T>::max(self, other)
-            }
-
-            #[inline]
-            fn min(self, other: Self) -> Self {
-                <$T>::min(self, other)
-            }
-
-            #[inline]
-            #[allow(deprecated)]
-            fn abs_sub(self, other: Self) -> Self {
-                <$T>::abs_sub(self, other)
-            }
-
-            #[inline]
-            fn cbrt(self) -> Self {
-                <$T>::cbrt(self)
-            }
-
-            #[inline]
-            fn hypot(self, other: Self) -> Self {
-                <$T>::hypot(self, other)
-            }
-
-            #[inline]
-            fn sin(self) -> Self {
-                <$T>::sin(self)
-            }
-
-            #[inline]
-            fn cos(self) -> Self {
-                <$T>::cos(self)
-            }
-
-            #[inline]
-            fn tan(self) -> Self {
-                <$T>::tan(self)
-            }
-
-            #[inline]
-            fn asin(self) -> Self {
-                <$T>::asin(self)
-            }
-
-            #[inline]
-            fn acos(self) -> Self {
-                <$T>::acos(self)
-            }
-
-            #[inline]
-            fn atan(self) -> Self {
-                <$T>::atan(self)
-            }
-
-            #[inline]
-            fn atan2(self, other: Self) -> Self {
-                <$T>::atan2(self, other)
-            }
-
-            #[inline]
-            fn sin_cos(self) -> (Self, Self) {
-                <$T>::sin_cos(self)
-            }
-
-            #[inline]
-            fn exp_m1(self) -> Self {
-                <$T>::exp_m1(self)
-            }
-
-            #[inline]
-            fn ln_1p(self) -> Self {
-                <$T>::ln_1p(self)
-            }
-
-            #[inline]
-            fn sinh(self) -> Self {
-                <$T>::sinh(self)
-            }
-
-            #[inline]
-            fn cosh(self) -> Self {
-                <$T>::cosh(self)
-            }
-
-            #[inline]
-            fn tanh(self) -> Self {
-                <$T>::tanh(self)
-            }
-
-            #[inline]
-            fn asinh(self) -> Self {
-                <$T>::asinh(self)
-            }
-
-            #[inline]
-            fn acosh(self) -> Self {
-                <$T>::acosh(self)
-            }
-
-            #[inline]
-            fn atanh(self) -> Self {
-                <$T>::atanh(self)
-            }
-
-            #[inline]
-            fn integer_decode(self) -> (u64, i16, i8) {
-                $decode(self)
-            }
-        }
-    )
-}
-
-fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
-    let bits: u32 = unsafe { mem::transmute(f) };
-    let sign: i8 = if bits >> 31 == 0 {
-        1
-    } else {
-        -1
-    };
-    let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
-    let mantissa = if exponent == 0 {
-        (bits & 0x7fffff) << 1
-    } else {
-        (bits & 0x7fffff) | 0x800000
-    };
-    // Exponent bias + mantissa shift
-    exponent -= 127 + 23;
-    (mantissa as u64, exponent, sign)
-}
-
-fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
-    let bits: u64 = unsafe { mem::transmute(f) };
-    let sign: i8 = if bits >> 63 == 0 {
-        1
-    } else {
-        -1
-    };
-    let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
-    let mantissa = if exponent == 0 {
-        (bits & 0xfffffffffffff) << 1
-    } else {
-        (bits & 0xfffffffffffff) | 0x10000000000000
-    };
-    // Exponent bias + mantissa shift
-    exponent -= 1023 + 52;
-    (mantissa, exponent, sign)
-}
-
-float_impl!(f32 integer_decode_f32);
-float_impl!(f64 integer_decode_f64);
-
-macro_rules! float_const_impl {
-    ($(#[$doc:meta] $constant:ident,)+) => (
-        #[allow(non_snake_case)]
-        pub trait FloatConst {
-            $(#[$doc] fn $constant() -> Self;)+
-        }
-        float_const_impl! { @float f32, $($constant,)+ }
-        float_const_impl! { @float f64, $($constant,)+ }
-    );
-    (@float $T:ident, $($constant:ident,)+) => (
-        impl FloatConst for $T {
-            $(
-                #[inline]
-                fn $constant() -> Self {
-                    ::std::$T::consts::$constant
-                }
-            )+
-        }
-    );
-}
-
-float_const_impl! {
-    #[doc = "Return Euler’s number."]
-    E,
-    #[doc = "Return `1.0 / π`."]
-    FRAC_1_PI,
-    #[doc = "Return `1.0 / sqrt(2.0)`."]
-    FRAC_1_SQRT_2,
-    #[doc = "Return `2.0 / π`."]
-    FRAC_2_PI,
-    #[doc = "Return `2.0 / sqrt(π)`."]
-    FRAC_2_SQRT_PI,
-    #[doc = "Return `π / 2.0`."]
-    FRAC_PI_2,
-    #[doc = "Return `π / 3.0`."]
-    FRAC_PI_3,
-    #[doc = "Return `π / 4.0`."]
-    FRAC_PI_4,
-    #[doc = "Return `π / 6.0`."]
-    FRAC_PI_6,
-    #[doc = "Return `π / 8.0`."]
-    FRAC_PI_8,
-    #[doc = "Return `ln(10.0)`."]
-    LN_10,
-    #[doc = "Return `ln(2.0)`."]
-    LN_2,
-    #[doc = "Return `log10(e)`."]
-    LOG10_E,
-    #[doc = "Return `log2(e)`."]
-    LOG2_E,
-    #[doc = "Return Archimedes’ constant."]
-    PI,
-    #[doc = "Return `sqrt(2.0)`."]
-    SQRT_2,
-}
-
-#[cfg(test)]
-mod tests {
-    use Float;
-
-    #[test]
-    fn convert_deg_rad() {
-        use std::f64::consts;
-
-        const DEG_RAD_PAIRS: [(f64, f64); 7] = [
-            (0.0, 0.),
-            (22.5, consts::FRAC_PI_8),
-            (30.0, consts::FRAC_PI_6),
-            (45.0, consts::FRAC_PI_4),
-            (60.0, consts::FRAC_PI_3),
-            (90.0, consts::FRAC_PI_2),
-            (180.0, consts::PI),
-        ];
-
-        for &(deg, rad) in &DEG_RAD_PAIRS {
-            assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
-            assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
-
-            let (deg, rad) = (deg as f32, rad as f32);
-            assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
-            assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
-        }
-    }
-}

+ 0 - 148
src/identities.rs

@@ -1,148 +0,0 @@
-use std::ops::{Add, Mul};
-use std::num::Wrapping;
-
-/// Defines an additive identity element for `Self`.
-pub trait Zero: Sized + Add<Self, Output = Self> {
-    /// Returns the additive identity element of `Self`, `0`.
-    ///
-    /// # Laws
-    ///
-    /// ```{.text}
-    /// a + 0 = a       ∀ a ∈ Self
-    /// 0 + a = a       ∀ a ∈ Self
-    /// ```
-    ///
-    /// # Purity
-    ///
-    /// This function should return the same result at all times regardless of
-    /// external mutable state, for example values stored in TLS or in
-    /// `static mut`s.
-    // FIXME (#5527): This should be an associated constant
-    fn zero() -> Self;
-
-    /// Returns `true` if `self` is equal to the additive identity.
-    #[inline]
-    fn is_zero(&self) -> bool;
-}
-
-macro_rules! zero_impl {
-    ($t:ty, $v:expr) => {
-        impl Zero for $t {
-            #[inline]
-            fn zero() -> $t { $v }
-            #[inline]
-            fn is_zero(&self) -> bool { *self == $v }
-        }
-    }
-}
-
-zero_impl!(usize, 0usize);
-zero_impl!(u8,    0u8);
-zero_impl!(u16,   0u16);
-zero_impl!(u32,   0u32);
-zero_impl!(u64,   0u64);
-
-zero_impl!(isize, 0isize);
-zero_impl!(i8,    0i8);
-zero_impl!(i16,   0i16);
-zero_impl!(i32,   0i32);
-zero_impl!(i64,   0i64);
-
-zero_impl!(f32, 0.0f32);
-zero_impl!(f64, 0.0f64);
-
-impl<T: Zero> Zero for Wrapping<T> where Wrapping<T>: Add<Output=Wrapping<T>> {
-    fn is_zero(&self) -> bool {
-        self.0.is_zero()
-    }
-    fn zero() -> Self {
-        Wrapping(T::zero())
-    }
-}
-
-
-/// Defines a multiplicative identity element for `Self`.
-pub trait One: Sized + Mul<Self, Output = Self> {
-    /// Returns the multiplicative identity element of `Self`, `1`.
-    ///
-    /// # Laws
-    ///
-    /// ```{.text}
-    /// a * 1 = a       ∀ a ∈ Self
-    /// 1 * a = a       ∀ a ∈ Self
-    /// ```
-    ///
-    /// # Purity
-    ///
-    /// This function should return the same result at all times regardless of
-    /// external mutable state, for example values stored in TLS or in
-    /// `static mut`s.
-    // FIXME (#5527): This should be an associated constant
-    fn one() -> Self;
-}
-
-macro_rules! one_impl {
-    ($t:ty, $v:expr) => {
-        impl One for $t {
-            #[inline]
-            fn one() -> $t { $v }
-        }
-    }
-}
-
-one_impl!(usize, 1usize);
-one_impl!(u8,    1u8);
-one_impl!(u16,   1u16);
-one_impl!(u32,   1u32);
-one_impl!(u64,   1u64);
-
-one_impl!(isize, 1isize);
-one_impl!(i8,    1i8);
-one_impl!(i16,   1i16);
-one_impl!(i32,   1i32);
-one_impl!(i64,   1i64);
-
-one_impl!(f32, 1.0f32);
-one_impl!(f64, 1.0f64);
-
-impl<T: One> One for Wrapping<T> where Wrapping<T>: Mul<Output=Wrapping<T>> {
-    fn one() -> Self {
-        Wrapping(T::one())
-    }
-}
-
-// Some helper functions provided for backwards compatibility.
-
-/// Returns the additive identity, `0`.
-#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
-
-/// Returns the multiplicative identity, `1`.
-#[inline(always)] pub fn one<T: One>() -> T { One::one() }
-
-
-#[test]
-fn wrapping_identities() {
-    macro_rules! test_wrapping_identities {
-        ($($t:ty)+) => {
-            $(
-                assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0);
-                assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0);
-                assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero());
-                assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero());
-            )+
-        };
-    }
-
-    test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64);
-}
-
-#[test]
-fn wrapping_is_zero() {
-    fn require_zero<T: Zero>(_: &T) {}
-    require_zero(&Wrapping(42));
-}
-#[test]
-fn wrapping_is_one() {
-    fn require_one<T: One>(_: &T) {}
-    require_one(&Wrapping(42));
-}

+ 0 - 376
src/int.rs

@@ -1,376 +0,0 @@
-use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
-
-use {Num, NumCast};
-use bounds::Bounded;
-use ops::checked::*;
-use ops::saturating::Saturating;
-
-pub trait PrimInt
-    : Sized
-    + Copy
-    + Num + NumCast
-    + Bounded
-    + PartialOrd + Ord + Eq
-    + Not<Output=Self>
-    + BitAnd<Output=Self>
-    + BitOr<Output=Self>
-    + BitXor<Output=Self>
-    + Shl<usize, Output=Self>
-    + Shr<usize, Output=Self>
-    + CheckedAdd<Output=Self>
-    + CheckedSub<Output=Self>
-    + CheckedMul<Output=Self>
-    + CheckedDiv<Output=Self>
-    + Saturating
-{
-    /// Returns the number of ones in the binary representation of `self`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0b01001100u8;
-    ///
-    /// assert_eq!(n.count_ones(), 3);
-    /// ```
-    fn count_ones(self) -> u32;
-
-    /// Returns the number of zeros in the binary representation of `self`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0b01001100u8;
-    ///
-    /// assert_eq!(n.count_zeros(), 5);
-    /// ```
-    fn count_zeros(self) -> u32;
-
-    /// Returns the number of leading zeros in the binary representation
-    /// of `self`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0b0101000u16;
-    ///
-    /// assert_eq!(n.leading_zeros(), 10);
-    /// ```
-    fn leading_zeros(self) -> u32;
-
-    /// Returns the number of trailing zeros in the binary representation
-    /// of `self`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0b0101000u16;
-    ///
-    /// assert_eq!(n.trailing_zeros(), 3);
-    /// ```
-    fn trailing_zeros(self) -> u32;
-
-    /// Shifts the bits to the left by a specified amount amount, `n`, wrapping
-    /// the truncated bits to the end of the resulting integer.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    /// let m = 0x3456789ABCDEF012u64;
-    ///
-    /// assert_eq!(n.rotate_left(12), m);
-    /// ```
-    fn rotate_left(self, n: u32) -> Self;
-
-    /// Shifts the bits to the right by a specified amount amount, `n`, wrapping
-    /// the truncated bits to the beginning of the resulting integer.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    /// let m = 0xDEF0123456789ABCu64;
-    ///
-    /// assert_eq!(n.rotate_right(12), m);
-    /// ```
-    fn rotate_right(self, n: u32) -> Self;
-
-    /// Shifts the bits to the left by a specified amount amount, `n`, filling
-    /// zeros in the least significant bits.
-    ///
-    /// This is bitwise equivalent to signed `Shl`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    /// let m = 0x3456789ABCDEF000u64;
-    ///
-    /// assert_eq!(n.signed_shl(12), m);
-    /// ```
-    fn signed_shl(self, n: u32) -> Self;
-
-    /// Shifts the bits to the right by a specified amount amount, `n`, copying
-    /// the "sign bit" in the most significant bits even for unsigned types.
-    ///
-    /// This is bitwise equivalent to signed `Shr`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0xFEDCBA9876543210u64;
-    /// let m = 0xFFFFEDCBA9876543u64;
-    ///
-    /// assert_eq!(n.signed_shr(12), m);
-    /// ```
-    fn signed_shr(self, n: u32) -> Self;
-
-    /// Shifts the bits to the left by a specified amount amount, `n`, filling
-    /// zeros in the least significant bits.
-    ///
-    /// This is bitwise equivalent to unsigned `Shl`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFi64;
-    /// let m = 0x3456789ABCDEF000i64;
-    ///
-    /// assert_eq!(n.unsigned_shl(12), m);
-    /// ```
-    fn unsigned_shl(self, n: u32) -> Self;
-
-    /// Shifts the bits to the right by a specified amount amount, `n`, filling
-    /// zeros in the most significant bits.
-    ///
-    /// This is bitwise equivalent to unsigned `Shr`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0xFEDCBA9876543210i64;
-    /// let m = 0x000FEDCBA9876543i64;
-    ///
-    /// assert_eq!(n.unsigned_shr(12), m);
-    /// ```
-    fn unsigned_shr(self, n: u32) -> Self;
-
-    /// Reverses the byte order of the integer.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    /// let m = 0xEFCDAB8967452301u64;
-    ///
-    /// assert_eq!(n.swap_bytes(), m);
-    /// ```
-    fn swap_bytes(self) -> Self;
-
-    /// Convert an integer from big endian to the target's endianness.
-    ///
-    /// On big endian this is a no-op. On little endian the bytes are swapped.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    ///
-    /// if cfg!(target_endian = "big") {
-    ///     assert_eq!(u64::from_be(n), n)
-    /// } else {
-    ///     assert_eq!(u64::from_be(n), n.swap_bytes())
-    /// }
-    /// ```
-    fn from_be(x: Self) -> Self;
-
-    /// Convert an integer from little endian to the target's endianness.
-    ///
-    /// On little endian this is a no-op. On big endian the bytes are swapped.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    ///
-    /// if cfg!(target_endian = "little") {
-    ///     assert_eq!(u64::from_le(n), n)
-    /// } else {
-    ///     assert_eq!(u64::from_le(n), n.swap_bytes())
-    /// }
-    /// ```
-    fn from_le(x: Self) -> Self;
-
-    /// Convert `self` to big endian from the target's endianness.
-    ///
-    /// On big endian this is a no-op. On little endian the bytes are swapped.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    ///
-    /// if cfg!(target_endian = "big") {
-    ///     assert_eq!(n.to_be(), n)
-    /// } else {
-    ///     assert_eq!(n.to_be(), n.swap_bytes())
-    /// }
-    /// ```
-    fn to_be(self) -> Self;
-
-    /// Convert `self` to little endian from the target's endianness.
-    ///
-    /// On little endian this is a no-op. On big endian the bytes are swapped.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// let n = 0x0123456789ABCDEFu64;
-    ///
-    /// if cfg!(target_endian = "little") {
-    ///     assert_eq!(n.to_le(), n)
-    /// } else {
-    ///     assert_eq!(n.to_le(), n.swap_bytes())
-    /// }
-    /// ```
-    fn to_le(self) -> Self;
-
-    /// Raises self to the power of `exp`, using exponentiation by squaring.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use num_traits::PrimInt;
-    ///
-    /// assert_eq!(2i32.pow(4), 16);
-    /// ```
-    fn pow(self, exp: u32) -> Self;
-}
-
-macro_rules! prim_int_impl {
-    ($T:ty, $S:ty, $U:ty) => (
-        impl PrimInt for $T {
-            #[inline]
-            fn count_ones(self) -> u32 {
-                <$T>::count_ones(self)
-            }
-
-            #[inline]
-            fn count_zeros(self) -> u32 {
-                <$T>::count_zeros(self)
-            }
-
-            #[inline]
-            fn leading_zeros(self) -> u32 {
-                <$T>::leading_zeros(self)
-            }
-
-            #[inline]
-            fn trailing_zeros(self) -> u32 {
-                <$T>::trailing_zeros(self)
-            }
-
-            #[inline]
-            fn rotate_left(self, n: u32) -> Self {
-                <$T>::rotate_left(self, n)
-            }
-
-            #[inline]
-            fn rotate_right(self, n: u32) -> Self {
-                <$T>::rotate_right(self, n)
-            }
-
-            #[inline]
-            fn signed_shl(self, n: u32) -> Self {
-                ((self as $S) << n) as $T
-            }
-
-            #[inline]
-            fn signed_shr(self, n: u32) -> Self {
-                ((self as $S) >> n) as $T
-            }
-
-            #[inline]
-            fn unsigned_shl(self, n: u32) -> Self {
-                ((self as $U) << n) as $T
-            }
-
-            #[inline]
-            fn unsigned_shr(self, n: u32) -> Self {
-                ((self as $U) >> n) as $T
-            }
-
-            #[inline]
-            fn swap_bytes(self) -> Self {
-                <$T>::swap_bytes(self)
-            }
-
-            #[inline]
-            fn from_be(x: Self) -> Self {
-                <$T>::from_be(x)
-            }
-
-            #[inline]
-            fn from_le(x: Self) -> Self {
-                <$T>::from_le(x)
-            }
-
-            #[inline]
-            fn to_be(self) -> Self {
-                <$T>::to_be(self)
-            }
-
-            #[inline]
-            fn to_le(self) -> Self {
-                <$T>::to_le(self)
-            }
-
-            #[inline]
-            fn pow(self, exp: u32) -> Self {
-                <$T>::pow(self, exp)
-            }
-        }
-    )
-}
-
-// prim_int_impl!(type, signed, unsigned);
-prim_int_impl!(u8,    i8,    u8);
-prim_int_impl!(u16,   i16,   u16);
-prim_int_impl!(u32,   i32,   u32);
-prim_int_impl!(u64,   i64,   u64);
-prim_int_impl!(usize, isize, usize);
-prim_int_impl!(i8,    i8,    u8);
-prim_int_impl!(i16,   i16,   u16);
-prim_int_impl!(i32,   i32,   u32);
-prim_int_impl!(i64,   i64,   u64);
-prim_int_impl!(isize, isize, usize);

+ 39 - 400
src/lib.rs

@@ -9,441 +9,80 @@
 // except according to those terms.
 
 //! Numeric traits for generic mathematics
+//!
+//! This version of the crate only exists to re-export compatible
+//! items from num-traits 0.2.  Please consider updating!
 
 #![doc(html_root_url = "https://docs.rs/num-traits/0.1")]
 
-use std::ops::{Add, Sub, Mul, Div, Rem};
-use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
-use std::num::Wrapping;
-use std::fmt;
+extern crate num_traits;
 
 pub use bounds::Bounded;
 pub use float::{Float, FloatConst};
 // pub use real::Real; // NOTE: Don't do this, it breaks `use num_traits::*;`.
 pub use identities::{Zero, One, zero, one};
-pub use ops::checked::*;
-pub use ops::wrapping::*;
+pub use ops::checked::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, CheckedShl, CheckedShr};
+pub use ops::wrapping::{WrappingAdd, WrappingMul, WrappingSub};
 pub use ops::saturating::Saturating;
 pub use sign::{Signed, Unsigned, abs, abs_sub, signum};
-pub use cast::*;
+pub use cast::{AsPrimitive, FromPrimitive, ToPrimitive, NumCast, cast};
 pub use int::PrimInt;
 pub use pow::{pow, checked_pow};
 
-pub mod identities;
-pub mod sign;
-pub mod ops;
-pub mod bounds;
-pub mod float;
-pub mod real;
-pub mod cast;
-pub mod int;
-pub mod pow;
 
-/// The base trait for numeric types, covering `0` and `1` values,
-/// comparisons, basic numeric operations, and string conversion.
-pub trait Num: PartialEq + Zero + One + NumOps
-{
-    type FromStrRadixErr;
+// Re-exports from num-traits 0.2!
 
-    /// Convert from a string and radix <= 36.
-    ///
-    /// # Examples
-    ///
-    /// ```rust
-    /// use num_traits::Num;
-    ///
-    /// let result = <i32 as Num>::from_str_radix("27", 10);
-    /// assert_eq!(result, Ok(27));
-    ///
-    /// let result = <i32 as Num>::from_str_radix("foo", 10);
-    /// assert!(result.is_err());
-    /// ```
-    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
-}
-
-/// The trait for types implementing basic numeric operations
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumOps<Rhs = Self, Output = Self>
-    : Add<Rhs, Output = Output>
-    + Sub<Rhs, Output = Output>
-    + Mul<Rhs, Output = Output>
-    + Div<Rhs, Output = Output>
-    + Rem<Rhs, Output = Output>
-{}
-
-impl<T, Rhs, Output> NumOps<Rhs, Output> for T
-where T: Add<Rhs, Output = Output>
-       + Sub<Rhs, Output = Output>
-       + Mul<Rhs, Output = Output>
-       + Div<Rhs, Output = Output>
-       + Rem<Rhs, Output = Output>
-{}
-
-/// The trait for `Num` types which also implement numeric operations taking
-/// the second operand by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
-impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
-
-/// The trait for references which implement numeric operations, taking the
-/// second operand either by value or by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
-impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
-
-/// The trait for types implementing numeric assignment operators (like `+=`).
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssignOps<Rhs = Self>
-    : AddAssign<Rhs>
-    + SubAssign<Rhs>
-    + MulAssign<Rhs>
-    + DivAssign<Rhs>
-    + RemAssign<Rhs>
-{}
-
-impl<T, Rhs> NumAssignOps<Rhs> for T
-where T: AddAssign<Rhs>
-       + SubAssign<Rhs>
-       + MulAssign<Rhs>
-       + DivAssign<Rhs>
-       + RemAssign<Rhs>
-{}
+pub use num_traits::{Num, NumOps, NumRef, RefNum};
+pub use num_traits::{NumAssignOps, NumAssign, NumAssignRef};
+pub use num_traits::{FloatErrorKind, ParseFloatError};
+pub use num_traits::clamp;
 
-/// The trait for `Num` types which also implement assignment operators.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssign: Num + NumAssignOps {}
-impl<T> NumAssign for T where T: Num + NumAssignOps {}
+// Note: the module structure is explicitly re-created, rather than re-exporting en masse,
+// so we won't expose any items that may be added later in the new version.
 
-/// The trait for `NumAssign` types which also implement assignment operations
-/// taking the second operand by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
-impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
-
-
-macro_rules! int_trait_impl {
-    ($name:ident for $($t:ty)*) => ($(
-        impl $name for $t {
-            type FromStrRadixErr = ::std::num::ParseIntError;
-            #[inline]
-            fn from_str_radix(s: &str, radix: u32)
-                              -> Result<Self, ::std::num::ParseIntError>
-            {
-                <$t>::from_str_radix(s, radix)
-            }
-        }
-    )*)
+pub mod identities {
+    pub use num_traits::identities::{Zero, One, zero, one};
 }
-int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
 
-impl<T: Num> Num for Wrapping<T>
-    where Wrapping<T>:
-          Add<Output = Wrapping<T>> + Sub<Output = Wrapping<T>>
-        + Mul<Output = Wrapping<T>> + Div<Output = Wrapping<T>> + Rem<Output = Wrapping<T>>
-{
-    type FromStrRadixErr = T::FromStrRadixErr;
-    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
-        T::from_str_radix(str, radix).map(Wrapping)
-    }
+pub mod sign {
+    pub use num_traits::sign::{Signed, Unsigned, abs, abs_sub, signum};
 }
 
-
-#[derive(Debug)]
-pub enum FloatErrorKind {
-    Empty,
-    Invalid,
-}
-// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
-// so there's not really any way for us to reuse it.
-#[derive(Debug)]
-pub struct ParseFloatError {
-    pub kind: FloatErrorKind,
-}
-
-impl fmt::Display for ParseFloatError {
-    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
-        let description = match self.kind {
-            FloatErrorKind::Empty => "cannot parse float from empty string",
-            FloatErrorKind::Invalid => "invalid float literal",
-        };
-
-        description.fmt(f)
+pub mod ops {
+    pub mod saturating {
+        pub use num_traits::ops::saturating::Saturating;
     }
-}
-
-// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
-// with this implementation ourselves until we want to make a breaking change.
-// (would have to drop it from `Num` though)
-macro_rules! float_trait_impl {
-    ($name:ident for $($t:ty)*) => ($(
-        impl $name for $t {
-            type FromStrRadixErr = ParseFloatError;
-
-            fn from_str_radix(src: &str, radix: u32)
-                              -> Result<Self, Self::FromStrRadixErr>
-            {
-                use self::FloatErrorKind::*;
-                use self::ParseFloatError as PFE;
-
-                // Special values
-                match src {
-                    "inf"   => return Ok(Float::infinity()),
-                    "-inf"  => return Ok(Float::neg_infinity()),
-                    "NaN"   => return Ok(Float::nan()),
-                    _       => {},
-                }
-
-                fn slice_shift_char(src: &str) -> Option<(char, &str)> {
-                    src.chars().nth(0).map(|ch| (ch, &src[1..]))
-                }
-
-                let (is_positive, src) =  match slice_shift_char(src) {
-                    None             => return Err(PFE { kind: Empty }),
-                    Some(('-', ""))  => return Err(PFE { kind: Empty }),
-                    Some(('-', src)) => (false, src),
-                    Some((_, _))     => (true,  src),
-                };
-
-                // The significand to accumulate
-                let mut sig = if is_positive { 0.0 } else { -0.0 };
-                // Necessary to detect overflow
-                let mut prev_sig = sig;
-                let mut cs = src.chars().enumerate();
-                // Exponent prefix and exponent index offset
-                let mut exp_info = None::<(char, usize)>;
-
-                // Parse the integer part of the significand
-                for (i, c) in cs.by_ref() {
-                    match c.to_digit(radix) {
-                        Some(digit) => {
-                            // shift significand one digit left
-                            sig = sig * (radix as $t);
-
-                            // add/subtract current digit depending on sign
-                            if is_positive {
-                                sig = sig + ((digit as isize) as $t);
-                            } else {
-                                sig = sig - ((digit as isize) as $t);
-                            }
-
-                            // Detect overflow by comparing to last value, except
-                            // if we've not seen any non-zero digits.
-                            if prev_sig != 0.0 {
-                                if is_positive && sig <= prev_sig
-                                    { return Ok(Float::infinity()); }
-                                if !is_positive && sig >= prev_sig
-                                    { return Ok(Float::neg_infinity()); }
 
-                                // Detect overflow by reversing the shift-and-add process
-                                if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
-                                    { return Ok(Float::infinity()); }
-                                if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
-                                    { return Ok(Float::neg_infinity()); }
-                            }
-                            prev_sig = sig;
-                        },
-                        None => match c {
-                            'e' | 'E' | 'p' | 'P' => {
-                                exp_info = Some((c, i + 1));
-                                break;  // start of exponent
-                            },
-                            '.' => {
-                                break;  // start of fractional part
-                            },
-                            _ => {
-                                return Err(PFE { kind: Invalid });
-                            },
-                        },
-                    }
-                }
-
-                // If we are not yet at the exponent parse the fractional
-                // part of the significand
-                if exp_info.is_none() {
-                    let mut power = 1.0;
-                    for (i, c) in cs.by_ref() {
-                        match c.to_digit(radix) {
-                            Some(digit) => {
-                                // Decrease power one order of magnitude
-                                power = power / (radix as $t);
-                                // add/subtract current digit depending on sign
-                                sig = if is_positive {
-                                    sig + (digit as $t) * power
-                                } else {
-                                    sig - (digit as $t) * power
-                                };
-                                // Detect overflow by comparing to last value
-                                if is_positive && sig < prev_sig
-                                    { return Ok(Float::infinity()); }
-                                if !is_positive && sig > prev_sig
-                                    { return Ok(Float::neg_infinity()); }
-                                prev_sig = sig;
-                            },
-                            None => match c {
-                                'e' | 'E' | 'p' | 'P' => {
-                                    exp_info = Some((c, i + 1));
-                                    break; // start of exponent
-                                },
-                                _ => {
-                                    return Err(PFE { kind: Invalid });
-                                },
-                            },
-                        }
-                    }
-                }
-
-                // Parse and calculate the exponent
-                let exp = match exp_info {
-                    Some((c, offset)) => {
-                        let base = match c {
-                            'E' | 'e' if radix == 10 => 10.0,
-                            'P' | 'p' if radix == 16 => 2.0,
-                            _ => return Err(PFE { kind: Invalid }),
-                        };
-
-                        // Parse the exponent as decimal integer
-                        let src = &src[offset..];
-                        let (is_positive, exp) = match slice_shift_char(src) {
-                            Some(('-', src)) => (false, src.parse::<usize>()),
-                            Some(('+', src)) => (true,  src.parse::<usize>()),
-                            Some((_, _))     => (true,  src.parse::<usize>()),
-                            None             => return Err(PFE { kind: Invalid }),
-                        };
-
-                        match (is_positive, exp) {
-                            (true,  Ok(exp)) => base.powi(exp as i32),
-                            (false, Ok(exp)) => 1.0 / base.powi(exp as i32),
-                            (_, Err(_))      => return Err(PFE { kind: Invalid }),
-                        }
-                    },
-                    None => 1.0, // no exponent
-                };
-
-                Ok(sig * exp)
-            }
-        }
-    )*)
-}
-float_trait_impl!(Num for f32 f64);
-
-/// A value bounded by a minimum and a maximum
-///
-///  If input is less than min then this returns min.
-///  If input is greater than max then this returns max.
-///  Otherwise this returns input.
-#[inline]
-pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
-    debug_assert!(min <= max, "min must be less than or equal to max");
-    if input < min {
-        min
-    } else if input > max {
-        max
-    } else {
-        input
+    pub mod checked {
+        pub use num_traits::ops::checked::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
+                                           CheckedShl, CheckedShr};
     }
-}
-
-#[test]
-fn clamp_test() {
-    // Int test
-    assert_eq!(1, clamp(1, -1, 2));
-    assert_eq!(-1, clamp(-2, -1, 2));
-    assert_eq!(2, clamp(3, -1, 2));
-
-    // Float test
-    assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
-    assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
-    assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
-}
-
-#[test]
-fn from_str_radix_unwrap() {
-    // The Result error must impl Debug to allow unwrap()
 
-    let i: i32 = Num::from_str_radix("0", 10).unwrap();
-    assert_eq!(i, 0);
-
-    let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
-    assert_eq!(f, 0.0);
-}
-
-#[test]
-fn wrapping_is_num() {
-    fn require_num<T: Num>(_: &T) {}
-    require_num(&Wrapping(42_u32));
-    require_num(&Wrapping(-42));
-}
-
-#[test]
-fn wrapping_from_str_radix() {
-    macro_rules! test_wrapping_from_str_radix {
-        ($($t:ty)+) => {
-            $(
-                for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
-                    let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
-                    assert_eq!(w, <$t as Num>::from_str_radix(s, r));
-                }
-            )+
-        };
+    pub mod wrapping {
+        pub use num_traits::ops::wrapping::{WrappingAdd, WrappingMul, WrappingSub};
     }
-
-    test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
 }
 
-#[test]
-fn check_num_ops() {
-    fn compute<T: Num + Copy>(x: T, y: T) -> T {
-        x * y / y % y + y - y
-    }
-    assert_eq!(compute(1, 2), 1)
+pub mod bounds {
+    pub use num_traits::bounds::Bounded;
 }
 
-#[test]
-fn check_numref_ops() {
-    fn compute<T: NumRef>(x: T, y: &T) -> T {
-        x * y / y % y + y - y
-    }
-    assert_eq!(compute(1, &2), 1)
+pub mod float {
+    pub use num_traits::float::{Float, FloatConst};
 }
 
-#[test]
-fn check_refnum_ops() {
-    fn compute<T: Copy>(x: &T, y: T) -> T
-        where for<'a> &'a T: RefNum<T>
-    {
-        &(&(&(&(x * y) / y) % y) + y) - y
-    }
-    assert_eq!(compute(&1, 2), 1)
+pub mod real {
+    pub use num_traits::real::Real;
 }
 
-#[test]
-fn check_refref_ops() {
-    fn compute<T>(x: &T, y: &T) -> T
-        where for<'a> &'a T: RefNum<T>
-    {
-        &(&(&(&(x * y) / y) % y) + y) - y
-    }
-    assert_eq!(compute(&1, &2), 1)
+pub mod cast {
+    pub use num_traits::cast::{AsPrimitive, FromPrimitive, ToPrimitive, NumCast, cast};
 }
 
-#[test]
-fn check_numassign_ops() {
-    fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
-        x *= y;
-        x /= y;
-        x %= y;
-        x += y;
-        x -= y;
-        x
-    }
-    assert_eq!(compute(1, 2), 1)
+pub mod int {
+    pub use num_traits::int::PrimInt;
 }
 
-// TODO test `NumAssignRef`, but even the standard numeric types don't
-// implement this yet. (see rust pr41336)
+pub mod pow {
+    pub use num_traits::pow::{pow, checked_pow};
+}

+ 0 - 162
src/ops/checked.rs

@@ -1,162 +0,0 @@
-use std::ops::{Add, Sub, Mul, Div, Shl, Shr};
-
-/// Performs addition that returns `None` instead of wrapping around on
-/// overflow.
-pub trait CheckedAdd: Sized + Add<Self, Output=Self> {
-    /// Adds two numbers, checking for overflow. If overflow happens, `None` is
-    /// returned.
-    fn checked_add(&self, v: &Self) -> Option<Self>;
-}
-
-macro_rules! checked_impl {
-    ($trait_name:ident, $method:ident, $t:ty) => {
-        impl $trait_name for $t {
-            #[inline]
-            fn $method(&self, v: &$t) -> Option<$t> {
-                <$t>::$method(*self, *v)
-            }
-        }
-    }
-}
-
-checked_impl!(CheckedAdd, checked_add, u8);
-checked_impl!(CheckedAdd, checked_add, u16);
-checked_impl!(CheckedAdd, checked_add, u32);
-checked_impl!(CheckedAdd, checked_add, u64);
-checked_impl!(CheckedAdd, checked_add, usize);
-
-checked_impl!(CheckedAdd, checked_add, i8);
-checked_impl!(CheckedAdd, checked_add, i16);
-checked_impl!(CheckedAdd, checked_add, i32);
-checked_impl!(CheckedAdd, checked_add, i64);
-checked_impl!(CheckedAdd, checked_add, isize);
-
-/// Performs subtraction that returns `None` instead of wrapping around on underflow.
-pub trait CheckedSub: Sized + Sub<Self, Output=Self> {
-    /// Subtracts two numbers, checking for underflow. If underflow happens,
-    /// `None` is returned.
-    fn checked_sub(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedSub, checked_sub, u8);
-checked_impl!(CheckedSub, checked_sub, u16);
-checked_impl!(CheckedSub, checked_sub, u32);
-checked_impl!(CheckedSub, checked_sub, u64);
-checked_impl!(CheckedSub, checked_sub, usize);
-
-checked_impl!(CheckedSub, checked_sub, i8);
-checked_impl!(CheckedSub, checked_sub, i16);
-checked_impl!(CheckedSub, checked_sub, i32);
-checked_impl!(CheckedSub, checked_sub, i64);
-checked_impl!(CheckedSub, checked_sub, isize);
-
-/// Performs multiplication that returns `None` instead of wrapping around on underflow or
-/// overflow.
-pub trait CheckedMul: Sized + Mul<Self, Output=Self> {
-    /// Multiplies two numbers, checking for underflow or overflow. If underflow
-    /// or overflow happens, `None` is returned.
-    fn checked_mul(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedMul, checked_mul, u8);
-checked_impl!(CheckedMul, checked_mul, u16);
-checked_impl!(CheckedMul, checked_mul, u32);
-checked_impl!(CheckedMul, checked_mul, u64);
-checked_impl!(CheckedMul, checked_mul, usize);
-
-checked_impl!(CheckedMul, checked_mul, i8);
-checked_impl!(CheckedMul, checked_mul, i16);
-checked_impl!(CheckedMul, checked_mul, i32);
-checked_impl!(CheckedMul, checked_mul, i64);
-checked_impl!(CheckedMul, checked_mul, isize);
-
-/// Performs division that returns `None` instead of panicking on division by zero and instead of
-/// wrapping around on underflow and overflow.
-pub trait CheckedDiv: Sized + Div<Self, Output=Self> {
-    /// Divides two numbers, checking for underflow, overflow and division by
-    /// zero. If any of that happens, `None` is returned.
-    fn checked_div(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedDiv, checked_div, u8);
-checked_impl!(CheckedDiv, checked_div, u16);
-checked_impl!(CheckedDiv, checked_div, u32);
-checked_impl!(CheckedDiv, checked_div, u64);
-checked_impl!(CheckedDiv, checked_div, usize);
-
-checked_impl!(CheckedDiv, checked_div, i8);
-checked_impl!(CheckedDiv, checked_div, i16);
-checked_impl!(CheckedDiv, checked_div, i32);
-checked_impl!(CheckedDiv, checked_div, i64);
-checked_impl!(CheckedDiv, checked_div, isize);
-
-/// Performs a left shift that returns `None` on overflow.
-pub trait CheckedShl: Sized + Shl<u32, Output=Self> {
-    /// Shifts a number to the left, checking for overflow. If overflow happens,
-    /// `None` is returned.
-    ///
-    /// ```
-    /// use num_traits::CheckedShl;
-    ///
-    /// let x: u16 = 0x0001;
-    ///
-    /// assert_eq!(CheckedShl::checked_shl(&x, 0),  Some(0x0001));
-    /// assert_eq!(CheckedShl::checked_shl(&x, 1),  Some(0x0002));
-    /// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000));
-    /// assert_eq!(CheckedShl::checked_shl(&x, 16), None);
-    /// ```
-    fn checked_shl(&self, rhs: u32) -> Option<Self>;
-}
-
-macro_rules! checked_shift_impl {
-    ($trait_name:ident, $method:ident, $t:ty) => {
-        impl $trait_name for $t {
-            #[inline]
-            fn $method(&self, rhs: u32) -> Option<$t> {
-                <$t>::$method(*self, rhs)
-            }
-        }
-    }
-}
-
-checked_shift_impl!(CheckedShl, checked_shl, u8);
-checked_shift_impl!(CheckedShl, checked_shl, u16);
-checked_shift_impl!(CheckedShl, checked_shl, u32);
-checked_shift_impl!(CheckedShl, checked_shl, u64);
-checked_shift_impl!(CheckedShl, checked_shl, usize);
-
-checked_shift_impl!(CheckedShl, checked_shl, i8);
-checked_shift_impl!(CheckedShl, checked_shl, i16);
-checked_shift_impl!(CheckedShl, checked_shl, i32);
-checked_shift_impl!(CheckedShl, checked_shl, i64);
-checked_shift_impl!(CheckedShl, checked_shl, isize);
-
-/// Performs a right shift that returns `None` on overflow.
-pub trait CheckedShr: Sized + Shr<u32, Output=Self> {
-    /// Shifts a number to the left, checking for overflow. If overflow happens,
-    /// `None` is returned.
-    ///
-    /// ```
-    /// use num_traits::CheckedShr;
-    ///
-    /// let x: u16 = 0x8000;
-    ///
-    /// assert_eq!(CheckedShr::checked_shr(&x, 0),  Some(0x8000));
-    /// assert_eq!(CheckedShr::checked_shr(&x, 1),  Some(0x4000));
-    /// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001));
-    /// assert_eq!(CheckedShr::checked_shr(&x, 16), None);
-    /// ```
-    fn checked_shr(&self, rhs: u32) -> Option<Self>;
-}
-
-checked_shift_impl!(CheckedShr, checked_shr, u8);
-checked_shift_impl!(CheckedShr, checked_shr, u16);
-checked_shift_impl!(CheckedShr, checked_shr, u32);
-checked_shift_impl!(CheckedShr, checked_shr, u64);
-checked_shift_impl!(CheckedShr, checked_shr, usize);
-
-checked_shift_impl!(CheckedShr, checked_shr, i8);
-checked_shift_impl!(CheckedShr, checked_shr, i16);
-checked_shift_impl!(CheckedShr, checked_shr, i32);
-checked_shift_impl!(CheckedShr, checked_shr, i64);
-checked_shift_impl!(CheckedShr, checked_shr, isize);

+ 0 - 3
src/ops/mod.rs

@@ -1,3 +0,0 @@
-pub mod saturating;
-pub mod checked;
-pub mod wrapping;

+ 0 - 28
src/ops/saturating.rs

@@ -1,28 +0,0 @@
-/// Saturating math operations
-pub trait Saturating {
-    /// Saturating addition operator.
-    /// Returns a+b, saturating at the numeric bounds instead of overflowing.
-    fn saturating_add(self, v: Self) -> Self;
-
-    /// Saturating subtraction operator.
-    /// Returns a-b, saturating at the numeric bounds instead of overflowing.
-    fn saturating_sub(self, v: Self) -> Self;
-}
-
-macro_rules! saturating_impl {
-    ($trait_name:ident for $($t:ty)*) => {$(
-        impl $trait_name for $t {
-            #[inline]
-            fn saturating_add(self, v: Self) -> Self {
-                Self::saturating_add(self, v)
-            }
-
-            #[inline]
-            fn saturating_sub(self, v: Self) -> Self {
-                Self::saturating_sub(self, v)
-            }
-        }
-    )*}
-}
-
-saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64);

+ 0 - 127
src/ops/wrapping.rs

@@ -1,127 +0,0 @@
-use std::ops::{Add, Sub, Mul};
-use std::num::Wrapping;
-
-macro_rules! wrapping_impl {
-    ($trait_name:ident, $method:ident, $t:ty) => {
-        impl $trait_name for $t {
-            #[inline]
-            fn $method(&self, v: &Self) -> Self {
-                <$t>::$method(*self, *v)
-            }
-        }
-    };
-    ($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => {
-        impl $trait_name<$rhs> for $t {
-            #[inline]
-            fn $method(&self, v: &$rhs) -> Self {
-                <$t>::$method(*self, *v)
-            }
-        }
-    }
-}
-
-/// Performs addition that wraps around on overflow.
-pub trait WrappingAdd: Sized + Add<Self, Output=Self> {
-    /// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of
-    /// the type.
-    fn wrapping_add(&self, v: &Self) -> Self;
-}
-
-wrapping_impl!(WrappingAdd, wrapping_add, u8);
-wrapping_impl!(WrappingAdd, wrapping_add, u16);
-wrapping_impl!(WrappingAdd, wrapping_add, u32);
-wrapping_impl!(WrappingAdd, wrapping_add, u64);
-wrapping_impl!(WrappingAdd, wrapping_add, usize);
-
-wrapping_impl!(WrappingAdd, wrapping_add, i8);
-wrapping_impl!(WrappingAdd, wrapping_add, i16);
-wrapping_impl!(WrappingAdd, wrapping_add, i32);
-wrapping_impl!(WrappingAdd, wrapping_add, i64);
-wrapping_impl!(WrappingAdd, wrapping_add, isize);
-
-/// Performs subtraction that wraps around on overflow.
-pub trait WrappingSub: Sized + Sub<Self, Output=Self> {
-    /// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary
-    /// of the type.
-    fn wrapping_sub(&self, v: &Self) -> Self;
-}
-
-wrapping_impl!(WrappingSub, wrapping_sub, u8);
-wrapping_impl!(WrappingSub, wrapping_sub, u16);
-wrapping_impl!(WrappingSub, wrapping_sub, u32);
-wrapping_impl!(WrappingSub, wrapping_sub, u64);
-wrapping_impl!(WrappingSub, wrapping_sub, usize);
-
-wrapping_impl!(WrappingSub, wrapping_sub, i8);
-wrapping_impl!(WrappingSub, wrapping_sub, i16);
-wrapping_impl!(WrappingSub, wrapping_sub, i32);
-wrapping_impl!(WrappingSub, wrapping_sub, i64);
-wrapping_impl!(WrappingSub, wrapping_sub, isize);
-
-/// Performs multiplication that wraps around on overflow.
-pub trait WrappingMul: Sized + Mul<Self, Output=Self> {
-    /// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary
-    /// of the type.
-    fn wrapping_mul(&self, v: &Self) -> Self;
-}
-
-wrapping_impl!(WrappingMul, wrapping_mul, u8);
-wrapping_impl!(WrappingMul, wrapping_mul, u16);
-wrapping_impl!(WrappingMul, wrapping_mul, u32);
-wrapping_impl!(WrappingMul, wrapping_mul, u64);
-wrapping_impl!(WrappingMul, wrapping_mul, usize);
-
-wrapping_impl!(WrappingMul, wrapping_mul, i8);
-wrapping_impl!(WrappingMul, wrapping_mul, i16);
-wrapping_impl!(WrappingMul, wrapping_mul, i32);
-wrapping_impl!(WrappingMul, wrapping_mul, i64);
-wrapping_impl!(WrappingMul, wrapping_mul, isize);
-
-// Well this is a bit funny, but all the more appropriate.
-impl<T: WrappingAdd> WrappingAdd for Wrapping<T> where Wrapping<T>: Add<Output = Wrapping<T>> {
-    fn wrapping_add(&self, v: &Self) -> Self {
-        Wrapping(self.0.wrapping_add(&v.0))
-    }
-}
-impl<T: WrappingSub> WrappingSub for Wrapping<T> where Wrapping<T>: Sub<Output = Wrapping<T>> {
-    fn wrapping_sub(&self, v: &Self) -> Self {
-        Wrapping(self.0.wrapping_sub(&v.0))
-    }
-}
-impl<T: WrappingMul> WrappingMul for Wrapping<T> where Wrapping<T>: Mul<Output = Wrapping<T>> {
-    fn wrapping_mul(&self, v: &Self) -> Self {
-        Wrapping(self.0.wrapping_mul(&v.0))
-    }
-}
-
-
-#[test]
-fn test_wrapping_traits() {
-    fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T { a.wrapping_add(&b) }
-    fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T { a.wrapping_sub(&b) }
-    fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T { a.wrapping_mul(&b) }
-    assert_eq!(wrapping_add(255, 1), 0u8);
-    assert_eq!(wrapping_sub(0, 1), 255u8);
-    assert_eq!(wrapping_mul(255, 2), 254u8);
-    assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0);
-    assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0);
-    assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0);
-}
-
-#[test]
-fn wrapping_is_wrappingadd() {
-    fn require_wrappingadd<T: WrappingAdd>(_: &T) {}
-    require_wrappingadd(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingsub() {
-    fn require_wrappingsub<T: WrappingSub>(_: &T) {}
-    require_wrappingsub(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingmul() {
-    fn require_wrappingmul<T: WrappingMul>(_: &T) {}
-    require_wrappingmul(&Wrapping(42));
-}

+ 0 - 73
src/pow.rs

@@ -1,73 +0,0 @@
-use std::ops::Mul;
-use {One, CheckedMul};
-
-/// Raises a value to the power of exp, using exponentiation by squaring.
-///
-/// # Example
-///
-/// ```rust
-/// use num_traits::pow;
-///
-/// assert_eq!(pow(2i8, 4), 16);
-/// assert_eq!(pow(6u8, 3), 216);
-/// ```
-#[inline]
-pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
-    if exp == 0 { return T::one() }
-
-    while exp & 1 == 0 {
-        base = base.clone() * base;
-        exp >>= 1;
-    }
-    if exp == 1 { return base }
-
-    let mut acc = base.clone();
-    while exp > 1 {
-        exp >>= 1;
-        base = base.clone() * base;
-        if exp & 1 == 1 {
-            acc = acc * base.clone();
-        }
-    }
-    acc
-}
-
-/// Raises a value to the power of exp, returning `None` if an overflow occurred.
-///
-/// Otherwise same as the `pow` function.
-///
-/// # Example
-///
-/// ```rust
-/// use num_traits::checked_pow;
-///
-/// assert_eq!(checked_pow(2i8, 4), Some(16));
-/// assert_eq!(checked_pow(7i8, 8), None);
-/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801));
-/// ```
-#[inline]
-pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
-    if exp == 0 { return Some(T::one()) }
-
-    macro_rules! optry {
-        ( $ expr : expr ) => {
-            if let Some(val) = $expr { val } else { return None }
-        }
-    }
-
-    while exp & 1 == 0 {
-        base = optry!(base.checked_mul(&base));
-        exp >>= 1;
-    }
-    if exp == 1 { return Some(base) }
-
-    let mut acc = base.clone();
-    while exp > 1 {
-        exp >>= 1;
-        base = optry!(base.checked_mul(&base));
-        if exp & 1 == 1 {
-            acc = optry!(acc.checked_mul(&base));
-        }
-    }
-    Some(acc)
-}

+ 0 - 924
src/real.rs

@@ -1,924 +0,0 @@
-use std::ops::Neg;
-
-use {Num, NumCast, Float};
-
-// NOTE: These doctests have the same issue as those in src/float.rs.
-// They're testing the inherent methods directly, and not those of `Real`.
-
-/// A trait for real number types that do not necessarily have
-/// floating-point-specific characteristics such as NaN and infinity.
-///
-/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
-/// for a list of data types that could meaningfully implement this trait.
-pub trait Real
-    : Num
-    + Copy
-    + NumCast
-    + PartialOrd
-    + Neg<Output = Self>
-{
-    /// Returns the smallest finite value that this type can represent.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Real::min_value();
-    ///
-    /// assert_eq!(x, f64::MIN);
-    /// ```
-    fn min_value() -> Self;
-
-    /// Returns the smallest positive, normalized value that this type can represent.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Real::min_positive_value();
-    ///
-    /// assert_eq!(x, f64::MIN_POSITIVE);
-    /// ```
-    fn min_positive_value() -> Self;
-
-    /// Returns epsilon, a small positive value.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Real::epsilon();
-    ///
-    /// assert_eq!(x, f64::EPSILON);
-    /// ```
-    ///
-    /// # Panics
-    ///
-    /// The default implementation will panic if `f32::EPSILON` cannot
-    /// be cast to `Self`.
-    fn epsilon() -> Self;
-
-    /// Returns the largest finite value that this type can represent.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x: f64 = Real::max_value();
-    /// assert_eq!(x, f64::MAX);
-    /// ```
-    fn max_value() -> Self;
-
-    /// Returns the largest integer less than or equal to a number.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let f = 3.99;
-    /// let g = 3.0;
-    ///
-    /// assert_eq!(f.floor(), 3.0);
-    /// assert_eq!(g.floor(), 3.0);
-    /// ```
-    fn floor(self) -> Self;
-
-    /// Returns the smallest integer greater than or equal to a number.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let f = 3.01;
-    /// let g = 4.0;
-    ///
-    /// assert_eq!(f.ceil(), 4.0);
-    /// assert_eq!(g.ceil(), 4.0);
-    /// ```
-    fn ceil(self) -> Self;
-
-    /// Returns the nearest integer to a number. Round half-way cases away from
-    /// `0.0`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let f = 3.3;
-    /// let g = -3.3;
-    ///
-    /// assert_eq!(f.round(), 3.0);
-    /// assert_eq!(g.round(), -3.0);
-    /// ```
-    fn round(self) -> Self;
-
-    /// Return the integer part of a number.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let f = 3.3;
-    /// let g = -3.7;
-    ///
-    /// assert_eq!(f.trunc(), 3.0);
-    /// assert_eq!(g.trunc(), -3.0);
-    /// ```
-    fn trunc(self) -> Self;
-
-    /// Returns the fractional part of a number.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 3.5;
-    /// let y = -3.5;
-    /// let abs_difference_x = (x.fract() - 0.5).abs();
-    /// let abs_difference_y = (y.fract() - (-0.5)).abs();
-    ///
-    /// assert!(abs_difference_x < 1e-10);
-    /// assert!(abs_difference_y < 1e-10);
-    /// ```
-    fn fract(self) -> Self;
-
-    /// Computes the absolute value of `self`. Returns `Float::nan()` if the
-    /// number is `Float::nan()`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x = 3.5;
-    /// let y = -3.5;
-    ///
-    /// let abs_difference_x = (x.abs() - x).abs();
-    /// let abs_difference_y = (y.abs() - (-y)).abs();
-    ///
-    /// assert!(abs_difference_x < 1e-10);
-    /// assert!(abs_difference_y < 1e-10);
-    ///
-    /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
-    /// ```
-    fn abs(self) -> Self;
-
-    /// Returns a number that represents the sign of `self`.
-    ///
-    /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
-    /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
-    /// - `Float::nan()` if the number is `Float::nan()`
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let f = 3.5;
-    ///
-    /// assert_eq!(f.signum(), 1.0);
-    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
-    ///
-    /// assert!(f64::NAN.signum().is_nan());
-    /// ```
-    fn signum(self) -> Self;
-
-    /// Returns `true` if `self` is positive, including `+0.0`,
-    /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let neg_nan: f64 = -f64::NAN;
-    ///
-    /// let f = 7.0;
-    /// let g = -7.0;
-    ///
-    /// assert!(f.is_sign_positive());
-    /// assert!(!g.is_sign_positive());
-    /// assert!(!neg_nan.is_sign_positive());
-    /// ```
-    fn is_sign_positive(self) -> bool;
-
-    /// Returns `true` if `self` is negative, including `-0.0`,
-    /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let nan: f64 = f64::NAN;
-    ///
-    /// let f = 7.0;
-    /// let g = -7.0;
-    ///
-    /// assert!(!f.is_sign_negative());
-    /// assert!(g.is_sign_negative());
-    /// assert!(!nan.is_sign_negative());
-    /// ```
-    fn is_sign_negative(self) -> bool;
-
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
-    /// error. This produces a more accurate result with better performance than
-    /// a separate multiplication operation followed by an add.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let m = 10.0;
-    /// let x = 4.0;
-    /// let b = 60.0;
-    ///
-    /// // 100.0
-    /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn mul_add(self, a: Self, b: Self) -> Self;
-
-    /// Take the reciprocal (inverse) of a number, `1/x`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 2.0;
-    /// let abs_difference = (x.recip() - (1.0/x)).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn recip(self) -> Self;
-
-    /// Raise a number to an integer power.
-    ///
-    /// Using this function is generally faster than using `powf`
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 2.0;
-    /// let abs_difference = (x.powi(2) - x*x).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn powi(self, n: i32) -> Self;
-
-    /// Raise a number to a real number power.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 2.0;
-    /// let abs_difference = (x.powf(2.0) - x*x).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn powf(self, n: Self) -> Self;
-
-    /// Take the square root of a number.
-    ///
-    /// Returns NaN if `self` is a negative floating-point number.  
-    ///
-    /// # Panics
-    ///
-    /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let positive = 4.0;
-    /// let negative = -4.0;
-    ///
-    /// let abs_difference = (positive.sqrt() - 2.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
-    /// ```
-    fn sqrt(self) -> Self;
-
-    /// Returns `e^(self)`, (the exponential function).
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let one = 1.0;
-    /// // e^1
-    /// let e = one.exp();
-    ///
-    /// // ln(e) - 1 == 0
-    /// let abs_difference = (e.ln() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn exp(self) -> Self;
-
-    /// Returns `2^(self)`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let f = 2.0;
-    ///
-    /// // 2^2 - 4 == 0
-    /// let abs_difference = (f.exp2() - 4.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn exp2(self) -> Self;
-
-    /// Returns the natural logarithm of the number.
-    ///
-    /// # Panics
-    ///
-    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let one = 1.0;
-    /// // e^1
-    /// let e = one.exp();
-    ///
-    /// // ln(e) - 1 == 0
-    /// let abs_difference = (e.ln() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn ln(self) -> Self;
-
-    /// Returns the logarithm of the number with respect to an arbitrary base.
-    ///
-    /// # Panics
-    ///
-    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let ten = 10.0;
-    /// let two = 2.0;
-    ///
-    /// // log10(10) - 1 == 0
-    /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
-    ///
-    /// // log2(2) - 1 == 0
-    /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
-    ///
-    /// assert!(abs_difference_10 < 1e-10);
-    /// assert!(abs_difference_2 < 1e-10);
-    /// ```
-    fn log(self, base: Self) -> Self;
-
-    /// Returns the base 2 logarithm of the number.
-    ///
-    /// # Panics
-    ///
-    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let two = 2.0;
-    ///
-    /// // log2(2) - 1 == 0
-    /// let abs_difference = (two.log2() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn log2(self) -> Self;
-
-    /// Returns the base 10 logarithm of the number.
-    ///
-    /// # Panics
-    ///
-    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
-    ///
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let ten = 10.0;
-    ///
-    /// // log10(10) - 1 == 0
-    /// let abs_difference = (ten.log10() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn log10(self) -> Self;
-
-    /// Converts radians to degrees.
-    ///
-    /// ```
-    /// use std::f64::consts;
-    ///
-    /// let angle = consts::PI;
-    ///
-    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn to_degrees(self) -> Self;
-
-    /// Converts degrees to radians.
-    ///
-    /// ```
-    /// use std::f64::consts;
-    ///
-    /// let angle = 180.0_f64;
-    ///
-    /// let abs_difference = (angle.to_radians() - consts::PI).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn to_radians(self) -> Self;
-
-    /// Returns the maximum of the two numbers.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 1.0;
-    /// let y = 2.0;
-    ///
-    /// assert_eq!(x.max(y), y);
-    /// ```
-    fn max(self, other: Self) -> Self;
-
-    /// Returns the minimum of the two numbers.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 1.0;
-    /// let y = 2.0;
-    ///
-    /// assert_eq!(x.min(y), x);
-    /// ```
-    fn min(self, other: Self) -> Self;
-
-    /// The positive difference of two numbers.
-    ///
-    /// * If `self <= other`: `0:0`
-    /// * Else: `self - other`
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 3.0;
-    /// let y = -3.0;
-    ///
-    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
-    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
-    ///
-    /// assert!(abs_difference_x < 1e-10);
-    /// assert!(abs_difference_y < 1e-10);
-    /// ```
-    fn abs_sub(self, other: Self) -> Self;
-
-    /// Take the cubic root of a number.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 8.0;
-    ///
-    /// // x^(1/3) - 2 == 0
-    /// let abs_difference = (x.cbrt() - 2.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn cbrt(self) -> Self;
-
-    /// Calculate the length of the hypotenuse of a right-angle triangle given
-    /// legs of length `x` and `y`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 2.0;
-    /// let y = 3.0;
-    ///
-    /// // sqrt(x^2 + y^2)
-    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn hypot(self, other: Self) -> Self;
-
-    /// Computes the sine of a number (in radians).
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::PI/2.0;
-    ///
-    /// let abs_difference = (x.sin() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn sin(self) -> Self;
-
-    /// Computes the cosine of a number (in radians).
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x = 2.0*f64::consts::PI;
-    ///
-    /// let abs_difference = (x.cos() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn cos(self) -> Self;
-
-    /// Computes the tangent of a number (in radians).
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::PI/4.0;
-    /// let abs_difference = (x.tan() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-14);
-    /// ```
-    fn tan(self) -> Self;
-
-    /// Computes the arcsine of a number. Return value is in radians in
-    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
-    /// [-1, 1].
-    ///
-    /// # Panics
-    ///
-    /// If this type does not support a NaN representation, this function should panic
-    /// if the number is outside the range [-1, 1].
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let f = f64::consts::PI / 2.0;
-    ///
-    /// // asin(sin(pi/2))
-    /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn asin(self) -> Self;
-
-    /// Computes the arccosine of a number. Return value is in radians in
-    /// the range [0, pi] or NaN if the number is outside the range
-    /// [-1, 1].
-    ///
-    /// # Panics
-    ///
-    /// If this type does not support a NaN representation, this function should panic
-    /// if the number is outside the range [-1, 1].
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let f = f64::consts::PI / 4.0;
-    ///
-    /// // acos(cos(pi/4))
-    /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn acos(self) -> Self;
-
-    /// Computes the arctangent of a number. Return value is in radians in the
-    /// range [-pi/2, pi/2];
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let f = 1.0;
-    ///
-    /// // atan(tan(1))
-    /// let abs_difference = (f.tan().atan() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn atan(self) -> Self;
-
-    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
-    ///
-    /// * `x = 0`, `y = 0`: `0`
-    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
-    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
-    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let pi = f64::consts::PI;
-    /// // All angles from horizontal right (+x)
-    /// // 45 deg counter-clockwise
-    /// let x1 = 3.0;
-    /// let y1 = -3.0;
-    ///
-    /// // 135 deg clockwise
-    /// let x2 = -3.0;
-    /// let y2 = 3.0;
-    ///
-    /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
-    /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
-    ///
-    /// assert!(abs_difference_1 < 1e-10);
-    /// assert!(abs_difference_2 < 1e-10);
-    /// ```
-    fn atan2(self, other: Self) -> Self;
-
-    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
-    /// `(sin(x), cos(x))`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::PI/4.0;
-    /// let f = x.sin_cos();
-    ///
-    /// let abs_difference_0 = (f.0 - x.sin()).abs();
-    /// let abs_difference_1 = (f.1 - x.cos()).abs();
-    ///
-    /// assert!(abs_difference_0 < 1e-10);
-    /// assert!(abs_difference_0 < 1e-10);
-    /// ```
-    fn sin_cos(self) -> (Self, Self);
-
-    /// Returns `e^(self) - 1` in a way that is accurate even if the
-    /// number is close to zero.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 7.0;
-    ///
-    /// // e^(ln(7)) - 1
-    /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn exp_m1(self) -> Self;
-
-    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
-    /// the operations were performed separately.
-    ///
-    /// # Panics
-    ///
-    /// If this type does not support a NaN representation, this function should panic
-    /// if `self-1 <= 0`.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let x = f64::consts::E - 1.0;
-    ///
-    /// // ln(1 + (e - 1)) == ln(e) == 1
-    /// let abs_difference = (x.ln_1p() - 1.0).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn ln_1p(self) -> Self;
-
-    /// Hyperbolic sine function.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let x = 1.0;
-    ///
-    /// let f = x.sinh();
-    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
-    /// let g = (e*e - 1.0)/(2.0*e);
-    /// let abs_difference = (f - g).abs();
-    ///
-    /// assert!(abs_difference < 1e-10);
-    /// ```
-    fn sinh(self) -> Self;
-
-    /// Hyperbolic cosine function.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let x = 1.0;
-    /// let f = x.cosh();
-    /// // Solving cosh() at 1 gives this result
-    /// let g = (e*e + 1.0)/(2.0*e);
-    /// let abs_difference = (f - g).abs();
-    ///
-    /// // Same result
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn cosh(self) -> Self;
-
-    /// Hyperbolic tangent function.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let x = 1.0;
-    ///
-    /// let f = x.tanh();
-    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
-    /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
-    /// let abs_difference = (f - g).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn tanh(self) -> Self;
-
-    /// Inverse hyperbolic sine function.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 1.0;
-    /// let f = x.sinh().asinh();
-    ///
-    /// let abs_difference = (f - x).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn asinh(self) -> Self;
-
-    /// Inverse hyperbolic cosine function.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    ///
-    /// let x = 1.0;
-    /// let f = x.cosh().acosh();
-    ///
-    /// let abs_difference = (f - x).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn acosh(self) -> Self;
-
-    /// Inverse hyperbolic tangent function.
-    ///
-    /// ```
-    /// use num_traits::real::Real;
-    /// use std::f64;
-    ///
-    /// let e = f64::consts::E;
-    /// let f = e.tanh().atanh();
-    ///
-    /// let abs_difference = (f - e).abs();
-    ///
-    /// assert!(abs_difference < 1.0e-10);
-    /// ```
-    fn atanh(self) -> Self;
-}
-
-impl<T: Float> Real for T {
-    fn min_value() -> Self {
-        Self::min_value()
-    }
-    fn min_positive_value() -> Self {
-        Self::min_positive_value()
-    }
-    fn epsilon() -> Self {
-        Self::epsilon()
-    }
-    fn max_value() -> Self {
-        Self::max_value()
-    }
-    fn floor(self) -> Self {
-        self.floor()
-    }
-    fn ceil(self) -> Self {
-        self.ceil()
-    }
-    fn round(self) -> Self {
-        self.round()
-    }
-    fn trunc(self) -> Self {
-        self.trunc()
-    }
-    fn fract(self) -> Self {
-        self.fract()
-    }
-    fn abs(self) -> Self {
-        self.abs()
-    }
-    fn signum(self) -> Self {
-        self.signum()
-    }
-    fn is_sign_positive(self) -> bool {
-        self.is_sign_positive()
-    }
-    fn is_sign_negative(self) -> bool {
-        self.is_sign_negative()
-    }
-    fn mul_add(self, a: Self, b: Self) -> Self {
-        self.mul_add(a, b)
-    }
-    fn recip(self) -> Self {
-        self.recip()
-    }
-    fn powi(self, n: i32) -> Self {
-        self.powi(n)
-    }
-    fn powf(self, n: Self) -> Self {
-        self.powf(n)
-    }
-    fn sqrt(self) -> Self {
-        self.sqrt()
-    }
-    fn exp(self) -> Self {
-        self.exp()
-    }
-    fn exp2(self) -> Self {
-        self.exp2()
-    }
-    fn ln(self) -> Self {
-        self.ln()
-    }
-    fn log(self, base: Self) -> Self {
-        self.log(base)
-    }
-    fn log2(self) -> Self {
-        self.log2()
-    }
-    fn log10(self) -> Self {
-        self.log10()
-    }
-    fn to_degrees(self) -> Self {
-        self.to_degrees()
-    }
-    fn to_radians(self) -> Self {
-        self.to_radians()
-    }
-    fn max(self, other: Self) -> Self {
-        self.max(other)
-    }
-    fn min(self, other: Self) -> Self {
-        self.min(other)
-    }
-    fn abs_sub(self, other: Self) -> Self {
-        self.abs_sub(other)
-    }
-    fn cbrt(self) -> Self {
-        self.cbrt()
-    }
-    fn hypot(self, other: Self) -> Self {
-        self.hypot(other)
-    }
-    fn sin(self) -> Self {
-        self.sin()
-    }
-    fn cos(self) -> Self {
-        self.cos()
-    }
-    fn tan(self) -> Self {
-        self.tan()
-    }
-    fn asin(self) -> Self {
-        self.asin()
-    }
-    fn acos(self) -> Self {
-        self.acos()
-    }
-    fn atan(self) -> Self {
-        self.atan()
-    }
-    fn atan2(self, other: Self) -> Self {
-        self.atan2(other)
-    }
-    fn sin_cos(self) -> (Self, Self) {
-        self.sin_cos()
-    }
-    fn exp_m1(self) -> Self {
-        self.exp_m1()
-    }
-    fn ln_1p(self) -> Self {
-        self.ln_1p()
-    }
-    fn sinh(self) -> Self {
-        self.sinh()
-    }
-    fn cosh(self) -> Self {
-        self.cosh()
-    }
-    fn tanh(self) -> Self {
-        self.tanh()
-    }
-    fn asinh(self) -> Self {
-        self.asinh()
-    }
-    fn acosh(self) -> Self {
-        self.acosh()
-    }
-    fn atanh(self) -> Self {
-        self.atanh()
-    }
-}

+ 0 - 204
src/sign.rs

@@ -1,204 +0,0 @@
-use std::ops::Neg;
-use std::{f32, f64};
-use std::num::Wrapping;
-
-use Num;
-
-/// Useful functions for signed numbers (i.e. numbers that can be negative).
-pub trait Signed: Sized + Num + Neg<Output = Self> {
-    /// Computes the absolute value.
-    ///
-    /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
-    ///
-    /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
-    fn abs(&self) -> Self;
-
-    /// The positive difference of two numbers.
-    ///
-    /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
-    /// between `self` and `other` is returned.
-    fn abs_sub(&self, other: &Self) -> Self;
-
-    /// Returns the sign of the number.
-    ///
-    /// For `f32` and `f64`:
-    ///
-    /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
-    /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
-    /// * `NaN` if the number is `NaN`
-    ///
-    /// For signed integers:
-    ///
-    /// * `0` if the number is zero
-    /// * `1` if the number is positive
-    /// * `-1` if the number is negative
-    fn signum(&self) -> Self;
-
-    /// Returns true if the number is positive and false if the number is zero or negative.
-    fn is_positive(&self) -> bool;
-
-    /// Returns true if the number is negative and false if the number is zero or positive.
-    fn is_negative(&self) -> bool;
-}
-
-macro_rules! signed_impl {
-    ($($t:ty)*) => ($(
-        impl Signed for $t {
-            #[inline]
-            fn abs(&self) -> $t {
-                if self.is_negative() { -*self } else { *self }
-            }
-
-            #[inline]
-            fn abs_sub(&self, other: &$t) -> $t {
-                if *self <= *other { 0 } else { *self - *other }
-            }
-
-            #[inline]
-            fn signum(&self) -> $t {
-                match *self {
-                    n if n > 0 => 1,
-                    0 => 0,
-                    _ => -1,
-                }
-            }
-
-            #[inline]
-            fn is_positive(&self) -> bool { *self > 0 }
-
-            #[inline]
-            fn is_negative(&self) -> bool { *self < 0 }
-        }
-    )*)
-}
-
-signed_impl!(isize i8 i16 i32 i64);
-
-impl<T: Signed> Signed for Wrapping<T> where Wrapping<T>: Num + Neg<Output=Wrapping<T>>
-{
-    #[inline]
-    fn abs(&self) -> Self {
-        Wrapping(self.0.abs())
-    }
-
-    #[inline]
-    fn abs_sub(&self, other: &Self) -> Self {
-        Wrapping(self.0.abs_sub(&other.0))
-    }
-
-    #[inline]
-    fn signum(&self) -> Self {
-        Wrapping(self.0.signum())
-    }
-
-    #[inline]
-    fn is_positive(&self) -> bool { self.0.is_positive() }
-
-    #[inline]
-    fn is_negative(&self) -> bool { self.0.is_negative() }
-}
-
-macro_rules! signed_float_impl {
-    ($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => {
-        impl Signed for $t {
-            /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
-            #[inline]
-            fn abs(&self) -> $t {
-                <$t>::abs(*self)
-            }
-
-            /// The positive difference of two numbers. Returns `0.0` if the number is
-            /// less than or equal to `other`, otherwise the difference between`self`
-            /// and `other` is returned.
-            #[inline]
-            #[allow(deprecated)]
-            fn abs_sub(&self, other: &$t) -> $t {
-                <$t>::abs_sub(*self, *other)
-            }
-
-            /// # Returns
-            ///
-            /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
-            /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
-            /// - `NAN` if the number is NaN
-            #[inline]
-            fn signum(&self) -> $t {
-                <$t>::signum(*self)
-            }
-
-            /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
-            #[inline]
-            fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }
-
-            /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
-            #[inline]
-            fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
-        }
-    }
-}
-
-signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY);
-signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY);
-
-/// Computes the absolute value.
-///
-/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
-///
-/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
-#[inline(always)]
-pub fn abs<T: Signed>(value: T) -> T {
-    value.abs()
-}
-
-/// The positive difference of two numbers.
-///
-/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
-/// between `x` and `y` is returned.
-#[inline(always)]
-pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
-    x.abs_sub(&y)
-}
-
-/// Returns the sign of the number.
-///
-/// For `f32` and `f64`:
-///
-/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
-/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
-/// * `NaN` if the number is `NaN`
-///
-/// For signed integers:
-///
-/// * `0` if the number is zero
-/// * `1` if the number is positive
-/// * `-1` if the number is negative
-#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
-
-/// A trait for values which cannot be negative
-pub trait Unsigned: Num {}
-
-macro_rules! empty_trait_impl {
-    ($name:ident for $($t:ty)*) => ($(
-        impl $name for $t {}
-    )*)
-}
-
-empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
-
-impl<T: Unsigned> Unsigned for Wrapping<T> where Wrapping<T>: Num {}
-
-#[test]
-fn unsigned_wrapping_is_unsigned() {
-    fn require_unsigned<T: Unsigned>(_: &T) {}
-    require_unsigned(&Wrapping(42_u32));
-}
-/*
-// Commenting this out since it doesn't compile on Rust 1.8,
-// because on this version Wrapping doesn't implement Neg and therefore can't
-// implement Signed.
-#[test]
-fn signed_wrapping_is_signed() {
-    fn require_signed<T: Signed>(_: &T) {}
-    require_signed(&Wrapping(-42));
-}
-*/